organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

O-Phenyl (cyclo­hexyl­amido)(p-tolyl­amido)­phosphinate

aDepartment of Chemistry, Zanjan Branch, Islamic Azad University, PO Box 49195-467, Zanjan, Iran, bDepartment of Chemistry, Ferdowsi University of Mashhad, Mashhad, 91779, Iran, and cDepartment of Chemistry, University of Calgary, 2500 University Drive, N.W., Calgary, Alberta, Canada T2N 1N4
*Correspondence e-mail: fahimeh_sabbaghi@yahoo.com

(Received 8 May 2011; accepted 16 May 2011; online 25 May 2011)

In the title mol­ecule, C19H25N2O2P, the P atom is bonded in a distorted tetra­hedral environment. The dihedral angle between the two phenyl rings is 89.09 (8)°. The methyl H atoms are disordered over two sets of sites with equal occupancy. The O atom of the P=O group acts as a double hydrogen-bond acceptor of the type (N—H)2⋯(O=)P—, forming R22(8) rings which are further linked into chains along [010].

Related literature

For background to mixed-amido phosphinates, see: Pourayoubi et al. (2007[Pourayoubi, M., Ghadimi, S. & Valmoozi, A. A. E. (2007). Acta Cryst. E63, o4093.]). For double hydrogen-bond acceptors, see: Steiner (2002[Steiner, T. (2002). Angew. Chem. Int. Ed. 41, 48-76.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C19H25N2O2P

  • Mr = 344.38

  • Monoclinic, P 21 /n

  • a = 15.5575 (4) Å

  • b = 7.7006 (3) Å

  • c = 16.1717 (4) Å

  • β = 108.9709 (17)°

  • V = 1832.17 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.16 mm−1

  • T = 173 K

  • 0.16 × 0.14 × 0.10 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SORTAV; Blessing, 1997[Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.]) Tmin = 0.974, Tmax = 0.984

  • 13695 measured reflections

  • 4172 independent reflections

  • 3069 reflections with I > 2σ(I)

  • Rint = 0.070

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.124

  • S = 1.06

  • 4172 reflections

  • 223 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.81 (3) 2.16 (3) 2.961 (3) 169 (3)
N2—H2N⋯O1ii 0.84 (3) 2.20 (3) 3.023 (3) 167 (2)
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: COLLECT (Hooft, 1998[Hooft, R. (1998). COLLECT. Nonius BV, Delft. The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SIR92 (Altomare et al., 1993)[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]; program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]).

Supporting information


Comment top

The structure determination of title compound was performed as a part of a project in our laboratory on the synthesis of new mixed-amido phosphinates having a P(O)(O)(N')(N") skeleton (Pourayoubi et al., 2007).

The PO, P—O and P—N bond lengths are standard for this type of compound (Pourayoubi et al., 2007). The P atom has a distorted tetrahedral configuration (Fig. 1) with the bond angles in the range of 98.55 (10)° [O2–P1–N1] to 119.80 (10)° [O1–P1–N1].

The phosphoryl group respectively adopts a syn orientation with respect to the N–H unit of p-tolylamido moiety and a gauche position relative to that of cyclohexylamido substituent.

In the crystal structure, the molecules are linked by two intermolecular N—H···OP hydrogen bonds (Table 1) into chains in the direction of the b axis in which the O atom of the PO group acts as a double H-acceptor (Steiner, 2002) (Fig. 2). From this arrangement R22(8) rings are formed (Bernstein et al., 1995).

Related literature top

For background to mixed-amido phosphinates, see: Pourayoubi et al. (2007). For double hydrogen-bond acceptors, see: Steiner (2002). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

To a solution of (C6H5O)(4-CH3C6H4NH)P(O)Cl in chloroform, a solution of cyclohexylamine (1:2 mole ratio) in chloroform was added at 273 K. After 4 h stirring, the solvent was removed and product was washed with distilled water. Single crystals were obtained from a solution of the title compound in CH3CN/CHCl3 after slow evaporation at room temperature.

Refinement top

Though the H-atoms were visible in difference fourier maps they were included in geometrically idealized positions with C—H distances = 0.95, 0.98, 0.99 and 1.00 Å for aryl, methyl, methylene and methine type H-atoms, respectively. The methyl H-atoms are disordered over six sites with equal site occupancy factors. The H-atoms bonded to N-atoms were allowed to refine. The H-atoms were assigned Uiso = 1.5 times Ueq methyl C atom and 1.2 times Ueq of the rest of the parent atoms (C/N).

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997); data reduction: SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: enCIFer (Allen et al., 2004).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with ellipsoids shown at the 50% probability level. The disorder is not shown.
[Figure 2] Fig. 2. Part of the crystal structure of the title compound with hydrogen bonding shown as dotted lines (the C—H hydrogen atoms are omitted for clarity).
N-[(Cyclohexylamino)(phenoxy)phosphoryl]-4-methylaniline top
Crystal data top
C19H25N2O2PF(000) = 736
Mr = 344.38Dx = 1.248 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 7090 reflections
a = 15.5575 (4) Åθ = 3.0–27.5°
b = 7.7006 (3) ŵ = 0.16 mm1
c = 16.1717 (4) ÅT = 173 K
β = 108.9709 (17)°Prism, colorless
V = 1832.17 (10) Å30.16 × 0.14 × 0.10 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
4172 independent reflections
Radiation source: fine-focus sealed tube3069 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.070
ω and ϕ scansθmax = 27.6°, θmin = 3.0°
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
h = 2020
Tmin = 0.974, Tmax = 0.984k = 99
13695 measured reflectionsl = 2021
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0234P)2 + 2.302P]
where P = (Fo2 + 2Fc2)/3
4172 reflections(Δ/σ)max < 0.001
223 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.38 e Å3
Crystal data top
C19H25N2O2PV = 1832.17 (10) Å3
Mr = 344.38Z = 4
Monoclinic, P21/nMo Kα radiation
a = 15.5575 (4) ŵ = 0.16 mm1
b = 7.7006 (3) ÅT = 173 K
c = 16.1717 (4) Å0.16 × 0.14 × 0.10 mm
β = 108.9709 (17)°
Data collection top
Nonius KappaCCD
diffractometer
4172 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
3069 reflections with I > 2σ(I)
Tmin = 0.974, Tmax = 0.984Rint = 0.070
13695 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.124H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.27 e Å3
4172 reflectionsΔρmin = 0.38 e Å3
223 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
P10.73253 (4)0.16106 (8)0.67651 (4)0.02345 (15)
O10.71919 (11)0.1863 (2)0.76217 (10)0.0283 (4)
O20.64631 (10)0.0713 (2)0.60756 (10)0.0285 (4)
N10.80997 (14)0.0288 (3)0.66811 (13)0.0273 (4)
H1N0.8023 (17)0.070 (4)0.6810 (17)0.033*
N20.75059 (13)0.3485 (3)0.63724 (12)0.0247 (4)
H2N0.7553 (17)0.434 (3)0.6707 (16)0.030*
C10.90574 (15)0.0755 (3)0.68466 (15)0.0261 (5)
H10.90740.19990.66740.031*
C20.94454 (16)0.0325 (4)0.62658 (16)0.0335 (6)
H2A0.94340.15680.64190.040*
H2B0.90630.01780.56470.040*
C31.04166 (17)0.0216 (4)0.63741 (18)0.0402 (6)
H3A1.06660.05550.60180.048*
H3B1.04180.14180.61580.048*
C41.10170 (18)0.0119 (4)0.73256 (18)0.0432 (7)
H4A1.10890.11100.75150.052*
H4B1.16270.05840.73820.052*
C51.06180 (17)0.1142 (4)0.79143 (17)0.0410 (7)
H5A1.06290.23950.77810.049*
H5B1.09980.09650.85310.049*
C60.96421 (16)0.0595 (4)0.77984 (15)0.0329 (6)
H6A0.96350.06220.79940.040*
H6B0.93910.13400.81640.040*
C70.77827 (15)0.3772 (3)0.56278 (14)0.0236 (5)
C80.75810 (16)0.2609 (3)0.49355 (15)0.0275 (5)
H80.72290.16000.49360.033*
C90.79007 (16)0.2939 (3)0.42412 (15)0.0299 (5)
H90.77670.21320.37720.036*
C100.84044 (17)0.4393 (3)0.42080 (16)0.0333 (6)
C110.85877 (19)0.5555 (4)0.49027 (18)0.0396 (6)
H110.89290.65740.48960.048*
C120.82810 (17)0.5252 (3)0.56052 (16)0.0320 (6)
H120.84130.60630.60730.038*
C130.8741 (2)0.4732 (4)0.34463 (18)0.0489 (8)
H13A0.90830.58230.35430.073*0.50
H13B0.82210.48170.29070.073*0.50
H13C0.91360.37760.33950.073*0.50
H13D0.85440.37880.30200.073*0.50
H13E0.94060.47940.36560.073*0.50
H13F0.84910.58350.31680.073*0.50
C140.55737 (15)0.1271 (3)0.59596 (15)0.0264 (5)
C150.51721 (17)0.2434 (3)0.52978 (15)0.0328 (6)
H150.55070.29170.49560.039*
C160.42679 (18)0.2884 (4)0.51410 (17)0.0401 (6)
H160.39800.36820.46870.048*
C170.37857 (18)0.2181 (4)0.56396 (18)0.0412 (7)
H170.31690.24970.55320.049*
C180.42027 (17)0.1015 (4)0.62967 (17)0.0390 (6)
H180.38660.05220.66350.047*
C190.51073 (17)0.0554 (3)0.64696 (16)0.0336 (6)
H190.53970.02350.69270.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0297 (3)0.0183 (3)0.0243 (3)0.0017 (2)0.0115 (2)0.0006 (2)
O10.0396 (9)0.0227 (9)0.0261 (8)0.0002 (7)0.0155 (7)0.0006 (7)
O20.0299 (8)0.0265 (9)0.0315 (9)0.0031 (7)0.0132 (7)0.0050 (7)
N10.0316 (10)0.0179 (10)0.0344 (11)0.0028 (9)0.0136 (9)0.0009 (9)
N20.0356 (11)0.0199 (10)0.0226 (10)0.0011 (9)0.0149 (8)0.0012 (8)
C10.0284 (11)0.0216 (12)0.0303 (12)0.0008 (10)0.0122 (10)0.0010 (10)
C20.0347 (13)0.0365 (15)0.0310 (13)0.0007 (11)0.0128 (11)0.0065 (11)
C30.0386 (14)0.0436 (17)0.0460 (16)0.0003 (13)0.0242 (13)0.0058 (13)
C40.0310 (13)0.0441 (17)0.0534 (17)0.0016 (12)0.0124 (13)0.0047 (14)
C50.0353 (14)0.0447 (17)0.0396 (15)0.0025 (13)0.0074 (12)0.0071 (13)
C60.0382 (14)0.0329 (14)0.0297 (12)0.0000 (11)0.0138 (11)0.0028 (11)
C70.0270 (11)0.0205 (12)0.0235 (11)0.0027 (9)0.0085 (9)0.0024 (9)
C80.0295 (12)0.0238 (12)0.0292 (12)0.0008 (10)0.0095 (10)0.0009 (10)
C90.0355 (13)0.0304 (14)0.0240 (11)0.0017 (11)0.0098 (10)0.0043 (10)
C100.0402 (14)0.0335 (14)0.0322 (13)0.0040 (12)0.0201 (11)0.0041 (11)
C110.0514 (16)0.0282 (15)0.0486 (16)0.0080 (12)0.0290 (13)0.0009 (12)
C120.0444 (14)0.0220 (12)0.0342 (13)0.0069 (11)0.0190 (11)0.0049 (10)
C130.0657 (19)0.0486 (19)0.0457 (16)0.0036 (16)0.0366 (15)0.0001 (14)
C140.0300 (12)0.0219 (12)0.0292 (12)0.0046 (10)0.0122 (10)0.0062 (10)
C150.0398 (14)0.0319 (14)0.0290 (12)0.0039 (11)0.0142 (11)0.0003 (11)
C160.0409 (15)0.0403 (16)0.0347 (14)0.0051 (13)0.0063 (12)0.0006 (12)
C170.0308 (13)0.0462 (17)0.0460 (16)0.0017 (12)0.0115 (12)0.0098 (14)
C180.0383 (14)0.0424 (17)0.0433 (15)0.0078 (13)0.0229 (12)0.0044 (13)
C190.0401 (14)0.0291 (14)0.0334 (13)0.0031 (11)0.0146 (11)0.0011 (11)
Geometric parameters (Å, º) top
P1—O11.4788 (16)C7—C81.388 (3)
P1—O21.5961 (17)C8—C91.391 (3)
P1—N11.617 (2)C8—H80.9500
P1—N21.637 (2)C9—C101.378 (4)
O2—C141.402 (3)C9—H90.9500
N1—C11.470 (3)C10—C111.391 (4)
N1—H1N0.81 (3)C10—C131.510 (3)
N2—C71.422 (3)C11—C121.387 (3)
N2—H2N0.84 (3)C11—H110.9500
C1—C61.517 (3)C12—H120.9500
C1—C21.519 (3)C13—H13A0.9800
C1—H11.0000C13—H13B0.9800
C2—C31.522 (3)C13—H13C0.9800
C2—H2A0.9900C13—H13D0.9800
C2—H2B0.9900C13—H13E0.9800
C3—C41.520 (4)C13—H13F0.9800
C3—H3A0.9900C14—C151.379 (3)
C3—H3B0.9900C14—C191.379 (3)
C4—C51.515 (4)C15—C161.390 (4)
C4—H4A0.9900C15—H150.9500
C4—H4B0.9900C16—C171.378 (4)
C5—C61.527 (3)C16—H160.9500
C5—H5A0.9900C17—C181.381 (4)
C5—H5B0.9900C17—H170.9500
C6—H6A0.9900C18—C191.389 (4)
C6—H6B0.9900C18—H180.9500
C7—C121.386 (3)C19—H190.9500
O1—P1—O2111.68 (9)C7—C8—H8120.4
O1—P1—N1119.80 (10)C9—C8—H8120.4
O2—P1—N198.55 (10)C10—C9—C8122.5 (2)
O1—P1—N2109.97 (10)C10—C9—H9118.8
O2—P1—N2108.77 (10)C8—C9—H9118.8
N1—P1—N2107.23 (10)C9—C10—C11117.5 (2)
C14—O2—P1121.97 (14)C9—C10—C13121.7 (2)
C1—N1—P1124.70 (17)C11—C10—C13120.9 (2)
C1—N1—H1N114.1 (19)C12—C11—C10121.2 (2)
P1—N1—H1N113.3 (19)C12—C11—H11119.4
C7—N2—P1127.10 (16)C10—C11—H11119.4
C7—N2—H2N115.9 (18)C11—C12—C7120.3 (2)
P1—N2—H2N115.5 (17)C11—C12—H12119.9
N1—C1—C6113.73 (19)C7—C12—H12119.9
N1—C1—C2109.64 (19)C10—C13—H13A109.5
C6—C1—C2110.8 (2)C10—C13—H13B109.5
N1—C1—H1107.5H13A—C13—H13B109.5
C6—C1—H1107.5C10—C13—H13C109.5
C2—C1—H1107.5H13A—C13—H13C109.5
C3—C2—C1111.0 (2)H13B—C13—H13C109.5
C3—C2—H2A109.4C10—C13—H13D109.5
C1—C2—H2A109.4H13A—C13—H13D141.1
C3—C2—H2B109.4H13B—C13—H13D56.3
C1—C2—H2B109.4H13C—C13—H13D56.3
H2A—C2—H2B108.0C10—C13—H13E109.5
C4—C3—C2111.3 (2)H13A—C13—H13E56.3
C4—C3—H3A109.4H13B—C13—H13E141.1
C2—C3—H3A109.4H13C—C13—H13E56.3
C4—C3—H3B109.4H13D—C13—H13E109.5
C2—C3—H3B109.4C10—C13—H13F109.5
H3A—C3—H3B108.0H13A—C13—H13F56.3
C5—C4—C3111.6 (2)H13B—C13—H13F56.3
C5—C4—H4A109.3H13C—C13—H13F141.1
C3—C4—H4A109.3H13D—C13—H13F109.5
C5—C4—H4B109.3H13E—C13—H13F109.5
C3—C4—H4B109.3C15—C14—C19122.0 (2)
H4A—C4—H4B108.0C15—C14—O2118.8 (2)
C4—C5—C6111.9 (2)C19—C14—O2119.0 (2)
C4—C5—H5A109.2C14—C15—C16118.7 (2)
C6—C5—H5A109.2C14—C15—H15120.7
C4—C5—H5B109.2C16—C15—H15120.7
C6—C5—H5B109.2C17—C16—C15120.4 (3)
H5A—C5—H5B107.9C17—C16—H16119.8
C1—C6—C5110.2 (2)C15—C16—H16119.8
C1—C6—H6A109.6C16—C17—C18119.8 (2)
C5—C6—H6A109.6C16—C17—H17120.1
C1—C6—H6B109.6C18—C17—H17120.1
C5—C6—H6B109.6C17—C18—C19120.9 (2)
H6A—C6—H6B108.1C17—C18—H18119.6
C12—C7—C8119.4 (2)C19—C18—H18119.6
C12—C7—N2118.5 (2)C14—C19—C18118.2 (2)
C8—C7—N2122.1 (2)C14—C19—H19120.9
C7—C8—C9119.1 (2)C18—C19—H19120.9
O1—P1—O2—C1446.41 (19)C12—C7—C8—C91.3 (3)
N1—P1—O2—C14173.31 (17)N2—C7—C8—C9177.7 (2)
N2—P1—O2—C1475.14 (18)C7—C8—C9—C100.7 (4)
O1—P1—N1—C186.5 (2)C8—C9—C10—C110.2 (4)
O2—P1—N1—C1152.36 (18)C8—C9—C10—C13179.7 (2)
N2—P1—N1—C139.6 (2)C9—C10—C11—C120.5 (4)
O1—P1—N2—C7170.92 (18)C13—C10—C11—C12180.0 (3)
O2—P1—N2—C766.5 (2)C10—C11—C12—C70.1 (4)
N1—P1—N2—C739.1 (2)C8—C7—C12—C111.0 (4)
P1—N1—C1—C686.5 (2)N2—C7—C12—C11178.0 (2)
P1—N1—C1—C2148.82 (18)P1—O2—C14—C1595.6 (2)
N1—C1—C2—C3176.0 (2)P1—O2—C14—C1988.8 (2)
C6—C1—C2—C357.7 (3)C19—C14—C15—C160.3 (4)
C1—C2—C3—C455.5 (3)O2—C14—C15—C16175.2 (2)
C2—C3—C4—C553.6 (3)C14—C15—C16—C170.1 (4)
C3—C4—C5—C654.0 (3)C15—C16—C17—C180.3 (4)
N1—C1—C6—C5178.7 (2)C16—C17—C18—C190.7 (4)
C2—C1—C6—C557.2 (3)C15—C14—C19—C180.7 (4)
C4—C5—C6—C155.6 (3)O2—C14—C19—C18174.8 (2)
P1—N2—C7—C12151.43 (19)C17—C18—C19—C140.9 (4)
P1—N2—C7—C827.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.81 (3)2.16 (3)2.961 (3)169 (3)
N2—H2N···O1ii0.84 (3)2.20 (3)3.023 (3)167 (2)
Symmetry codes: (i) x+3/2, y1/2, z+3/2; (ii) x+3/2, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC19H25N2O2P
Mr344.38
Crystal system, space groupMonoclinic, P21/n
Temperature (K)173
a, b, c (Å)15.5575 (4), 7.7006 (3), 16.1717 (4)
β (°) 108.9709 (17)
V3)1832.17 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.16
Crystal size (mm)0.16 × 0.14 × 0.10
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1997)
Tmin, Tmax0.974, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
13695, 4172, 3069
Rint0.070
(sin θ/λ)max1)0.652
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.124, 1.06
No. of reflections4172
No. of parameters223
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.27, 0.38

Computer programs: COLLECT (Hooft, 1998), DENZO (Otwinowski & Minor, 1997), SCALEPACK (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2008), enCIFer (Allen et al., 2004).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.81 (3)2.16 (3)2.961 (3)169 (3)
N2—H2N···O1ii0.84 (3)2.20 (3)3.023 (3)167 (2)
Symmetry codes: (i) x+3/2, y1/2, z+3/2; (ii) x+3/2, y+1/2, z+3/2.
 

Acknowledgements

Support of this investigation by Zanjan Branch, Islamic Azad University, is gratefully acknowledged.

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBlessing, R. H. (1997). J. Appl. Cryst. 30, 421–426.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHooft, R. (1998). COLLECT. Nonius BV, Delft. The Netherlands.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPourayoubi, M., Ghadimi, S. & Valmoozi, A. A. E. (2007). Acta Cryst. E63, o4093.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSteiner, T. (2002). Angew. Chem. Int. Ed. 41, 48–76.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds