organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Diphenyl (cyclopentylamido)phosphonate

Fahimeh Sabbaghi,^a* Mehrdad Pourayoubi,^b Poorya Zargaran,^b Giuseppe Bruno^c and Hadi Amiri Rudbari^c

^aDepartment of Chemistry, Zanjan Branch, Islamic Azad University, PO Box 49195-467. Zanian, Iran, ^bDepartment of Chemistry, Ferdowsi University of Mashhad. Mashhad 91779, Iran, and ^cDipartimento di Chimica Inorganica, Vill. S. Agata, Salita Sperone 31, Università di Messina, 98166 Messina, Italy Correspondence e-mail: fahimeh_sabbaghi@yahoo.com

Received 30 March 2011; accepted 5 May 2011

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.003 Å; disorder in main residue; R factor = 0.037; wR factor = 0.110; data-to-parameter ratio = 14.7.

In the title molecule, C₁₇H₂₀NO₃P, the P atom is bonded in a distorted tetrahedral environment. The dihedral angle between the two phenyl rings is $23.52 (10)^{\circ}$. The phosphoryl and N-H groups are anti with respect to one another. The -CH₂-CH₂-CH₂-CH₂-sequence of atoms in the cyclopentyl ring is disordered over two sets of sites with refined occupancies of 0.574 (10) and 0.426 (10). In the crystal, molecules are linked via N-H···O=P hydrogen bonds to form extended chains along [010].

Related literature

For a related structure, see: Pourayoubi et al. (2011).

Experimental

Crystal data $C_{17}H_{20}NO_3P$

 $M_r = 317.31$

Monoclinic, $P2_1/c$	Z = 4
a = 18.0095 (4) Å	Mo $K\alpha$ radiation
b = 5.3471(1) Å	$\mu = 0.18 \text{ mm}^{-1}$
c = 17.9387 (4) Å	T = 296 K
$\beta = 109.731 (1)^{\circ}$	$0.5 \times 0.4 \times 0.2 \text{ mm}$
V = 1626.05 (6) Å ³	
Data collection	
Bruker APEXII CCD diffractometer	139394 measured reflections 3531 independent reflections
Absorption correction: multi-scan	3180 reflections with $I > 2\sigma(I)$
(SADABS; Sheldrick, 2004)	$R_{\rm int} = 0.021$
$T_{\min} = 0.709, \ T_{\max} = 0.747$	
Refinement	
$R[F^2 > 2\sigma(F^2)] = 0.037$	H atoms treated by a mixture
$wR(F^2) = 0.110$	independent and constraine
S = 1.08	refinement

$R[F^2 > 2\sigma(F^2)] = 0.037$	H atoms treated by a mixture of
$wR(F^2) = 0.110$	independent and constrained
S = 1.08	refinement
3531 reflections	$\Delta \rho_{\rm max} = 0.23 \text{ e } \text{\AA}^{-3}$
240 parameters	$\Delta \rho_{\rm min} = -0.28 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N-H\cdots O1^i$	0.790 (19)	2.23 (2)	3.0039 (17)	167.7 (19)
Summatry and a (i) x y + 1 z			

Symmetry code: (i) x, y + 1, z.

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and enCIFer (Allen et al., 2004).

Support of this investigation by Zanjan Branch, Islamic Azad University, is gratefully acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5228).

References

- Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.
- Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.
- Pourayoubi, M., Zargaran, P., Rheingold, A. L. & Golen, J. A. (2011). Acta Crvst. E67. o5.
- Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2011). E67, o1378 [doi:10.1107/S1600536811017028]

Diphenyl (cyclopentylamido)phosphonate

Fahimeh Sabbaghi, Mehrdad Pourayoubi, Poorya Zargaran, Giuseppe Bruno and Hadi Amiri Rudbari

S1. Comment

We have already studied the crystal structure of a diphenyl(amido)phosphonate, $(C_6H_5O)_2P(O)(NHCH_2(2-ClC_6H_4))$ (Pourayoubi *et al.*, 2011). Here, we report the synthesis and crystal structure of title compound.

The P=O, P—O and P—N bond lengths are standard for (amido)phosphonate compounds. The P atom has a distorted tetrahedral configuration (Fig. 1) with the bond angles in the range of 99.72 (6)° [O2-P-O3] to 115.93 (6)° [O1-P-O2]. The phosphoryl group and the N–H unit are in an *anti* orientation with respect to each other which allows adjacent molecules to form extended chains along [010] *via* N—H···O(P) hydrogen bonds (Table 1).

S2. Experimental

To a solution of $(C_6H_5O)_2P(O)Cl$ in chloroform, a solution of cyclopentylamine (1:2 mole ratio) in chloroform was added at 273 K. After 4 h stirring, the solvent was removed and product was washed with distilled water. Single crystals were obtained from a solution of the title compound in CH₃OH after slow evaporation at room temperature.

S3. Refinement

Figure 1

The molecular structure of the title compound with ellipsoids shown at the 50% probability level. The disorder is not shown.

{[(cyclopentylamino)(phenoxy)phosphoryl]oxy}benzene

Crystal data $C_{17}H_{20}NO_{3}P$ $M_{r} = 317.31$ Monoclinic, $P2_{1}/c$ Hall symbol: -P 2ybc a = 18.0095 (4) Å b = 5.3471 (1) Å c = 17.9387 (4) Å $\beta = 109.731$ (1)° V = 1626.05 (6) Å³ Z = 4

Data collection

Bruker APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans F(000) = 672 $D_x = 1.296 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9100 reflections $\theta = 2.3-32.9^{\circ}$ $\mu = 0.18 \text{ mm}^{-1}$ T = 296 KIrregular, colorless $0.5 \times 0.4 \times 0.2 \text{ mm}$

Absorption correction: multi-scan (*SADABS*; Sheldrick, 2004) $T_{min} = 0.709, T_{max} = 0.747$ 139394 measured reflections 3531 independent reflections 3180 reflections with $I > 2\sigma(I)$

$R_{\rm int} = 0.021$	$k = -6 \rightarrow 6$
$\theta_{\rm max} = 27.0^{\circ}, \ \theta_{\rm min} = 2.4^{\circ}$	$l = -22 \rightarrow 22$
$h = -23 \rightarrow 23$	

Kejinemeni	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.037$	Hydrogen site location: inferred from
$wR(F^2) = 0.110$	neighbouring sites
S = 1.08	H atoms treated by a mixture of independent
3531 reflections	and constrained refinement
240 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0497P)^2 + 0.5717P]$
0 restraints	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{ m max} = 0.04$
direct methods	$\Delta \rho_{\rm max} = 0.23 \text{ e } \text{\AA}^{-3}$
	$\Delta ho_{ m min} = -0.28$ e Å ⁻³

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
C1	0.11088 (11)	0.7234 (4)	0.15643 (15)	0.0736 (6)	
H1A	0.1163	0.5834	0.1931	0.088*	0.574 (10)
C2	0.0736 (5)	0.9286 (12)	0.1911 (5)	0.108 (3)	0.574 (10)
H2A	0.0896	0.9112	0.2482	0.130*	0.574 (10)
H2B	0.0900	1.0919	0.1790	0.130*	0.574 (10)
C3	0.0542 (3)	0.6434 (17)	0.0887 (4)	0.105 (3)	0.574 (10)
H3A	0.0622	0.4685	0.0793	0.125*	0.574 (10)
H3B	0.0562	0.7400	0.0437	0.125*	0.574 (10)
C4	-0.0107 (7)	0.901 (2)	0.1558 (11)	0.114 (5)	0.574 (10)
H4A	-0.0339	1.0511	0.1267	0.136*	0.574 (10)
H4B	-0.0344	0.8714	0.1962	0.136*	0.574 (10)
C5	-0.0237 (3)	0.6791 (19)	0.1003 (5)	0.111 (2)	0.574 (10)
H5A	-0.0381	0.5316	0.1238	0.133*	0.574 (10)
H5B	-0.0650	0.7139	0.0503	0.133*	0.574 (10)
H1AA	0.1016	0.5426	0.1550	0.088*	0.426 (10)
C2A	0.0824 (7)	0.830 (4)	0.2078 (6)	0.164 (7)	0.426 (10)
H2A1	0.1020	1.0001	0.2192	0.197*	0.426 (10)
H2A2	0.0978	0.7367	0.2570	0.197*	0.426 (10)
C3A	0.0515 (4)	0.856 (3)	0.0735 (5)	0.121 (4)	0.426 (10)
H3A1	0.0694	1.0221	0.0664	0.146*	0.426 (10)
H3A2	0.0477	0.7548	0.0274	0.146*	0.426 (10)
					• •

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

~					
C4A	-0.0101 (9)	0.830 (4)	0.1673 (13)	0.151 (8)	0.426 (10)
H4A1	-0.0320	0.6723	0.1766	0.181*	0.426 (10)
H4A2	-0.0335	0.9642	0.1882	0.181*	0.426 (10)
C5A	-0.0243 (6)	0.864 (3)	0.0878 (8)	0.131 (4)	0.426 (10)
H5A1	-0.0497	1.0243	0.0711	0.157*	0.426 (10)
H5A2	-0.0590	0.7336	0.0577	0.157*	0.426 (10)
C6	0.38086 (8)	0.6852 (3)	0.24407 (8)	0.0428 (3)	
C7	0.37482 (10)	0.8825 (3)	0.29063 (10)	0.0530 (4)	
H7	0.3370	1.0062	0.2706	0.064*	
C8	0.42607 (11)	0.8939 (4)	0.36780 (11)	0.0642 (4)	
H8	0.4225	1.0252	0.4004	0.077*	
C9	0.48253 (11)	0.7112 (4)	0.39663 (11)	0.0657 (5)	
Н9	0.5167	0.7189	0.4487	0.079*	
C10	0.48839 (10)	0.5181 (4)	0.34858 (12)	0.0637 (4)	
H10	0.5271	0.3968	0.3680	0.076*	
C11	0.43704 (9)	0.5027 (3)	0.27138 (10)	0.0534 (4)	
H11	0.4405	0.3714	0.2387	0.064*	
C12	0.29427 (10)	0.1941 (3)	0.02869 (10)	0.0553 (4)	
H12	0.3133	0.1604	0.0827	0.066*	
C13	0.31354 (11)	0.0410 (4)	-0.02407 (12)	0.0640 (5)	
H13	0.3458	-0.0972	-0.0052	0.077*	
C14	0.28593 (12)	0.0892 (4)	-0.10368 (12)	0.0708 (5)	
H14	0.2993	-0.0153	-0.1386	0.085*	
C15	0.23842 (12)	0.2924 (4)	-0.13150 (10)	0.0706 (5)	
H15	0.2194	0.3250	-0.1856	0.085*	
C16	0.21843 (10)	0.4497 (4)	-0.08008 (9)	0.0569 (4)	
H16	0.1866	0.5886	-0.0991	0.068*	
C17	0.24637 (9)	0.3976 (3)	-0.00026 (8)	0.0452 (3)	
Ν	0.19186 (8)	0.7736 (3)	0.16096 (8)	0.0493 (3)	
01	0.23902 (7)	0.31497 (19)	0.17324 (6)	0.0509 (3)	
O2	0.33107 (6)	0.6759 (2)	0.16438 (6)	0.0469 (3)	
03	0.22198 (7)	0.5640 (2)	0.04688 (6)	0.0529 (3)	
Р	0.24508 (2)	0.56130 (6)	0.14026 (2)	0.04116 (13)	
Н	0.2031 (11)	0.915 (4)	0.1566 (11)	0.057 (5)*	

Alomic displacement parameters (A)	Atomic	displacement	parameters	(\mathring{A}^2)
------------------------------------	--------	--------------	------------	--------------------

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0531 (10)	0.0536 (10)	0.1190 (17)	-0.0082 (8)	0.0356 (11)	-0.0161 (11)
C2	0.072 (4)	0.092 (4)	0.175 (8)	-0.012 (2)	0.060 (5)	-0.073 (4)
C3	0.058 (2)	0.141 (5)	0.107 (4)	-0.013 (3)	0.019 (2)	-0.056 (4)
C4	0.072 (5)	0.107 (5)	0.170 (12)	0.018 (4)	0.052 (6)	-0.029 (5)
C5	0.050(2)	0.147 (6)	0.129 (5)	-0.012 (3)	0.022 (3)	-0.027 (5)
C1A	0.0531 (10)	0.0536 (10)	0.1190 (17)	-0.0082(8)	0.0356 (11)	-0.0161 (11)
C2A	0.061 (4)	0.38 (2)	0.062 (3)	-0.018 (9)	0.034 (3)	-0.024 (8)
C3A	0.061 (3)	0.210 (12)	0.087 (4)	0.012 (5)	0.018 (3)	0.046 (6)
C4A	0.060 (7)	0.28 (2)	0.128 (10)	-0.052 (9)	0.058 (7)	-0.058 (13)
C5A	0.075 (5)	0.165 (11)	0.148 (8)	0.014 (6)	0.032 (5)	0.035 (9)

C6	0.0413 (7)	0.0400 (7)	0.0492 (7)	-0.0041 (6)	0.0180 (6)	0.0033 (6)
C7	0.0535 (8)	0.0436 (8)	0.0596 (9)	0.0028 (7)	0.0161 (7)	-0.0015 (7)
C8	0.0679 (11)	0.0583 (10)	0.0613 (10)	-0.0034 (8)	0.0153 (8)	-0.0124 (8)
C9	0.0566 (10)	0.0737 (12)	0.0567 (9)	-0.0057 (9)	0.0059 (8)	0.0023 (9)
C10	0.0478 (8)	0.0617 (10)	0.0736 (11)	0.0073 (8)	0.0101 (8)	0.0083 (9)
C11	0.0486 (8)	0.0469 (8)	0.0650 (10)	0.0025 (7)	0.0198 (7)	-0.0024 (7)
C12	0.0640 (9)	0.0521 (9)	0.0489 (8)	0.0033 (7)	0.0180 (7)	-0.0015 (7)
C13	0.0666 (11)	0.0576 (10)	0.0727 (11)	0.0035 (8)	0.0300 (9)	-0.0089 (8)
C14	0.0743 (12)	0.0815 (14)	0.0667 (11)	-0.0092 (10)	0.0370 (10)	-0.0217 (10)
C15	0.0744 (12)	0.0967 (15)	0.0435 (8)	-0.0090 (11)	0.0238 (8)	-0.0067 (9)
C16	0.0545 (9)	0.0676 (11)	0.0463 (8)	-0.0004 (8)	0.0138 (7)	0.0055 (7)
C17	0.0462 (7)	0.0477 (8)	0.0410 (7)	-0.0069 (6)	0.0138 (6)	-0.0034 (6)
Ν	0.0497 (7)	0.0374 (7)	0.0636 (8)	-0.0043 (5)	0.0227 (6)	-0.0056 (6)
01	0.0638 (6)	0.0359 (5)	0.0532 (6)	-0.0033 (5)	0.0199 (5)	0.0019 (4)
O2	0.0486 (6)	0.0486 (6)	0.0459 (5)	-0.0031 (4)	0.0190 (4)	0.0027 (4)
03	0.0659 (7)	0.0478 (6)	0.0416 (5)	0.0109 (5)	0.0136 (5)	0.0021 (4)
Р	0.0474 (2)	0.0344 (2)	0.0416 (2)	-0.00097 (14)	0.01477 (15)	0.00036 (13)

Geometric parameters (Å, °)

C1—C3	1.365 (5)	C6—O2	1.4088 (17)
C1—N	1.458 (2)	C7—C8	1.382 (2)
C1—C2	1.524 (6)	С7—Н7	0.9300
C1—H1A	0.9800	C8—C9	1.378 (3)
C2—C4	1.442 (16)	C8—H8	0.9300
C2—H2A	0.9700	C9—C10	1.372 (3)
C2—H2B	0.9700	С9—Н9	0.9300
С3—С5	1.499 (7)	C10—C11	1.384 (2)
С3—НЗА	0.9700	C10—H10	0.9300
С3—Н3В	0.9700	C11—H11	0.9300
C4—C5	1.516 (16)	C12—C17	1.377 (2)
C4—H4A	0.9700	C12—C13	1.381 (2)
C4—H4B	0.9700	C12—H12	0.9300
С5—Н5А	0.9700	C13—C14	1.369 (3)
С5—Н5В	0.9700	C13—H13	0.9300
C2A—C4A	1.577 (19)	C14—C15	1.369 (3)
C2A—H2A1	0.9700	C14—H14	0.9300
C2A—H2A2	0.9700	C15—C16	1.383 (3)
C3A—C5A	1.472 (12)	C15—H15	0.9300
C3A—H3A1	0.9700	C16—C17	1.376 (2)
СЗА—НЗА2	0.9700	C16—H16	0.9300
C4A—C5A	1.37 (3)	C17—O3	1.3968 (18)
C4A—H4A1	0.9700	N—P	1.6078 (14)
C4A—H4A2	0.9700	N—H	0.793 (19)
C5A—H5A1	0.9700	O1—P	1.4630 (11)
С5А—Н5А2	0.9700	O2—P	1.5839 (10)
C6—C11	1.372 (2)	O3—P	1.5838 (11)
С6—С7	1.373 (2)		

C3—C1—N	122.8 (3)	C11—C6—C7	122.00 (15)
C3—C1—C2	106.8 (4)	C11—C6—O2	118.51 (13)
N—C1—C2	114.5 (3)	C7—C6—O2	119.39 (13)
C3—C1—H1A	103.5	C6—C7—C8	118.69 (15)
N—C1—H1A	103.5	С6—С7—Н7	120.7
C2—C1—H1A	103.5	С8—С7—Н7	120.7
C4—C2—C1	106.9 (6)	C9—C8—C7	120.23 (17)
C4—C2—H2A	110.3	С9—С8—Н8	119.9
C1—C2—H2A	110.4	С7—С8—Н8	119.9
C4—C2—H2B	110.3	C10—C9—C8	120.07 (17)
C1—C2—H2B	110.3	С10—С9—Н9	120.0
H2A—C2—H2B	108.6	С8—С9—Н9	120.0
C1—C3—C5	106.9 (4)	C9—C10—C11	120.43 (17)
С1—С3—НЗА	110.3	С9—С10—Н10	119.8
С5—С3—НЗА	110.3	C11—C10—H10	119.8
C1—C3—H3B	110.3	C6-C11-C10	118.57 (16)
С5—С3—Н3В	110.3	C6—C11—H11	120.7
НЗА—СЗ—НЗВ	108.6	C10—C11—H11	120.7
C2—C4—C5	105.9 (6)	C17—C12—C13	118.71 (16)
C2—C4—H4A	110.6	C17—C12—H12	120.6
С5—С4—Н4А	110.5	C13—C12—H12	120.6
C2—C4—H4B	110.5	C14—C13—C12	121.09 (18)
C5—C4—H4B	110.6	C14—C13—H13	119.5
H4A—C4—H4B	108.7	С12—С13—Н13	119.5
C3—C5—C4	104.2 (6)	C13—C14—C15	119.48 (17)
С3—С5—Н5А	110.9	C13—C14—H14	120.3
С4—С5—Н5А	110.9	C15—C14—H14	120.3
С3—С5—Н5В	110.9	C14—C15—C16	120.75 (17)
C4—C5—H5B	110.9	C14—C15—H15	119.6
H5A—C5—H5B	108.9	C16—C15—H15	119.6
C4A—C2A—H2A1	110.5	C17—C16—C15	118.99 (18)
C4A—C2A—H2A2	110.6	C17—C16—H16	120.5
H2A1—C2A—H2A2	108.7	C15—C16—H16	120.5
C5A—C3A—H3A1	111.4	C12—C17—C16	120.99 (15)
С5А—С3А—НЗА2	111.3	C12—C17—O3	124.08 (13)
НЗА1—СЗА—НЗА2	109.2	C16—C17—O3	114.93 (14)
C5A—C4A—C2A	106.1 (12)	C1—N—P	121.36 (12)
C5A—C4A—H4A1	110.5	C1—N—H	117.0 (14)
C2A—C4A—H4A1	110.5	P—N—H	117.3 (14)
C5A—C4A—H4A2	110.5	C6—O2—P	121.30 (8)
C2A—C4A—H4A2	110.5	С17—О3—Р	127.62 (10)
H4A1—C4A—H4A2	108.7	O1—P—O2	115.93 (6)
C4A—C5A—C3A	108.6 (9)	O1—P—O3	114.03 (6)
C4A—C5A—H5A1	110.0	O2—P—O3	99.72 (6)
C3A—C5A—H5A1	109.9	O1—P—N	114.24 (7)
C4A—C5A—H5A2	110.0	O2—P—N	105.55 (6)
C3A—C5A—H5A2	110.0	O3—P—N	105.88 (7)

H5A1—C5A—H5A2	108.4		
C3—C1—C2—C4	18.7 (10)	C13—C12—C17—C16	-0.5 (2)
N-C1-C2-C4	158.1 (8)	C13—C12—C17—O3	179.15 (15)
N—C1—C3—C5	-165.1 (4)	C15-C16-C17-C12	0.8 (3)
C2-C1-C3-C5	-29.9 (7)	C15—C16—C17—O3	-178.89 (15)
C1—C2—C4—C5	0.3 (13)	C3—C1—N—P	-57.8 (5)
C1—C3—C5—C4	29.8 (11)	C2—C1—N—P	170.1 (4)
C2—C4—C5—C3	-17.2 (14)	C11—C6—O2—P	98.41 (14)
C2A—C4A—C5A—C3A	7 (2)	C7—C6—O2—P	-85.20 (15)
C11—C6—C7—C8	-1.3 (2)	C12—C17—O3—P	2.0 (2)
O2—C6—C7—C8	-177.58 (15)	C16—C17—O3—P	-178.33 (11)
C6—C7—C8—C9	0.7 (3)	C6—O2—P—O1	-49.72 (12)
C7—C8—C9—C10	0.4 (3)	C6—O2—P—O3	-172.58 (10)
C8—C9—C10—C11	-1.1 (3)	C6—O2—P—N	77.80 (12)
C7—C6—C11—C10	0.7 (2)	C17—O3—P—O1	-46.75 (15)
O2—C6—C11—C10	177.00 (14)	C17—O3—P—O2	77.45 (13)
C9—C10—C11—C6	0.5 (3)	C17—O3—P—N	-173.19 (12)
C17—C12—C13—C14	0.1 (3)	C1—N—P—O1	-43.33 (18)
C12—C13—C14—C15	0.0 (3)	C1—N—P—O2	-171.87 (15)
C13—C14—C15—C16	0.3 (3)	C1—N—P—O3	82.99 (16)
C14—C15—C16—C17	-0.7 (3)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D····A	D—H…A
N—H…O1 ⁱ	0.790 (19)	2.23 (2)	3.0039 (17)	167.7 (19)

Symmetry code: (i) x, y+1, z.