# organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

# O-Phenyl (cyclohexylamido)(p-tolylamido)phosphinate

#### Fahimeh Sabbaghi,<sup>a</sup>\* Mehrdad Pourayoubi,<sup>b</sup> Fatemeh Karimi Ahmadabad<sup>b</sup> and Masood Parvez<sup>c</sup>

<sup>a</sup>Department of Chemistry, Zanjan Branch, Islamic Azad University, PO Box 49195-467, Zanjan, Iran, <sup>b</sup>Department of Chemistry, Ferdowsi University of Mashhad, Mashhad, 91779, Iran, and <sup>c</sup>Department of Chemistry, University of Calgary, 2500 University Drive, N.W., Calgary, Alberta, Canada T2N 1N4 Correspondence e-mail: fahimeh\_sabbaghi@yahoo.com

Received 8 May 2011; accepted 16 May 2011

Key indicators: single-crystal X-ray study; T = 173 K; mean  $\sigma$ (C–C) = 0.004 Å; R factor = 0.056; wR factor = 0.124; data-to-parameter ratio = 18.7.

In the title molecule,  $C_{19}H_{25}N_2O_2P$ , the P atom is bonded in a distorted tetrahedral environment. The dihedral angle between the two phenyl rings is 89.09 (8)°. The methyl H atoms are disordered over two sets of sites with equal occupancy. The O atom of the P=O group acts as a double hydrogen-bond acceptor of the type  $(N-H)_2 \cdots (O=)P-$ , forming  $R_2^2(8)$  rings which are further linked into chains along [010].

#### **Related literature**

For background to mixed-amido phosphinates, see: Pourayoubi *et al.* (2007). For double hydrogen-bond acceptors, see: Steiner (2002). For hydrogen-bond motifs, see: Bernstein *et al.* (1995).



#### **Experimental**

Crystal data  $C_{19}H_{25}N_2O_2P$  $M_r = 344.38$ 

Monoclinic,  $P2_1/n$ a = 15.5575 (4) Å b = 7.7006 (3) Å c = 16.1717 (4) Å  $\beta = 108.9709 (17)^{\circ}$   $V = 1832.17 (10) \text{ Å}^{3}$ Z = 4

Data collection

Nonius KappaCCD diffractometer Absorption correction: multi-scan (SORTAV; Blessing, 1997)  $T_{min} = 0.974, T_{max} = 0.984$ 

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.056 & \text{H atoms treated by a mixture of} \\ wR(F^2) &= 0.124 & \text{independent and constrained} \\ S &= 1.06 & \text{refinement} \\ 4172 \text{ reflections} & \Delta\rho_{\text{max}} &= 0.27 \text{ e} \text{ Å}^{-3} \\ 223 \text{ parameters} & \Delta\rho_{\text{min}} &= -0.38 \text{ e} \text{ Å}^{-3} \end{split}$$

# Table 1 Hydrogen-bond geometry (Å, °).

| $D - H \cdots A$                                   | D-H                                     | $H \cdot \cdot \cdot A$                    | $D \cdots A$                        | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|----------------------------------------------------|-----------------------------------------|--------------------------------------------|-------------------------------------|--------------------------------------|
| $N1 - H1N \cdots O1^{i}$ $N2 - H2N \cdots O1^{ii}$ | 0.81 (3)<br>0.84 (3)                    | 2.16 (3)<br>2.20 (3)                       | 2.961 (3)<br>3.023 (3)              | 169 (3)<br>167 (2)                   |
| Symmetry codes: (i) -                              | $-x + \frac{3}{2}, y - \frac{1}{2}, -z$ | $+\frac{3}{2}$ ; (ii) $-x + \frac{3}{2}$ , | $y + \frac{1}{2}, -z + \frac{3}{2}$ |                                      |

Mo  $K\alpha$  radiation

 $0.16 \times 0.14 \times 0.10 \text{ mm}$ 

13695 measured reflections

4172 independent reflections

3069 reflections with  $I > 2\sigma(I)$ 

 $\mu = 0.16 \text{ mm}^{-1}$ 

T = 173 K

 $R_{\rm int}=0.070$ 

Data collection: *COLLECT* (Hooft, 1998); cell refinement: *DENZO* (Otwinowski & Minor, 1997); data reduction: *SCALE-PACK* (Otwinowski & Minor, 1997); program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1993); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *Mercury* (Macrae *et al.*, 2008); software used to prepare material for publication: *enCIFer* (Allen *et al.*, 2004).

Support of this investigation by Zanjan Branch, Islamic Azad University, is gratefully acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5250).

#### References

- Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.
- Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.
- Hooft, R. (1998). COLLECT. Nonius BV, Delft. The Netherlands.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Pourayoubi, M., Ghadimi, S. & Valmoozi, A. A. E. (2007). Acta Cryst. E63, 04093.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Steiner, T. (2002). Angew. Chem. Int. Ed. 41, 48-76.

# supporting information

Acta Cryst. (2011). E67, o1502 [doi:10.1107/S1600536811018502]

# O-Phenyl (cyclohexylamido)(p-tolylamido)phosphinate

## Fahimeh Sabbaghi, Mehrdad Pourayoubi, Fatemeh Karimi Ahmadabad and Masood Parvez

#### S1. Comment

The structure determination of title compound was performed as a part of a project in our laboratory on the synthesis of new mixed-amido phosphinates having a P(O)(O)(N')(N'') skeleton (Pourayoubi *et al.*, 2007).

The P=O, P—O and P—N bond lengths are standard for this type of compound (Pourayoubi *et al.*, 2007). The P atom has a distorted tetrahedral configuration (Fig. 1) with the bond angles in the range of 98.55 (10)° [O2–P1–N1] to 119.80 (10)° [O1–P1–N1].

The phosphoryl group respectively adopts a *syn* orientation with respect to the N–H unit of *p*-tolylamido moiety and a *gauche* position relative to that of cyclohexylamido substituent.

In the crystal structure, the molecules are linked by two intermolecular N—H···OP hydrogen bonds (Table 1) into chains in the direction of the *b* axis in which the O atom of the P=O group acts as a double H-acceptor (Steiner, 2002) (Fig. 2). From this arrangement  $R_2^2(8)$  rings are formed (Bernstein *et al.*, 1995).

#### **S2.** Experimental

To a solution of  $(C_6H_5O)(4-CH_3C_6H_4NH)P(O)Cl$  in chloroform, a solution of cyclohexylamine (1:2 mole ratio) in chloroform was added at 273 K. After 4 h stirring, the solvent was removed and product was washed with distilled water. Single crystals were obtained from a solution of the title compound in  $CH_3CN/CHCl_3$  after slow evaporation at room temperature.

### S3. Refinement

Though the H-atoms were visible in difference fourier maps they were included in geometrically idealized positions with C—H distances = 0.95, 0.98, 0.99 and 1.00 Å for aryl, methyl, methylene and methine type H-atoms, respectively. The methyl H-atoms are disordered over six sites with equal site occupancy factors. The H-atoms bonded to N-atoms were allowed to refine. The H-atoms were assigned  $U_{iso} = 1.5$  times  $U_{eq}$  methyl C atom and 1.2 times  $U_{eq}$  of the rest of the parent atoms (C/N).



## Figure 1

The molecular structure of the title compound with ellipsoids shown at the 50% probability level. The disorder is not shown.



## Figure 2

Part of the crystal structure of the title compound with hydrogen bonding shown as dotted lines (the C—H hydrogen atoms are omitted for clarity).

## N-[(Cyclohexylamino)(phenoxy)phosphoryl]-4-methylaniline

| Crystal data                      |                                                       |
|-----------------------------------|-------------------------------------------------------|
| $C_{19}H_{25}N_2O_2P$             | $V = 1832.17 (10) \text{ Å}^3$                        |
| $M_r = 344.38$                    | Z = 4                                                 |
| Monoclinic, $P2_1/n$              | F(000) = 736                                          |
| Hall symbol: -P 2yn               | $D_{\rm x} = 1.248 { m Mg} { m m}^{-3}$               |
| a = 15.5575 (4) Å                 | Mo <i>K</i> $\alpha$ radiation, $\lambda = 0.71073$ Å |
| b = 7.7006 (3)  Å                 | Cell parameters from 7090 reflections                 |
| c = 16.1717 (4)  Å                | $\theta = 3.0-27.5^{\circ}$                           |
| $\beta = 108.9709 \ (17)^{\circ}$ | $\mu = 0.16 \text{ mm}^{-1}$                          |
|                                   |                                                       |

#### T = 173 KPrism, colorless

Data collection

| Nonius KappaCCD<br>diffractometer        | 13695 measured reflections<br>4172 independent reflections                |
|------------------------------------------|---------------------------------------------------------------------------|
| Radiation source: fine-focus sealed tube | 3069 reflections with $I > 2\sigma(I)$                                    |
| Graphite monochromator                   | $R_{\rm int} = 0.070$                                                     |
| $\omega$ and $\varphi$ scans             | $\theta_{\text{max}} = 27.6^{\circ}, \ \theta_{\text{min}} = 3.0^{\circ}$ |
| Absorption correction: multi-scan        | $h = -20 \rightarrow 20$                                                  |
| (SORTAV; Blessing, 1997)                 | $k = -9 \rightarrow 9$                                                    |
| $T_{\min} = 0.974, \ T_{\max} = 0.984$   | $l = -20 \rightarrow 21$                                                  |
| Refinement                               |                                                                           |
| Refinement on $F^2$                      | Secondary atom site location: difference Fourier                          |
| Least-squares matrix: full               | map                                                                       |
| $R[F^2 > 2\sigma(F^2)] = 0.056$          | Hydrogen site location: inferred from                                     |
| $wR(F^2) = 0.124$                        | neighbouring sites                                                        |

 $0.16 \times 0.14 \times 0.10 \text{ mm}$ 

H atoms treated by a mixture of independent and constrained refinement  $w = 1/[\sigma^2(F_o^2) + (0.0234P)^2 + 2.302P]$ where  $P = (F_o^2 + 2F_c^2)/3$  $(\Delta/\sigma)_{\rm max} < 0.001$ Primary atom site location: structure-invariant  $\Delta \rho_{\rm max} = 0.27 \text{ e } \text{\AA}^{-3}$  $\Delta \rho_{\rm min} = -0.38 \ {\rm e} \ {\rm \AA}^{-3}$ 

#### Special details

S = 1.06

4172 reflections

223 parameters

direct methods

0 restraints

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor w*R* and goodness of fit S are based on  $F^2$ , conventional R-factors R are based on F, with F set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on  $F^2$ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(\hat{A}^2)$ 

|     | x            | У           | Ζ            | $U_{ m iso}$ */ $U_{ m eq}$ | Occ. (<1) |
|-----|--------------|-------------|--------------|-----------------------------|-----------|
| P1  | 0.73253 (4)  | 0.16106 (8) | 0.67651 (4)  | 0.02345 (15)                |           |
| 01  | 0.71919 (11) | 0.1863 (2)  | 0.76217 (10) | 0.0283 (4)                  |           |
| O2  | 0.64631 (10) | 0.0713 (2)  | 0.60756 (10) | 0.0285 (4)                  |           |
| N1  | 0.80997 (14) | 0.0288 (3)  | 0.66811 (13) | 0.0273 (4)                  |           |
| H1N | 0.8023 (17)  | -0.070 (4)  | 0.6810 (17)  | 0.033*                      |           |
| N2  | 0.75059 (13) | 0.3485 (3)  | 0.63724 (12) | 0.0247 (4)                  |           |
| H2N | 0.7553 (17)  | 0.434 (3)   | 0.6707 (16)  | 0.030*                      |           |
| C1  | 0.90574 (15) | 0.0755 (3)  | 0.68466 (15) | 0.0261 (5)                  |           |
| H1  | 0.9074       | 0.1999      | 0.6674       | 0.031*                      |           |
| C2  | 0.94454 (16) | -0.0325 (4) | 0.62658 (16) | 0.0335 (6)                  |           |
| H2A | 0.9434       | -0.1568     | 0.6419       | 0.040*                      |           |
| H2B | 0.9063       | -0.0178     | 0.5647       | 0.040*                      |           |
| C3  | 1.04166 (17) | 0.0216 (4)  | 0.63741 (18) | 0.0402 (6)                  |           |
|     |              |             |              |                             |           |

| H3A  | 1.0666       | -0.0555    | 0.6018       | 0.048*      |  |
|------|--------------|------------|--------------|-------------|--|
| H3B  | 1.0418       | 0.1418     | 0.6158       | 0.048*      |  |
| C4   | 1.10170 (18) | 0.0119 (4) | 0.73256 (18) | 0.0432 (7)  |  |
| H4A  | 1.1089       | -0.1110    | 0.7515       | 0.052*      |  |
| H4B  | 1.1627       | 0.0584     | 0.7382       | 0.052*      |  |
| C5   | 1.06180 (17) | 0.1142 (4) | 0.79143 (17) | 0.0410 (7)  |  |
| H5A  | 1.0629       | 0.2395     | 0.7781       | 0.049*      |  |
| H5B  | 1.0998       | 0.0965     | 0.8531       | 0.049*      |  |
| C6   | 0.96421 (16) | 0.0595 (4) | 0.77984 (15) | 0.0329 (6)  |  |
| H6A  | 0.9635       | -0.0622    | 0.7994       | 0.040*      |  |
| H6B  | 0.9391       | 0.1340     | 0.8164       | 0.040*      |  |
| C7   | 0.77827 (15) | 0.3772 (3) | 0.56278 (14) | 0.0236 (5)  |  |
| C8   | 0.75810 (16) | 0.2609 (3) | 0.49355 (15) | 0.0275 (5)  |  |
| H8   | 0.7229       | 0.1600     | 0.4936       | 0.033*      |  |
| С9   | 0.79007 (16) | 0.2939 (3) | 0.42412 (15) | 0.0299 (5)  |  |
| Н9   | 0.7767       | 0.2132     | 0.3772       | 0.036*      |  |
| C10  | 0.84044 (17) | 0.4393 (3) | 0.42080 (16) | 0.0333 (6)  |  |
| C11  | 0.85877 (19) | 0.5555 (4) | 0.49027 (18) | 0.0396 (6)  |  |
| H11  | 0.8929       | 0.6574     | 0.4896       | 0.048*      |  |
| C12  | 0.82810 (17) | 0.5252 (3) | 0.56052 (16) | 0.0320 (6)  |  |
| H12  | 0.8413       | 0.6063     | 0.6073       | 0.038*      |  |
| C13  | 0.8741 (2)   | 0.4732 (4) | 0.34463 (18) | 0.0489 (8)  |  |
| H13A | 0.9083       | 0.5823     | 0.3543       | 0.073* 0.50 |  |
| H13B | 0.8221       | 0.4817     | 0.2907       | 0.073* 0.50 |  |
| H13C | 0.9136       | 0.3776     | 0.3395       | 0.073* 0.50 |  |
| H13D | 0.8544       | 0.3788     | 0.3020       | 0.073* 0.50 |  |
| H13E | 0.9406       | 0.4794     | 0.3656       | 0.073* 0.50 |  |
| H13F | 0.8491       | 0.5835     | 0.3168       | 0.073* 0.50 |  |
| C14  | 0.55737 (15) | 0.1271 (3) | 0.59596 (15) | 0.0264 (5)  |  |
| C15  | 0.51721 (17) | 0.2434 (3) | 0.52978 (15) | 0.0328 (6)  |  |
| H15  | 0.5507       | 0.2917     | 0.4956       | 0.039*      |  |
| C16  | 0.42679 (18) | 0.2884 (4) | 0.51410 (17) | 0.0401 (6)  |  |
| H16  | 0.3980       | 0.3682     | 0.4687       | 0.048*      |  |
| C17  | 0.37857 (18) | 0.2181 (4) | 0.56396 (18) | 0.0412 (7)  |  |
| H17  | 0.3169       | 0.2497     | 0.5532       | 0.049*      |  |
| C18  | 0.42027 (17) | 0.1015 (4) | 0.62967 (17) | 0.0390 (6)  |  |
| H18  | 0.3866       | 0.0522     | 0.6635       | 0.047*      |  |
| C19  | 0.51073 (17) | 0.0554 (3) | 0.64696 (16) | 0.0336 (6)  |  |
| H19  | 0.5397       | -0.0235    | 0.6927       | 0.040*      |  |
|      |              |            |              |             |  |

Atomic displacement parameters  $(Å^2)$ 

|    | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$    | $U^{13}$   | $U^{23}$    |
|----|-------------|-------------|-------------|-------------|------------|-------------|
| P1 | 0.0297 (3)  | 0.0183 (3)  | 0.0243 (3)  | -0.0017 (2) | 0.0115 (2) | -0.0006 (2) |
| O1 | 0.0396 (9)  | 0.0227 (9)  | 0.0261 (8)  | -0.0002 (7) | 0.0155 (7) | 0.0006 (7)  |
| O2 | 0.0299 (8)  | 0.0265 (9)  | 0.0315 (9)  | -0.0031 (7) | 0.0132 (7) | -0.0050 (7) |
| N1 | 0.0316 (10) | 0.0179 (10) | 0.0344 (11) | -0.0028 (9) | 0.0136 (9) | 0.0009 (9)  |
| N2 | 0.0356 (11) | 0.0199 (10) | 0.0226 (10) | -0.0011 (9) | 0.0149 (8) | -0.0012 (8) |

| C1  | 0.0284 (11) | 0.0216 (12) | 0.0303 (12) | -0.0008 (10) | 0.0122 (10) | 0.0010 (10)  |
|-----|-------------|-------------|-------------|--------------|-------------|--------------|
| C2  | 0.0347 (13) | 0.0365 (15) | 0.0310 (13) | 0.0007 (11)  | 0.0128 (11) | -0.0065 (11) |
| C3  | 0.0386 (14) | 0.0436 (17) | 0.0460 (16) | 0.0003 (13)  | 0.0242 (13) | -0.0058 (13) |
| C4  | 0.0310 (13) | 0.0441 (17) | 0.0534 (17) | 0.0016 (12)  | 0.0124 (13) | -0.0047 (14) |
| C5  | 0.0353 (14) | 0.0447 (17) | 0.0396 (15) | -0.0025 (13) | 0.0074 (12) | -0.0071 (13) |
| C6  | 0.0382 (14) | 0.0329 (14) | 0.0297 (12) | 0.0000 (11)  | 0.0138 (11) | -0.0028 (11) |
| C7  | 0.0270 (11) | 0.0205 (12) | 0.0235 (11) | 0.0027 (9)   | 0.0085 (9)  | 0.0024 (9)   |
| C8  | 0.0295 (12) | 0.0238 (12) | 0.0292 (12) | -0.0008 (10) | 0.0095 (10) | -0.0009 (10) |
| C9  | 0.0355 (13) | 0.0304 (14) | 0.0240 (11) | 0.0017 (11)  | 0.0098 (10) | -0.0043 (10) |
| C10 | 0.0402 (14) | 0.0335 (14) | 0.0322 (13) | 0.0040 (12)  | 0.0201 (11) | 0.0041 (11)  |
| C11 | 0.0514 (16) | 0.0282 (15) | 0.0486 (16) | -0.0080 (12) | 0.0290 (13) | -0.0009 (12) |
| C12 | 0.0444 (14) | 0.0220 (12) | 0.0342 (13) | -0.0069 (11) | 0.0190 (11) | -0.0049 (10) |
| C13 | 0.0657 (19) | 0.0486 (19) | 0.0457 (16) | -0.0036 (16) | 0.0366 (15) | -0.0001 (14) |
| C14 | 0.0300 (12) | 0.0219 (12) | 0.0292 (12) | -0.0046 (10) | 0.0122 (10) | -0.0062 (10) |
| C15 | 0.0398 (14) | 0.0319 (14) | 0.0290 (12) | -0.0039 (11) | 0.0142 (11) | -0.0003 (11) |
| C16 | 0.0409 (15) | 0.0403 (16) | 0.0347 (14) | 0.0051 (13)  | 0.0063 (12) | 0.0006 (12)  |
| C17 | 0.0308 (13) | 0.0462 (17) | 0.0460 (16) | 0.0017 (12)  | 0.0115 (12) | -0.0098 (14) |
| C18 | 0.0383 (14) | 0.0424 (17) | 0.0433 (15) | -0.0078 (13) | 0.0229 (12) | -0.0044 (13) |
| C19 | 0.0401 (14) | 0.0291 (14) | 0.0334 (13) | -0.0031 (11) | 0.0146 (11) | 0.0011 (11)  |
|     |             |             |             |              |             |              |

# Geometric parameters (Å, °)

| P1-01  | 1.4788 (16) | C7—C8    | 1.388 (3) |
|--------|-------------|----------|-----------|
| P1—O2  | 1.5961 (17) | C8—C9    | 1.391 (3) |
| P1—N1  | 1.617 (2)   | C8—H8    | 0.9500    |
| P1—N2  | 1.637 (2)   | C9—C10   | 1.378 (4) |
| O2—C14 | 1.402 (3)   | С9—Н9    | 0.9500    |
| N1-C1  | 1.470 (3)   | C10—C11  | 1.391 (4) |
| N1—H1N | 0.81 (3)    | C10—C13  | 1.510 (3) |
| N2C7   | 1.422 (3)   | C11—C12  | 1.387 (3) |
| N2—H2N | 0.84 (3)    | C11—H11  | 0.9500    |
| C1—C6  | 1.517 (3)   | C12—H12  | 0.9500    |
| C1—C2  | 1.519 (3)   | C13—H13A | 0.9800    |
| C1—H1  | 1.0000      | C13—H13B | 0.9800    |
| C2—C3  | 1.522 (3)   | C13—H13C | 0.9800    |
| C2—H2A | 0.9900      | C13—H13D | 0.9800    |
| C2—H2B | 0.9900      | C13—H13E | 0.9800    |
| C3—C4  | 1.520 (4)   | C13—H13F | 0.9800    |
| С3—НЗА | 0.9900      | C14—C15  | 1.379 (3) |
| С3—Н3В | 0.9900      | C14—C19  | 1.379 (3) |
| C4—C5  | 1.515 (4)   | C15—C16  | 1.390 (4) |
| C4—H4A | 0.9900      | C15—H15  | 0.9500    |
| C4—H4B | 0.9900      | C16—C17  | 1.378 (4) |
| C5—C6  | 1.527 (3)   | C16—H16  | 0.9500    |
| C5—H5A | 0.9900      | C17—C18  | 1.381 (4) |
| С5—Н5В | 0.9900      | C17—H17  | 0.9500    |
| С6—Н6А | 0.9900      | C18—C19  | 1.389 (4) |
| C6—H6B | 0.9900      | C18—H18  | 0.9500    |
|        |             |          |           |

| C7—C12                    | 1.386 (3)   | C19—H19                        | 0.9500               |
|---------------------------|-------------|--------------------------------|----------------------|
| 01—P1—O2                  | 111.68 (9)  | С7—С8—Н8                       | 120.4                |
| O1—P1—N1                  | 119.80 (10) | С9—С8—Н8                       | 120.4                |
| O2—P1—N1                  | 98.55 (10)  | C10—C9—C8                      | 122.5 (2)            |
| O1—P1—N2                  | 109.97 (10) | С10—С9—Н9                      | 118.8                |
| O2—P1—N2                  | 108.77 (10) | С8—С9—Н9                       | 118.8                |
| N1—P1—N2                  | 107.23 (10) | C9—C10—C11                     | 117.5 (2)            |
| C14—O2—P1                 | 121.97 (14) | C9—C10—C13                     | 121.7 (2)            |
| C1—N1—P1                  | 124.70 (17) | C11—C10—C13                    | 120.9 (2)            |
| C1—N1—H1N                 | 114.1 (19)  | C12—C11—C10                    | 121.2 (2)            |
| P1—N1—H1N                 | 113.3 (19)  | C12—C11—H11                    | 119.4                |
| C7—N2—P1                  | 127.10 (16) | C10—C11—H11                    | 119.4                |
| C7-N2-H2N                 | 115.9 (18)  | C11—C12—C7                     | 120.3 (2)            |
| P1—N2—H2N                 | 115.5 (17)  | C11—C12—H12                    | 119.9                |
| N1-C1-C6                  | 113.73 (19) | C7—C12—H12                     | 119.9                |
| N1-C1-C2                  | 109 64 (19) | C10-C13-H13A                   | 109.5                |
| C6-C1-C2                  | 110.8(2)    | C10—C13—H13B                   | 109.5                |
| N1-C1-H1                  | 107.5       | H13A-C13-H13B                  | 109.5                |
| C6-C1-H1                  | 107.5       | C10-C13-H13C                   | 109.5                |
| $C_2 - C_1 - H_1$         | 107.5       | $H_{13}A - C_{13} - H_{13}C$   | 109.5                |
| $C_3 - C_2 - C_1$         | 111.0 (2)   | H13B— $C13$ — $H13C$           | 109.5                |
| $C_3 - C_2 - H_2 A$       | 109.4       | C10-C13-H13D                   | 109.5                |
| C1 - C2 - H2A             | 109.1       | $H_{13}A - C_{13} - H_{13}D$   | 141 1                |
| $C_3 - C_2 - H_2B$        | 109.1       | $H_{13B}$ $C_{13}$ $H_{13D}$   | 56.3                 |
| C1 - C2 - H2B             | 109.1       | $H_{13C}$ $-C_{13}$ $-H_{13D}$ | 56.3                 |
| $H_2A = C_2 = H_2B$       | 108.0       | C10—C13—H13F                   | 109 5                |
| C4-C3-C2                  | 111 3 (2)   | $H_{13}A - C_{13} - H_{13}E$   | 56.3                 |
| C4 - C3 - H3A             | 109.4       | H13B— $C13$ — $H13E$           | 141 1                |
| $C_2 - C_3 - H_3 A$       | 109.1       | $H_{13C}$ $-C_{13}$ $-H_{13E}$ | 56.3                 |
| C4-C3-H3B                 | 109.1       | H13D— $C13$ — $H13E$           | 109 5                |
| $C^2$ — $C^3$ — $H^3B$    | 109.1       | C10—C13—H13F                   | 109.5                |
| $H_{3A}$ $C_{3}$ $H_{3B}$ | 108.0       | H13A—C13—H13F                  | 56.3                 |
| $C_{5}-C_{4}-C_{3}$       | 111 6 (2)   | H13B— $C13$ — $H13F$           | 56.3                 |
| C5-C4-H4A                 | 109.3       | $H_{13C}$ $-C_{13}$ $-H_{13F}$ | 141 1                |
| C3-C4-H4A                 | 109.3       | H13D—C13—H13F                  | 109 5                |
| C5-C4-H4B                 | 109.3       | H13F $C13$ $H13F$              | 109.5                |
| $C_3 - C_4 - H_4B$        | 109.3       | $C_{15}$ $C_{14}$ $C_{19}$     | 109.5<br>122.0(2)    |
| $H_{4} - C_{4} - H_{4}B$  | 108.0       | $C_{15} - C_{14} - O_{2}$      | 122.0(2)<br>118.8(2) |
| C4-C5-C6                  | 111.9(2)    | C19 - C14 - O2                 | 110.0(2)<br>119.0(2) |
| C4-C5-H5A                 | 109.2       | $C_{14}$ $C_{15}$ $C_{16}$     | 119.0(2)<br>118.7(2) |
| C6-C5-H5A                 | 109.2       | C14 - C15 - H15                | 120.7(2)             |
| C4—C5—H5B                 | 109.2       | C16—C15—H15                    | 120.7                |
| C6-C5-H5B                 | 109.2       | C17-C16-C15                    | 120.7<br>120.4(3)    |
| H5A-C5-H5B                | 107.9       | C17—C16—H16                    | 119.8                |
| C1 - C6 - C5              | 110.2 (2)   | C15—C16—H16                    | 119.8                |
| C1 - C6 - H6A             | 109.6       | C16-C17-C18                    | 119.8 (2)            |
| C5—C6—H6A                 | 109.6       | C16—C17—H17                    | 120.1                |

| C1—C6—H6B    | 109.6        | С18—С17—Н17     | 120.1      |
|--------------|--------------|-----------------|------------|
| С5—С6—Н6В    | 109.6        | C17—C18—C19     | 120.9 (2)  |
| H6A—C6—H6B   | 108.1        | C17—C18—H18     | 119.6      |
| C12—C7—C8    | 119.4 (2)    | C19—C18—H18     | 119.6      |
| C12—C7—N2    | 118.5 (2)    | C14—C19—C18     | 118.2 (2)  |
| C8—C7—N2     | 122.1 (2)    | C14—C19—H19     | 120.9      |
| С7—С8—С9     | 119.1 (2)    | C18—C19—H19     | 120.9      |
|              |              |                 |            |
| O1—P1—O2—C14 | 46.41 (19)   | C12—C7—C8—C9    | 1.3 (3)    |
| N1—P1—O2—C14 | 173.31 (17)  | N2              | -177.7 (2) |
| N2—P1—O2—C14 | -75.14 (18)  | C7—C8—C9—C10    | -0.7 (4)   |
| O1—P1—N1—C1  | -86.5 (2)    | C8—C9—C10—C11   | -0.2 (4)   |
| O2—P1—N1—C1  | 152.36 (18)  | C8—C9—C10—C13   | -179.7 (2) |
| N2—P1—N1—C1  | 39.6 (2)     | C9-C10-C11-C12  | 0.5 (4)    |
| O1—P1—N2—C7  | 170.92 (18)  | C13—C10—C11—C12 | -180.0 (3) |
| O2—P1—N2—C7  | -66.5 (2)    | C10-C11-C12-C7  | 0.1 (4)    |
| N1—P1—N2—C7  | 39.1 (2)     | C8—C7—C12—C11   | -1.0 (4)   |
| P1—N1—C1—C6  | 86.5 (2)     | N2-C7-C12-C11   | 178.0 (2)  |
| P1—N1—C1—C2  | -148.82 (18) | P1-02-C14-C15   | 95.6 (2)   |
| N1—C1—C2—C3  | 176.0 (2)    | P1-02-C14-C19   | -88.8 (2)  |
| C6—C1—C2—C3  | -57.7 (3)    | C19—C14—C15—C16 | -0.3 (4)   |
| C1—C2—C3—C4  | 55.5 (3)     | O2-C14-C15-C16  | 175.2 (2)  |
| C2—C3—C4—C5  | -53.6 (3)    | C14—C15—C16—C17 | 0.1 (4)    |
| C3—C4—C5—C6  | 54.0 (3)     | C15—C16—C17—C18 | -0.3 (4)   |
| N1—C1—C6—C5  | -178.7 (2)   | C16—C17—C18—C19 | 0.7 (4)    |
| C2—C1—C6—C5  | 57.2 (3)     | C15-C14-C19-C18 | 0.7 (4)    |
| C4—C5—C6—C1  | -55.6 (3)    | O2-C14-C19-C18  | -174.8 (2) |
| P1—N2—C7—C12 | -151.43 (19) | C17—C18—C19—C14 | -0.9 (4)   |
| P1—N2—C7—C8  | 27.6 (3)     |                 |            |
|              |              |                 |            |

Hydrogen-bond geometry (Å, °)

| D—H···A                            | <i>D</i> —Н | H···A    | D···A     | <i>D</i> —H··· <i>A</i> |  |
|------------------------------------|-------------|----------|-----------|-------------------------|--|
| N1—H1 <i>N</i> ···O1 <sup>i</sup>  | 0.81 (3)    | 2.16 (3) | 2.961 (3) | 169 (3)                 |  |
| N2—H2 <i>N</i> ···O1 <sup>ii</sup> | 0.84 (3)    | 2.20 (3) | 3.023 (3) | 167 (2)                 |  |

Symmetry codes: (i) -x+3/2, y-1/2, -z+3/2; (ii) -x+3/2, y+1/2, -z+3/2.