organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 6| June 2011| Pages o1405-o1406

(Z)-4-(2,5-Di-tert-butyl­anilino)pent-3-en-2-one

aDepartamento de Química, Universidad Simón Bolívar, Caracas 1080A, Venezuela, and bInstitute of Organic Chemistry, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
*Correspondence e-mail: alinden@oci.uzh.ch, rdorta@usb.ve

(Received 26 April 2011; accepted 7 May 2011; online 14 May 2011)

In the crystal structure of the title ketoamine, C19H29NO, the bond lengths from the N atom through the alkene group to the ketone O atom show the presence of an extensively delocalized π-system. The dihedral angle between the plane of the phenyl ring and that of the alkene component is 63.45 (7)° due to steric hindrance exerted by the tert-butyl groups. The mol­ecule has a Z-configured alkene function, which is facilitated by an intra­molecular N—H⋯O hydrogen bond between the amine and ketone groups. The mol­ecules are linked into extended chains, which run parallel to the [010] direction, by a very weak C—H⋯O inter­action between the methyl substituent of the alkene group and the ketone O atom of a neighbouring mol­ecule.

Related literature

For the conformations of β-ketoamines, see: Pastrán et al. (2011[Pastrán, J., Ineichen, E., Agrifoglio, G., Linden, A. & Dorta, R. (2011). Acta Cryst. E67, o188-o189.]); Zharkova et al. (2009[Zharkova, G., Stabnikov, P., Baidina, I., Smolentsev, A. & Tkachey, S. (2009). Polyhedron, 28, 2307-2312.]). For reactions involving amino­ketonate complexes, see: He et al. (2003[He, X., Yao, Y., Luo, X., Zhang, J., Liu, Y., Zhang, L. & Wu, Q. (2003). Organometallics, 22, 4952-4957.]); Hsu, Chang et al. (2004[Hsu, S., Chang, J., Lai, C., Hu, C., Lee, H., Lee, G., Peng, S. & Huang, J. (2004). Inorg. Chem. 43, 6786-6792.]); Lai et al. (2005[Lai, Y., Chen, H., Hung, W., Lin, C. & Hong, F. (2005). Tetrahedron, 61, 9484-9489.]); Li et al. (2005[Li, X., Li, Y.-G., Li, Y.-S., Che, Y.-X. & Hu, N. (2005). Organometallics, 24, 2502-2510.]); Tang et al. (2005[Tang, L., Hu, T., Bo, Y., Li, Y. & Hu, N. (2005). J. Organomet. Chem. 690, 3125-3133.]); Hsu, Li et al. (2007[Hsu, S., Li, C., Chiu, Y., Chiu, M., Lien, Y., Kuo, P., Lee, H., Cheng, C. & Huang, J. (2007). J. Organomet. Chem. 692, 5421-5428.]); Pan et al. (2008[Pan, L., Ye, W., Liu, J., Hong, M. & Li, Y. (2008). Macromolecules, 41, 2981-2983.]). For the preparation and coordination chemistry of amino­ketonate ligands, see: Jones et al. (1998[Jones, D., Roberts, A., Cavell, K., Keim, W., Englert, U., Skelton, B. W. & White, A. H. (1998). J. Chem. Soc. Dalton Trans. 2, pp. 255-262.]); Shukla et al. (2005[Shukla, P., Gordon, J. C., Cowley, A. H. & Jones, J. N. (2005). J. Organomet. Chem. 690, 1366-1371.]); Lesikar et al. (2008[Lesikar, L., Gushwa, A. F. & Richards, A. F. (2008). J. Organomet. Chem. 693, 3245-3255.]); Sedai et al. (2008[Sedai, B., Heeg, M. J. & Winter, C. H. (2008). J. Organomet. Chem. 693, 3495-3503.]).

[Scheme 1]

Experimental

Crystal data
  • C19H29NO

  • Mr = 287.44

  • Monoclinic, C 2/c

  • a = 23.7759 (5) Å

  • b = 9.0517 (2) Å

  • c = 19.3760 (4) Å

  • β = 120.6308 (11)°

  • V = 3588.11 (13) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.06 mm−1

  • T = 160 K

  • 0.32 × 0.25 × 0.20 mm

Data collection
  • Nonius KappaCCD area-detector diffractometer

  • 24643 measured reflections

  • 3153 independent reflections

  • 2769 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.118

  • S = 1.04

  • 3152 reflections

  • 203 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N15—H15⋯O18 0.908 (17) 1.848 (17) 2.6376 (15) 144.1 (15)
C20—H201⋯O18i 0.98 2.52 3.474 (2) 164
Symmetry code: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: COLLECT (Nonius, 2000[Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO-SMN and SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Anions of β-amino-α-enones are potentially useful bidentate ligands (Jones, et al., 1998; Shukla, et al., 2005; Hsu, Li et al., 2007; Lesikar, et al., 2008; Sedai, et al., 2008) in stoichiometric (Hsu, Chang et al., 2004) and catalytic processes (He, et al., 2003; Lai, et al., 2005; Li, et al., 2005; Tang, et al., 2005; Pan, et al., 2008). Generally, β-amino-α-enones have Z conformations that are stabilized by intramolecular hydrogen bonds (Zharkova, et al., 2009; Pastrán et al., 2011). The title β-amino-α-enone was derived from 2,5-di-tert-butyl-aniline and acetylacetone, via the 4-[(-)1-phenyl-ethylamino]-pent-3-en-2-one intermediate (Lai, et al., 2005). In its crystal structure, the plane of the aryl ring is twisted out of the plane spanned by the CC double bond (defined by atoms N15, C16, C17, C18 and C20) by 63.45 (7)° due to the steric pressure exerted by the tert-butyl groups (Fig. 1). The bond lengths from N15 through the alkene group to the ketone O atom, O18, show the presence of an extensively delocalized π-system (Table 1). Even the C1—N15 bond is shorter than a normal single bond, despite the twist about this bond. The Z-configuration of the molecule facilitates the formation of an intramolecular N—H···O hydrogen bond between the amine group and the carbonyl O-atom (Table 2). The molecules are linked into extended 21-symmetrical chains, which run parallel to the [010] direction, by a very weak C—H···O interaction between the methyl substituent of the alkene group and the ketone O atom of a neighbouring molecule. There are no other significant intermolecular interactions in the structure.

Related literature top

For the conformations of β-ketoamines, see: Pastrán et al. (2011); Zharkova et al. (2009). For reactions involving aminoketonate complexes, see: He et al. (2003); Hsu, Chang et al. (2004); Lai et al. (2005); Li et al. (2005); Tang et al. (2005); Hsu, Li et al. (2007); Pan et al. (2008). For the preparation and coordination chemistry of aminoketonate ligands, see: Jones et al. (1998); Shukla et al. (2005); Lesikar et al. (2008); Sedai et al. (2008).

Experimental top

The title compound was prepared by refluxing 2,5-di-tert-butyl-aniline (1.14 g, 5.56 mmol) with 4-[(-)1-phenyl-ethylamino]-pent-3-en-2-one (Lai, et al., 2005) (1.14 g, 5.60 mmol) in dry ethanol (30 ml) and HCl (12M, 0.5 ml) for 24 h. The cooled reaction mixture was treated with 1M K2CO3 and extracted with CH2Cl2 (3 × 10 ml). The extracts were dried over MgSO4, filtered, and the volatiles evaporated in vacuo to afford an orange oil. Methanol (2.0 ml) was added and the resulting solution was cooled to 273 K for two days to yield 0.50 g (37%) of colorless crystals (m.p. 325–327 K). 1H-NMR (400 MHz, CDCl3): δ 1.28 (s, 9H), 1.35 (s, 9H), 1.79 (s, 3H), 2.10 (s, 3H), 5.22 (s, 1H), 7.35–6.97 (m, 3H), 12.48 (s, 1H).

Refinement top

The amine H atom was located in a difference Fourier map and its position and isotropic displacement parameter were refined freely. All other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H = 0.95 and 0.98 Å for aromatic and methyl H atoms, respectively, and with Uiso(H) = 1.2Ueq(C) for aromatic H atoms or 1.5Ueq(C) for methyl groups. Twelve low angle reflections were excluded from the data set because they were obscured by the beam stop.

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the molecule of (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented by circles of arbitrary size.
(Z)-4-(2,5-Di-tert-butylanilino)pent-3-en-2-one top
Crystal data top
C19H29NOF(000) = 1264
Mr = 287.44Dx = 1.064 Mg m3
Monoclinic, C2/cMelting point: 326 K
Hall symbol: -C 2ycMo Kα radiation, λ = 0.71073 Å
a = 23.7759 (5) ÅCell parameters from 3360 reflections
b = 9.0517 (2) Åθ = 2.0–25.0°
c = 19.3760 (4) ŵ = 0.06 mm1
β = 120.6308 (11)°T = 160 K
V = 3588.11 (13) Å3Prism, colourless
Z = 80.32 × 0.25 × 0.20 mm
Data collection top
Nonius KappaCCD area-detector
diffractometer
2769 reflections with I > 2σ(I)
Radiation source: Nonius FR590 sealed tube generatorRint = 0.035
Horizontally mounted graphite crystal monochromatorθmax = 25.0°, θmin = 3.0°
Detector resolution: 9 pixels mm-1h = 028
ω scans with κ offsetsk = 010
24643 measured reflectionsl = 2319
3153 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.118 w = 1/[σ2(Fo2) + (0.056P)2 + 2.1259P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
3152 reflectionsΔρmax = 0.19 e Å3
203 parametersΔρmin = 0.17 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0053 (10)
Crystal data top
C19H29NOV = 3588.11 (13) Å3
Mr = 287.44Z = 8
Monoclinic, C2/cMo Kα radiation
a = 23.7759 (5) ŵ = 0.06 mm1
b = 9.0517 (2) ÅT = 160 K
c = 19.3760 (4) Å0.32 × 0.25 × 0.20 mm
β = 120.6308 (11)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
2769 reflections with I > 2σ(I)
24643 measured reflectionsRint = 0.035
3153 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.118H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.19 e Å3
3152 reflectionsΔρmin = 0.17 e Å3
203 parameters
Special details top

Experimental. Solvent used: MeOH Cooling Device: Oxford Cryosystems Cryostream 700 Crystal mount: glued on a glass fibre Mosaicity (°.): 0.811 (1) Frames collected: 1331 Seconds exposure per frame: 60 Degrees rotation per frame: 0.3 Crystal-Detector distance (mm): 30.0

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O180.19853 (5)0.78576 (13)0.11732 (6)0.0523 (3)
N150.30334 (6)0.85624 (13)0.25496 (6)0.0337 (3)
H150.2706 (8)0.7964 (19)0.2197 (10)0.048 (4)*
C10.35235 (6)0.80923 (15)0.33326 (7)0.0310 (3)
C20.39376 (6)0.68963 (14)0.34376 (7)0.0313 (3)
C30.43787 (7)0.65278 (16)0.42337 (8)0.0391 (3)
H30.46680.57220.43390.047*
C40.44166 (7)0.72794 (17)0.48796 (8)0.0423 (4)
H40.47320.69820.54090.051*
C50.40051 (7)0.84563 (15)0.47720 (8)0.0361 (3)
C60.35575 (6)0.88316 (15)0.39810 (8)0.0347 (3)
H60.32640.96250.38800.042*
C70.39271 (6)0.60546 (15)0.27398 (7)0.0341 (3)
C80.40461 (8)0.71202 (17)0.22106 (9)0.0430 (4)
H810.41000.65540.18170.065*
H820.44420.76990.25470.065*
H830.36720.77880.19300.065*
C90.32752 (7)0.52365 (16)0.22340 (9)0.0435 (4)
H910.31930.46030.25830.065*
H920.32970.46280.18300.065*
H930.29200.59570.19660.065*
C100.44656 (7)0.48728 (17)0.30488 (9)0.0445 (4)
H1010.43960.41530.33760.067*
H1020.48930.53440.33750.067*
H1030.44510.43680.25920.067*
C110.40414 (7)0.93389 (17)0.54685 (8)0.0424 (4)
C120.43769 (11)0.8466 (2)0.62528 (9)0.0662 (5)
H1210.41380.75440.61850.099*
H1220.43820.90560.66800.099*
H1230.48270.82370.63970.099*
C130.44427 (9)1.0737 (2)0.55784 (11)0.0596 (5)
H1310.48801.04590.56920.089*
H1320.44801.13160.60270.089*
H1330.42251.13300.50870.089*
C140.33608 (8)0.9797 (2)0.52823 (10)0.0636 (5)
H1410.31651.04580.48170.095*
H1420.33941.03100.57470.095*
H1430.30870.89160.51640.095*
C160.30034 (7)0.98782 (15)0.22102 (8)0.0352 (3)
C170.25166 (7)1.01571 (16)0.14306 (8)0.0400 (4)
H170.24981.11130.12170.048*
C180.20430 (7)0.91006 (18)0.09300 (8)0.0445 (4)
C190.16057 (9)0.9464 (2)0.00524 (9)0.0620 (5)
H1910.17620.89450.02620.093*
H1920.16141.05320.00260.093*
H1930.11580.91520.01250.093*
C200.35276 (8)1.09906 (17)0.26778 (9)0.0468 (4)
H2010.34601.14260.30930.070*
H2020.35111.17690.23160.070*
H2030.39551.05050.29310.070*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O180.0518 (7)0.0519 (7)0.0380 (6)0.0019 (5)0.0118 (5)0.0034 (5)
N150.0348 (6)0.0330 (6)0.0282 (6)0.0030 (5)0.0123 (5)0.0014 (5)
C10.0304 (7)0.0321 (7)0.0287 (6)0.0007 (5)0.0138 (5)0.0030 (5)
C20.0322 (7)0.0309 (7)0.0314 (7)0.0005 (5)0.0168 (6)0.0022 (5)
C30.0427 (8)0.0388 (8)0.0343 (7)0.0104 (6)0.0185 (6)0.0048 (6)
C40.0438 (8)0.0483 (9)0.0290 (7)0.0087 (7)0.0143 (6)0.0062 (6)
C50.0404 (7)0.0380 (8)0.0312 (7)0.0021 (6)0.0192 (6)0.0000 (6)
C60.0357 (7)0.0347 (7)0.0345 (7)0.0027 (6)0.0184 (6)0.0008 (6)
C70.0368 (7)0.0338 (7)0.0314 (7)0.0033 (6)0.0172 (6)0.0009 (5)
C80.0534 (9)0.0438 (8)0.0408 (8)0.0013 (7)0.0304 (7)0.0013 (6)
C90.0437 (8)0.0367 (8)0.0464 (8)0.0017 (6)0.0202 (7)0.0079 (6)
C100.0462 (8)0.0463 (9)0.0406 (8)0.0115 (7)0.0218 (7)0.0004 (6)
C110.0484 (8)0.0472 (9)0.0322 (7)0.0013 (7)0.0211 (7)0.0024 (6)
C120.0964 (14)0.0672 (12)0.0355 (9)0.0107 (11)0.0340 (9)0.0006 (8)
C130.0714 (11)0.0555 (11)0.0541 (10)0.0118 (9)0.0336 (9)0.0184 (8)
C140.0579 (10)0.0914 (14)0.0497 (9)0.0034 (10)0.0334 (8)0.0173 (9)
C160.0418 (7)0.0337 (7)0.0352 (7)0.0071 (6)0.0233 (6)0.0017 (6)
C170.0472 (8)0.0397 (8)0.0350 (7)0.0123 (6)0.0223 (6)0.0079 (6)
C180.0437 (8)0.0530 (10)0.0339 (8)0.0131 (7)0.0177 (7)0.0047 (7)
C190.0629 (11)0.0701 (12)0.0359 (8)0.0130 (9)0.0126 (8)0.0070 (8)
C200.0573 (9)0.0379 (8)0.0450 (8)0.0018 (7)0.0258 (7)0.0025 (6)
Geometric parameters (Å, º) top
O18—C181.2541 (19)C10—H1020.9800
N15—C161.3447 (18)C10—H1030.9800
N15—C11.4280 (16)C11—C141.525 (2)
N15—H150.908 (17)C11—C121.528 (2)
C1—C61.3888 (18)C11—C131.533 (2)
C1—C21.4066 (18)C12—H1210.9800
C2—C31.3935 (18)C12—H1220.9800
C2—C71.5411 (17)C12—H1230.9800
C3—C41.387 (2)C13—H1310.9800
C3—H30.9500C13—H1320.9800
C4—C51.388 (2)C13—H1330.9800
C4—H40.9500C14—H1410.9800
C5—C61.3911 (18)C14—H1420.9800
C5—C111.5324 (19)C14—H1430.9800
C6—H60.9500C16—C171.3797 (19)
C7—C81.5354 (19)C16—C201.496 (2)
C7—C101.5365 (18)C17—C181.418 (2)
C7—C91.5374 (19)C17—H170.9500
C8—H810.9800C18—C191.510 (2)
C8—H820.9800C19—H1910.9800
C8—H830.9800C19—H1920.9800
C9—H910.9800C19—H1930.9800
C9—H920.9800C20—H2010.9800
C9—H930.9800C20—H2020.9800
C10—H1010.9800C20—H2030.9800
C16—N15—C1126.49 (12)C14—C11—C12109.23 (14)
C16—N15—H15110.4 (10)C14—C11—C5110.88 (12)
C1—N15—H15123.0 (10)C12—C11—C5111.88 (13)
C6—C1—C2121.74 (12)C14—C11—C13108.59 (15)
C6—C1—N15117.22 (12)C12—C11—C13108.44 (14)
C2—C1—N15121.01 (11)C5—C11—C13107.73 (12)
C3—C2—C1114.89 (12)C11—C12—H121109.5
C3—C2—C7121.29 (12)C11—C12—H122109.5
C1—C2—C7123.81 (11)H121—C12—H122109.5
C4—C3—C2123.21 (13)C11—C12—H123109.5
C4—C3—H3118.4H121—C12—H123109.5
C2—C3—H3118.4H122—C12—H123109.5
C3—C4—C5121.62 (13)C11—C13—H131109.5
C3—C4—H4119.2C11—C13—H132109.5
C5—C4—H4119.2H131—C13—H132109.5
C4—C5—C6115.96 (12)C11—C13—H133109.5
C4—C5—C11123.27 (12)H131—C13—H133109.5
C6—C5—C11120.75 (12)H132—C13—H133109.5
C1—C6—C5122.57 (13)C11—C14—H141109.5
C1—C6—H6118.7C11—C14—H142109.5
C5—C6—H6118.7H141—C14—H142109.5
C8—C7—C10107.28 (11)C11—C14—H143109.5
C8—C7—C9110.23 (11)H141—C14—H143109.5
C10—C7—C9106.40 (11)H142—C14—H143109.5
C8—C7—C2110.44 (11)N15—C16—C17120.22 (13)
C10—C7—C2111.39 (11)N15—C16—C20118.68 (12)
C9—C7—C2110.96 (11)C17—C16—C20121.02 (13)
C7—C8—H81109.5C16—C17—C18123.81 (14)
C7—C8—H82109.5C16—C17—H17118.1
H81—C8—H82109.5C18—C17—H17118.1
C7—C8—H83109.5O18—C18—C17123.28 (13)
H81—C8—H83109.5O18—C18—C19118.33 (15)
H82—C8—H83109.5C17—C18—C19118.33 (15)
C7—C9—H91109.5C18—C19—H191109.5
C7—C9—H92109.5C18—C19—H192109.5
H91—C9—H92109.5H191—C19—H192109.5
C7—C9—H93109.5C18—C19—H193109.5
H91—C9—H93109.5H191—C19—H193109.5
H92—C9—H93109.5H192—C19—H193109.5
C7—C10—H101109.5C16—C20—H201109.5
C7—C10—H102109.5C16—C20—H202109.5
H101—C10—H102109.5H201—C20—H202109.5
C7—C10—H103109.5C16—C20—H203109.5
H101—C10—H103109.5H201—C20—H203109.5
H102—C10—H103109.5H202—C20—H203109.5
C16—N15—C1—C665.87 (17)C3—C2—C7—C102.30 (18)
C16—N15—C1—C2116.26 (15)C1—C2—C7—C10176.39 (12)
C6—C1—C2—C30.26 (19)C3—C2—C7—C9116.04 (14)
N15—C1—C2—C3178.03 (12)C1—C2—C7—C965.27 (16)
C6—C1—C2—C7179.02 (12)C4—C5—C11—C14143.77 (16)
N15—C1—C2—C73.21 (19)C6—C5—C11—C1437.95 (19)
C1—C2—C3—C40.5 (2)C4—C5—C11—C1221.6 (2)
C7—C2—C3—C4178.27 (13)C6—C5—C11—C12160.16 (14)
C2—C3—C4—C50.8 (2)C4—C5—C11—C1397.53 (17)
C3—C4—C5—C60.2 (2)C6—C5—C11—C1380.74 (17)
C3—C4—C5—C11178.53 (14)C1—N15—C16—C17176.87 (12)
C2—C1—C6—C50.8 (2)C1—N15—C16—C200.26 (19)
N15—C1—C6—C5178.71 (12)N15—C16—C17—C182.8 (2)
C4—C5—C6—C10.6 (2)C20—C16—C17—C18173.76 (13)
C11—C5—C6—C1177.79 (13)C16—C17—C18—O186.9 (2)
C3—C2—C7—C8121.41 (14)C16—C17—C18—C19170.40 (14)
C1—C2—C7—C857.28 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N15—H15···O180.908 (17)1.848 (17)2.6376 (15)144.1 (15)
C20—H201···O18i0.982.523.474 (2)164
Symmetry code: (i) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC19H29NO
Mr287.44
Crystal system, space groupMonoclinic, C2/c
Temperature (K)160
a, b, c (Å)23.7759 (5), 9.0517 (2), 19.3760 (4)
β (°) 120.6308 (11)
V3)3588.11 (13)
Z8
Radiation typeMo Kα
µ (mm1)0.06
Crystal size (mm)0.32 × 0.25 × 0.20
Data collection
DiffractometerNonius KappaCCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
24643, 3153, 2769
Rint0.035
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.118, 1.04
No. of reflections3152
No. of parameters203
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.19, 0.17

Computer programs: COLLECT (Nonius, 2000), DENZO-SMN (Otwinowski & Minor, 1997), DENZO-SMN and SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), ORTEPII (Johnson, 1976), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Selected bond lengths (Å) top
O18—C181.2541 (19)C16—C171.3797 (19)
N15—C161.3447 (18)C17—C181.418 (2)
N15—C11.4280 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N15—H15···O180.908 (17)1.848 (17)2.6376 (15)144.1 (15)
C20—H201···O18i0.982.523.474 (2)164
Symmetry code: (i) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

This work was financed by FONACIT (project S1–2001000851).

References

First citationHe, X., Yao, Y., Luo, X., Zhang, J., Liu, Y., Zhang, L. & Wu, Q. (2003). Organometallics, 22, 4952–4957.  Web of Science CSD CrossRef CAS Google Scholar
First citationHsu, S., Chang, J., Lai, C., Hu, C., Lee, H., Lee, G., Peng, S. & Huang, J. (2004). Inorg. Chem. 43, 6786–6792.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHsu, S., Li, C., Chiu, Y., Chiu, M., Lien, Y., Kuo, P., Lee, H., Cheng, C. & Huang, J. (2007). J. Organomet. Chem. 692, 5421–5428.  Web of Science CSD CrossRef CAS Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationJones, D., Roberts, A., Cavell, K., Keim, W., Englert, U., Skelton, B. W. & White, A. H. (1998). J. Chem. Soc. Dalton Trans. 2, pp. 255–262.  CrossRef Google Scholar
First citationLai, Y., Chen, H., Hung, W., Lin, C. & Hong, F. (2005). Tetrahedron, 61, 9484–9489.  Web of Science CSD CrossRef CAS Google Scholar
First citationLesikar, L., Gushwa, A. F. & Richards, A. F. (2008). J. Organomet. Chem. 693, 3245–3255.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, X., Li, Y.-G., Li, Y.-S., Che, Y.-X. & Hu, N. (2005). Organometallics, 24, 2502–2510.  CrossRef CAS Google Scholar
First citationNonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPan, L., Ye, W., Liu, J., Hong, M. & Li, Y. (2008). Macromolecules, 41, 2981–2983.  Web of Science CrossRef CAS Google Scholar
First citationPastrán, J., Ineichen, E., Agrifoglio, G., Linden, A. & Dorta, R. (2011). Acta Cryst. E67, o188–o189.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSedai, B., Heeg, M. J. & Winter, C. H. (2008). J. Organomet. Chem. 693, 3495–3503.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShukla, P., Gordon, J. C., Cowley, A. H. & Jones, J. N. (2005). J. Organomet. Chem. 690, 1366–1371.  CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTang, L., Hu, T., Bo, Y., Li, Y. & Hu, N. (2005). J. Organomet. Chem. 690, 3125–3133.  CrossRef CAS Google Scholar
First citationZharkova, G., Stabnikov, P., Baidina, I., Smolentsev, A. & Tkachey, S. (2009). Polyhedron, 28, 2307–2312.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 6| June 2011| Pages o1405-o1406
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds