organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 6| June 2011| Pages o1475-o1476

2,4-Bis(2-eth­­oxy­phen­yl)-7-methyl-3-aza­bi­cyclo­[3.3.1]nonan-9-one

aDepartment of Image Science and Engineering, Pukyong National University, Busan 608 737, Republic of Korea, bDepartment of Chemistry, Indian Institute of Technology Madras, Chennai, Tamilnadu, India, and cDepartment of Biomedicinal Chemistry, Inje University, Gimhae, Gyeongnam 621 749, Republic of Korea
*Correspondence e-mail: ytjeong@pknu.ac.kr

(Received 12 May 2011; accepted 16 May 2011; online 20 May 2011)

The crystal structure of the title compound, C25H31NO3, exists in a twin-chair conformation with an equatorial orientation of the ortho-eth­oxy­phenyl groups. According to Cremer and Pople [Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]), J. Am. Chem. Soc. 97, 1354–1358], both the piperidone and cyclo­hexa­none rings are significantly puckered with total puckering amplitutdes QT of 0.5889 (18) and 0.554 (2) Å, respectively. The ortho-eth­oxy­phenyl groups are located on either side of the secondary amino group and make a dihedral angle of 12.41 (4)° with respect to each other. The methyl group on the cyclo­hexa­none part occupies an exocyclic equatorial disposition. The crystal packing is stabilized by weak van der Waals inter­actions.

Related literature

For the synthesis and biological activity of 3-aza­bicyclo­[3.3.1]nonan-9-ones, see: Jeyaraman & Avila (1981[Jeyaraman, R. & Avila, S. (1981). Chem. Rev. 81, 149-174.]); Barker et al. (2005[Barker, D., Lin, D. H. S., Carland, J. E., Chu, C. P. Y., Chebib, M., Brimble, M. A., Savage, G. P. & McLeod, M. D. (2005). Bioorg. Med. Chem. 13, 4565-4575.]); Parthiban et al. (2009a[Parthiban, P., Aridoss, G., Rathika, P., Ramkumar, V. & Kabilan, S. (2009a). Bioorg. Med. Chem. Lett. 19, 6981-6985.], 2010b[Parthiban, P., Rathika, P., Park, K. S. & Jeong, Y. T. (2010b). Monatsh. Chem. 141, 79-93.],c[Parthiban, P., Rathika, P., Ramkumar, V., Son, S. M. & Jeong, Y. T. (2010c). Bioorg. Med. Chem. Lett. 20, 1642-1647.], 2011[Parthiban, P., Subalakshmi, V., Balasubramanian, K., Islam, Md. N., Choi, J. S. & Jeong, Y. T. (2011). Bioorg. Med. Chem. Lett. 21, 2287-2296.]). For related structures, see: Parthiban et al. (2009b[Parthiban, P., Ramkumar, V., Amirthaganesan, S. & Jeong, Y. T. (2009b). Acta Cryst. E65, o1356.],c[Parthiban, P., Ramkumar, V., Kim, M. S., Son, S. M. & Jeong, Y. T. (2009c). Acta Cryst. E65, o1383.], 2010a[Parthiban, P., Ramkumar, V. & Jeong, Y. T. (2010a). Acta Cryst. E66, o48-o49.],c[Parthiban, P., Rathika, P., Ramkumar, V., Son, S. M. & Jeong, Y. T. (2010c). Bioorg. Med. Chem. Lett. 20, 1642-1647.]); Cox et al. (1985[Cox, P. J., McCabe, P. H., Milne, N. J. & Sim, G. A. (1985). J. Chem. Soc. Chem. Commun. pp. 626-628.]); Smith-Verdier et al. (1983[Smith-Verdier, P., Florencio, F. & García-Blanco, S. (1983). Acta Cryst. C39, 101-103.]); Padegimas & Kovacic (1972[Padegimas, S. J. & Kovacic, P. (1972). J. Org. Chem. 37, 2672-2676.]). For ring puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]); Nardelli (1983[Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.]).

[Scheme 1]

Experimental

Crystal data
  • C25H31NO3

  • Mr = 393.51

  • Monoclinic, P 21 /n

  • a = 10.3147 (6) Å

  • b = 11.8817 (6) Å

  • c = 18.7809 (10) Å

  • β = 100.866 (2)°

  • V = 2260.4 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 298 K

  • 0.35 × 0.28 × 0.15 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, XPREP, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.974, Tmax = 0.989

  • 12446 measured reflections

  • 3876 independent reflections

  • 2415 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.117

  • S = 1.03

  • 3876 reflections

  • 269 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.12 e Å−3

  • Δρmin = −0.13 e Å−3

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, XPREP, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT-Plus (Bruker, 2004[Bruker (2004). APEX2, XPREP, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus and XPREP (Bruker, 2004[Bruker (2004). APEX2, XPREP, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The 3-azabicycle nucleus is an important class of pharmacophore due to its broad spectrum of biological activities such as antibacterial, antimycobacterial, antifungal, anticancer, antitussive, antiinflammatory, sedative, antipyretic and calcium antagonistic activity (Jeyaraman & Avila, 1981; Barker et al., 2005; Parthiban et al., 2009a, 2010b, 2010c, 2011). Its biological significane prompted the medicinal chemists to synthesize some structural analogs. Since the stereochemistry plays an important role in biological actions, it is of immense help to establish the stereochemistry of the synthesized bio-potent molecules. Since several stereomers are possible for the synthesized title compound along with different conformations such as chair-chair (Parthiban et al., 2009b, 2009c, 2010a; Cox et al., 1985), chair-boat (Parthiban et al., 2010c; Smith-Verdier et al., 1983) and boat-boat (Padegimas & Kovacic, 1972), the title compound was undertaken for the present single-crystal XRD study to establish the stereochemistry.

The analysis of torsion angles, asymmetry parameters and puckering parameters calculated for the title compound shows that the piperidine ring slightly deviates the ideal chair conformation. According to Cremer & Pople, the total puckering amplitude, QT is 0.5889 (18) Å and the phase angle θ is 7.19 (18)° (Cremer & Pople, 1975) for the piperidine ring. Also according to Nardelli, the smallest displacement asymmetry parameters q2 and q3 are 0.0741 (18) and 0.5843 (18)°, respectively (Nardelli, 1983).

The cyclohexanone ring deviates more than the piperidone ring from the ideal chair conformation. According to Cremer and Pople the QT = 0.554 (2) and θ = 12.2 (2)° (Cremer & Pople, 1975) and by Nardelli, q2 = 0.118 (2) and q3 = 0.541 (2)° (Nardelli, 1983).

The torsion angles of C8—C6—C7—C15 and C8—C2—C1—C9 are -179.07 (14) and 176.83 (14)°, respectively.

The above detailed analysis of the title compound C25H31NO3, clearly shows that the compound exists in a twin-chair conformation with an equatorial orientation of the ortho-ethoxyphenyl units on both sides of the secondary amino group. The ortho-ethoxyphenyl groups are orientated at a dihedral angle of 12.41 (4)° with respect to each other. The methyl group attached to the cyclohexanone part occupies an exocyclic equatorial disposition. The crystal packing is stabilized by weak van der Waals interactions.

Related literature top

For the synthesis and biological activity of 3-azabicyclo[3.3.1]nonan-9-ones, see: Jeyaraman & Avila (1981); Barker et al. (2005); Parthiban et al. (2009a, 2010b,c, 2011). For related structures, see: Parthiban et al. (2009b,c, 2010a); Cox et al. (1985); Smith-Verdier et al. (1983); Padegimas & Kovacic (1972). For ring puckering parameters, see: Cremer & Pople (1975); Nardelli (1983).

Experimental top

The 7-methyl-2,4-bis(2-ethoxyphenyl)-3-azabicyclo[3.3.1]nonan-9-one was synthesized by a modified and an optimized Mannich condensation in one-pot, using 2-ethoxybenzaldehyde (0.1 mol, 15.02 g/13.94 ml), 4-methylcyclohexanone (0.05 mol, 5.61 g/6.14 ml) and ammonium acetate (0.075 mol, 5.78 g) in a 50 ml of absolute ethanol. The mixture was gently warmed on a hot plate at 303–308 K (30–35° C) with moderate stirring till the complete consumption of the starting materials, which was monitored by TLC. At the end, the crude azabicyclic ketone was separated by filtration and gently washed with 1:5 cold ethanol-ether mixture. X-ray diffraction quality crystals of the title compound were obtained by slow evaporation from ethanol.

Refinement top

The nitrogen H atom was located in a difference Fourier map and refined isotropically. Other hydrogen atoms were fixed geometrically and allowed to ride on the parent carbon atoms with aromatic C—H = 0.93 Å, aliphatic C—H = 0.98Å and methylene C—H = 0.97 Å. The displacement parameters were set for phenyl, methylene and aliphatic H atoms at Uiso(H) = 1.2Ueq(C) and for methyl H atoms at Uiso(H) = 1.5Ueq(C)..

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Anistropic displacement representation of the molecule with atoms represented with 30% probability ellipsoids.
2,4-Bis(2-ethoxyphenyl)-7-methyl-3-azabicyclo[3.3.1]nonan-9-one top
Crystal data top
C25H31NO3F(000) = 848
Mr = 393.51Dx = 1.156 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3407 reflections
a = 10.3147 (6) Åθ = 2.6–21.8°
b = 11.8817 (6) ŵ = 0.08 mm1
c = 18.7809 (10) ÅT = 298 K
β = 100.866 (2)°Block, colourless
V = 2260.4 (2) Å30.35 × 0.28 × 0.15 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3876 independent reflections
Radiation source: fine-focus sealed tube2415 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ϕ and ω scansθmax = 25.6°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1011
Tmin = 0.974, Tmax = 0.989k = 1414
12446 measured reflectionsl = 2216
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.047P)2 + 0.3732P]
where P = (Fo2 + 2Fc2)/3
3876 reflections(Δ/σ)max < 0.001
269 parametersΔρmax = 0.12 e Å3
0 restraintsΔρmin = 0.13 e Å3
Crystal data top
C25H31NO3V = 2260.4 (2) Å3
Mr = 393.51Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.3147 (6) ŵ = 0.08 mm1
b = 11.8817 (6) ÅT = 298 K
c = 18.7809 (10) Å0.35 × 0.28 × 0.15 mm
β = 100.866 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3876 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
2415 reflections with I > 2σ(I)
Tmin = 0.974, Tmax = 0.989Rint = 0.025
12446 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.117H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.12 e Å3
3876 reflectionsΔρmin = 0.13 e Å3
269 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell e.s.d.'s are taken

into account individually in the estimation of e.s.d.'s in distances, angles

and torsion angles; correlations between e.s.d.'s in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.07118 (17)0.68920 (14)0.12439 (9)0.0475 (4)
H11.12920.62430.13790.057*
C20.99532 (18)0.71301 (15)0.18699 (9)0.0553 (5)
H21.05980.72030.23230.066*
C30.9088 (2)0.81806 (16)0.17738 (11)0.0676 (6)
H3A0.87630.83120.22190.081*
H3B0.96290.88210.16980.081*
C40.7921 (2)0.81182 (16)0.11504 (11)0.0659 (6)
H40.82580.81780.06980.079*
C50.72060 (18)0.70069 (16)0.11430 (10)0.0585 (5)
H5A0.66050.69330.06810.070*
H5B0.66780.70230.15190.070*
C60.80887 (17)0.59660 (14)0.12573 (8)0.0489 (4)
H60.75470.53110.13240.059*
C70.88565 (16)0.57076 (14)0.06386 (8)0.0454 (4)
H70.93620.50120.07590.054*
C80.90968 (17)0.61391 (15)0.19325 (9)0.0522 (5)
C91.15495 (18)0.78883 (15)0.11170 (10)0.0522 (5)
C101.1188 (2)0.86086 (16)0.05364 (11)0.0643 (5)
H101.04190.84640.02020.077*
C111.1939 (3)0.95391 (18)0.04389 (15)0.0868 (7)
H111.16801.00110.00420.104*
C121.3066 (3)0.9759 (2)0.09300 (18)0.0975 (8)
H121.35761.03840.08660.117*
C131.3453 (2)0.9065 (2)0.15186 (15)0.0861 (7)
H131.42190.92240.18520.103*
C141.27035 (19)0.81263 (17)0.16149 (11)0.0629 (5)
C150.79067 (17)0.55378 (15)0.00749 (9)0.0495 (5)
C160.71335 (18)0.45680 (16)0.01864 (10)0.0569 (5)
C170.6211 (2)0.4422 (2)0.08214 (12)0.0741 (6)
H170.57000.37730.08920.089*
C180.6060 (2)0.5244 (3)0.13440 (12)0.0885 (8)
H180.54390.51500.17680.106*
C190.6809 (2)0.6193 (2)0.12479 (11)0.0871 (7)
H190.67070.67430.16070.105*
C200.7721 (2)0.63362 (18)0.06142 (10)0.0671 (6)
H200.82230.69910.05510.080*
C210.6966 (3)0.9105 (2)0.11769 (15)0.1095 (9)
H21A0.66630.90920.16300.164*
H21B0.62250.90370.07850.164*
H21C0.74140.98030.11330.164*
C221.4219 (2)0.7531 (3)0.26893 (13)0.1002 (9)
H22A1.42200.82460.29380.120*
H22B1.49650.75170.24420.120*
C231.4315 (3)0.6584 (3)0.32186 (15)0.1209 (11)
H23A1.35500.65830.34410.181*
H23B1.50930.66760.35850.181*
H23C1.43650.58830.29700.181*
C240.6380 (2)0.29441 (18)0.03834 (13)0.0819 (7)
H24A0.63860.23980.00000.098*
H24B0.55100.32840.03150.098*
C250.6690 (3)0.2388 (2)0.10965 (16)0.1147 (10)
H25A0.75450.20410.11550.172*
H25B0.60370.18230.11270.172*
H25C0.66910.29360.14720.172*
H1N1.0230 (17)0.6437 (14)0.0263 (9)0.054 (6)*
N10.97762 (14)0.66179 (12)0.05778 (8)0.0461 (4)
O10.92001 (15)0.55398 (12)0.24612 (7)0.0837 (5)
O21.30161 (13)0.73934 (13)0.21804 (7)0.0743 (4)
O30.73609 (13)0.37931 (11)0.03597 (7)0.0719 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0384 (11)0.0552 (10)0.0466 (10)0.0026 (8)0.0018 (8)0.0035 (8)
C20.0484 (12)0.0740 (12)0.0406 (9)0.0126 (10)0.0011 (8)0.0080 (9)
C30.0705 (15)0.0652 (13)0.0748 (13)0.0188 (11)0.0337 (12)0.0210 (10)
C40.0688 (14)0.0615 (12)0.0749 (13)0.0125 (11)0.0328 (12)0.0059 (10)
C50.0434 (12)0.0802 (13)0.0527 (11)0.0004 (10)0.0108 (9)0.0027 (9)
C60.0473 (11)0.0536 (10)0.0453 (10)0.0099 (9)0.0079 (8)0.0020 (8)
C70.0407 (11)0.0469 (9)0.0463 (9)0.0020 (8)0.0023 (8)0.0020 (7)
C80.0509 (12)0.0644 (11)0.0411 (10)0.0019 (9)0.0079 (8)0.0055 (9)
C90.0403 (11)0.0596 (11)0.0575 (11)0.0062 (9)0.0114 (9)0.0097 (9)
C100.0566 (13)0.0667 (12)0.0722 (13)0.0074 (11)0.0190 (10)0.0011 (10)
C110.0885 (19)0.0707 (15)0.1100 (19)0.0106 (14)0.0411 (16)0.0105 (13)
C120.085 (2)0.0778 (17)0.141 (2)0.0335 (15)0.0503 (18)0.0152 (17)
C130.0608 (15)0.0964 (18)0.1040 (19)0.0290 (14)0.0232 (13)0.0319 (15)
C140.0456 (13)0.0740 (13)0.0710 (13)0.0138 (11)0.0159 (11)0.0201 (11)
C150.0416 (11)0.0620 (11)0.0441 (10)0.0024 (9)0.0057 (8)0.0078 (9)
C160.0497 (12)0.0677 (12)0.0534 (11)0.0044 (10)0.0100 (9)0.0124 (10)
C170.0576 (14)0.0973 (16)0.0650 (13)0.0179 (12)0.0051 (11)0.0303 (13)
C180.0680 (17)0.140 (2)0.0504 (13)0.0093 (16)0.0059 (11)0.0146 (15)
C190.0799 (17)0.123 (2)0.0516 (12)0.0099 (16)0.0059 (12)0.0122 (13)
C200.0629 (14)0.0857 (14)0.0490 (11)0.0103 (11)0.0014 (10)0.0052 (10)
C210.119 (2)0.0863 (17)0.140 (2)0.0412 (16)0.0676 (19)0.0127 (16)
C220.0462 (15)0.170 (3)0.0793 (16)0.0167 (16)0.0019 (13)0.0290 (18)
C230.088 (2)0.179 (3)0.0807 (18)0.021 (2)0.0231 (15)0.0037 (19)
C240.0777 (16)0.0658 (13)0.1047 (18)0.0212 (12)0.0236 (14)0.0183 (13)
C250.122 (2)0.0769 (17)0.147 (3)0.0075 (16)0.029 (2)0.0255 (17)
N10.0390 (9)0.0585 (9)0.0413 (8)0.0041 (7)0.0088 (7)0.0067 (7)
O10.0861 (11)0.1035 (11)0.0580 (8)0.0004 (9)0.0049 (7)0.0331 (8)
O20.0478 (9)0.0991 (11)0.0686 (9)0.0109 (8)0.0083 (7)0.0111 (8)
O30.0709 (10)0.0583 (8)0.0812 (9)0.0193 (7)0.0010 (8)0.0064 (7)
Geometric parameters (Å, º) top
C1—N11.465 (2)C13—H130.9300
C1—C91.511 (2)C14—O21.364 (2)
C1—C21.556 (2)C15—C201.375 (2)
C1—H10.9800C15—C161.395 (2)
C2—C81.490 (2)C16—O31.365 (2)
C2—C31.525 (3)C16—C171.389 (3)
C2—H20.9800C17—C181.372 (3)
C3—C41.515 (3)C17—H170.9300
C3—H3A0.9700C18—C191.360 (3)
C3—H3B0.9700C18—H180.9300
C4—C51.511 (3)C19—C201.381 (3)
C4—C211.539 (3)C19—H190.9300
C4—H40.9800C20—H200.9300
C5—C61.527 (2)C21—H21A0.9600
C5—H5A0.9700C21—H21B0.9600
C5—H5B0.9700C21—H21C0.9600
C6—C81.495 (2)C22—O21.426 (2)
C6—C71.555 (2)C22—C231.493 (4)
C6—H60.9800C22—H22A0.9700
C7—N11.457 (2)C22—H22B0.9700
C7—C151.517 (2)C23—H23A0.9600
C7—H70.9800C23—H23B0.9600
C8—O11.2101 (19)C23—H23C0.9600
C9—C101.381 (3)C24—O31.436 (2)
C9—C141.397 (3)C24—C251.474 (3)
C10—C111.382 (3)C24—H24A0.9700
C10—H100.9300C24—H24B0.9700
C11—C121.366 (3)C25—H25A0.9600
C11—H110.9300C25—H25B0.9600
C12—C131.377 (3)C25—H25C0.9600
C12—H120.9300N1—H1N0.848 (18)
C13—C141.388 (3)
N1—C1—C9110.10 (14)C12—C13—H13119.9
N1—C1—C2109.96 (14)C14—C13—H13119.9
C9—C1—C2111.15 (14)O2—C14—C13123.9 (2)
N1—C1—H1108.5O2—C14—C9116.01 (17)
C9—C1—H1108.5C13—C14—C9120.1 (2)
C2—C1—H1108.5C20—C15—C16117.59 (16)
C8—C2—C3108.30 (15)C20—C15—C7122.44 (16)
C8—C2—C1107.82 (14)C16—C15—C7119.90 (15)
C3—C2—C1115.19 (15)O3—C16—C17123.62 (18)
C8—C2—H2108.5O3—C16—C15115.60 (15)
C3—C2—H2108.5C17—C16—C15120.78 (19)
C1—C2—H2108.5C18—C17—C16119.5 (2)
C4—C3—C2114.42 (15)C18—C17—H17120.2
C4—C3—H3A108.7C16—C17—H17120.2
C2—C3—H3A108.7C19—C18—C17120.7 (2)
C4—C3—H3B108.7C19—C18—H18119.7
C2—C3—H3B108.7C17—C18—H18119.7
H3A—C3—H3B107.6C18—C19—C20119.6 (2)
C5—C4—C3111.43 (15)C18—C19—H19120.2
C5—C4—C21110.60 (18)C20—C19—H19120.2
C3—C4—C21110.98 (18)C15—C20—C19121.9 (2)
C5—C4—H4107.9C15—C20—H20119.1
C3—C4—H4107.9C19—C20—H20119.1
C21—C4—H4107.9C4—C21—H21A109.5
C4—C5—C6115.42 (15)C4—C21—H21B109.5
C4—C5—H5A108.4H21A—C21—H21B109.5
C6—C5—H5A108.4C4—C21—H21C109.5
C4—C5—H5B108.4H21A—C21—H21C109.5
C6—C5—H5B108.4H21B—C21—H21C109.5
H5A—C5—H5B107.5O2—C22—C23107.5 (2)
C8—C6—C5107.99 (14)O2—C22—H22A110.2
C8—C6—C7106.87 (14)C23—C22—H22A110.2
C5—C6—C7115.41 (14)O2—C22—H22B110.2
C8—C6—H6108.8C23—C22—H22B110.2
C5—C6—H6108.8H22A—C22—H22B108.5
C7—C6—H6108.8C22—C23—H23A109.5
N1—C7—C15110.55 (13)C22—C23—H23B109.5
N1—C7—C6110.04 (13)H23A—C23—H23B109.5
C15—C7—C6110.56 (13)C22—C23—H23C109.5
N1—C7—H7108.5H23A—C23—H23C109.5
C15—C7—H7108.5H23B—C23—H23C109.5
C6—C7—H7108.5O3—C24—C25108.05 (19)
O1—C8—C2124.61 (16)O3—C24—H24A110.1
O1—C8—C6123.69 (17)C25—C24—H24A110.1
C2—C8—C6111.70 (14)O3—C24—H24B110.1
C10—C9—C14118.18 (18)C25—C24—H24B110.1
C10—C9—C1122.21 (16)H24A—C24—H24B108.4
C14—C9—C1119.57 (17)C24—C25—H25A109.5
C9—C10—C11121.7 (2)C24—C25—H25B109.5
C9—C10—H10119.1H25A—C25—H25B109.5
C11—C10—H10119.1C24—C25—H25C109.5
C12—C11—C10119.4 (2)H25A—C25—H25C109.5
C12—C11—H11120.3H25B—C25—H25C109.5
C10—C11—H11120.3C7—N1—C1115.58 (13)
C11—C12—C13120.6 (2)C7—N1—H1N108.7 (12)
C11—C12—H12119.7C1—N1—H1N106.8 (12)
C13—C12—H12119.7C14—O2—C22119.78 (18)
C12—C13—C14120.1 (2)C16—O3—C24118.36 (16)
N1—C1—C2—C854.66 (18)C11—C12—C13—C140.5 (4)
C9—C1—C2—C8176.83 (14)C12—C13—C14—O2179.8 (2)
N1—C1—C2—C366.38 (19)C12—C13—C14—C90.4 (3)
C9—C1—C2—C355.80 (19)C10—C9—C14—O2179.74 (17)
C8—C2—C3—C454.3 (2)C1—C9—C14—O22.3 (2)
C1—C2—C3—C466.4 (2)C10—C9—C14—C130.1 (3)
C2—C3—C4—C545.8 (2)C1—C9—C14—C13177.49 (17)
C2—C3—C4—C21169.49 (17)N1—C7—C15—C2017.0 (2)
C3—C4—C5—C645.3 (2)C6—C7—C15—C20105.11 (19)
C21—C4—C5—C6169.20 (17)N1—C7—C15—C16166.35 (16)
C4—C5—C6—C852.7 (2)C6—C7—C15—C1671.5 (2)
C4—C5—C6—C766.8 (2)C20—C15—C16—O3179.34 (17)
C8—C6—C7—N156.66 (17)C7—C15—C16—O33.9 (2)
C5—C6—C7—N163.43 (17)C20—C15—C16—C170.0 (3)
C8—C6—C7—C15179.07 (14)C7—C15—C16—C17176.80 (16)
C5—C6—C7—C1558.98 (18)O3—C16—C17—C18179.4 (2)
C3—C2—C8—O1117.4 (2)C15—C16—C17—C180.1 (3)
C1—C2—C8—O1117.36 (19)C16—C17—C18—C190.4 (4)
C3—C2—C8—C662.90 (18)C17—C18—C19—C200.7 (4)
C1—C2—C8—C662.34 (18)C16—C15—C20—C190.2 (3)
C5—C6—C8—O1118.6 (2)C7—C15—C20—C19176.98 (18)
C7—C6—C8—O1116.67 (19)C18—C19—C20—C150.6 (3)
C5—C6—C8—C261.71 (19)C15—C7—N1—C1177.62 (14)
C7—C6—C8—C263.03 (18)C6—C7—N1—C155.21 (18)
N1—C1—C9—C1018.0 (2)C9—C1—N1—C7176.73 (14)
C2—C1—C9—C10104.10 (19)C2—C1—N1—C753.93 (19)
N1—C1—C9—C14164.69 (16)C13—C14—O2—C224.1 (3)
C2—C1—C9—C1473.2 (2)C9—C14—O2—C22176.08 (18)
C14—C9—C10—C110.4 (3)C23—C22—O2—C14177.42 (19)
C1—C9—C10—C11177.78 (18)C17—C16—O3—C2418.1 (3)
C9—C10—C11—C120.3 (3)C15—C16—O3—C24162.60 (17)
C10—C11—C12—C130.1 (4)C25—C24—O3—C16167.01 (19)

Experimental details

Crystal data
Chemical formulaC25H31NO3
Mr393.51
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)10.3147 (6), 11.8817 (6), 18.7809 (10)
β (°) 100.866 (2)
V3)2260.4 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.35 × 0.28 × 0.15
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.974, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
12446, 3876, 2415
Rint0.025
(sin θ/λ)max1)0.609
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.117, 1.03
No. of reflections3876
No. of parameters269
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.12, 0.13

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT-Plus (Bruker, 2004), SAINT-Plus and XPREP (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

 

Acknowledgements

This research was supported by the Corporate-affiliated Research Institute for Academic–Industrial–Institutional Cooperation Improvement (Business No. S7080008110). The authors acknowledge the Department of Chemistry, IIT Madras, for the X-ray data collection.

References

First citationBarker, D., Lin, D. H. S., Carland, J. E., Chu, C. P. Y., Chebib, M., Brimble, M. A., Savage, G. P. & McLeod, M. D. (2005). Bioorg. Med. Chem. 13, 4565–4575.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2004). APEX2, XPREP, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCox, P. J., McCabe, P. H., Milne, N. J. & Sim, G. A. (1985). J. Chem. Soc. Chem. Commun. pp. 626–628.  CrossRef Web of Science Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationJeyaraman, R. & Avila, S. (1981). Chem. Rev. 81, 149–174.  CrossRef CAS Web of Science Google Scholar
First citationNardelli, M. (1983). Acta Cryst. C39, 1141–1142.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationPadegimas, S. J. & Kovacic, P. (1972). J. Org. Chem. 37, 2672–2676.  CrossRef CAS Web of Science Google Scholar
First citationParthiban, P., Aridoss, G., Rathika, P., Ramkumar, V. & Kabilan, S. (2009a). Bioorg. Med. Chem. Lett. 19, 6981–6985.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationParthiban, P., Ramkumar, V., Amirthaganesan, S. & Jeong, Y. T. (2009b). Acta Cryst. E65, o1356.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationParthiban, P., Ramkumar, V. & Jeong, Y. T. (2010a). Acta Cryst. E66, o48–o49.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationParthiban, P., Ramkumar, V., Kim, M. S., Son, S. M. & Jeong, Y. T. (2009c). Acta Cryst. E65, o1383.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationParthiban, P., Rathika, P., Park, K. S. & Jeong, Y. T. (2010b). Monatsh. Chem. 141, 79–93.  Web of Science CrossRef CAS Google Scholar
First citationParthiban, P., Rathika, P., Ramkumar, V., Son, S. M. & Jeong, Y. T. (2010c). Bioorg. Med. Chem. Lett. 20, 1642–1647.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationParthiban, P., Subalakshmi, V., Balasubramanian, K., Islam, Md. N., Choi, J. S. & Jeong, Y. T. (2011). Bioorg. Med. Chem. Lett. 21, 2287–2296.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith-Verdier, P., Florencio, F. & García-Blanco, S. (1983). Acta Cryst. C39, 101–103.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 6| June 2011| Pages o1475-o1476
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds