organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Methyl 3-(4-chlorophenyl)-2-(1,3dimethyl-2,5-dioxo-4-phenylimidazolidin-4-yl)-3-oxopropanoate

Dongxue Zhang, Cong Deng and Yan Yang*

Key Laboratory of Pesticide and Chemical Biology of the Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China

Correspondence e-mail: hbdongxue@163.com

Received 13 April 2011; accepted 17 May 2011

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.004 Å; R factor = 0.069; wR factor = 0.164; data-to-parameter ratio = 15.1.

The title compound, C₂₁H₁₉ClN₂O₅, is a tetrasubstituted hydantoin derivative which contains an imidazolidine-2,4dione core. The dihedral angle between the aromatic rings is 64.53 (14)°. In the crystal, weak intermolecular C-H···O hydrogen bonding is found. An intramolecular $C-H \cdots O$ interaction also occurs.

Related literature

For the preparation of the title compound, see: Gao et al. (2010).

Experimental

Crystal data

$C_{21}H_{19}ClN_2O_5$	V = 2040.4 (3) Å ³
$M_r = 414.83$	Z = 4
Monoclinic, $P2_1/n$	Mo $K\alpha$ radiation
a = 11.4644 (11) Å	$\mu = 0.22 \text{ mm}^{-1}$
b = 12.0231 (12) Å	$T = 298 { m K}$
c = 15.1184 (15) Å	$0.40 \times 0.30 \times 0.20 \text{ mm}$
$\beta = 101.731 \ (2)^{\circ}$	

Data collection

Bruker SMART CCD area-detector diffractometer 21013 measured reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.069$ 265 parameters $wR(F^2) = 0.164$ H-atom parameters constrained S = 1.17 $\Delta \rho_{\rm max} = 0.32 \text{ e } \text{\AA}^ \Delta \rho_{\rm min} = -0.22 \text{ e} \text{ Å}^{-3}$ 4007 reflections

4007 independent reflections

 $R_{\rm int} = 0.059$

3573 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
C3-H3···O3 ⁱ	0.93	2.49	3.168 (3)	129
$C10-H10A\cdots O5^{ii}$	0.96	2.51	3.235 (4)	132
$C15-H15B\cdots O2$	0.96	2.59	3.312 (4)	132

Symmetry codes: (i) $x + \frac{1}{2}, -y + \frac{1}{2}, z + \frac{1}{2}$; (ii) $-x + \frac{1}{2}, y + \frac{1}{2}, -z + \frac{3}{2}$.

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

The authors are grateful to the Central China Normal University for financial support and thank Dr Xiang-Gao Meng for the X-ray data collection.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NC2228).

References

Bruker (1997). SMART. Bruker AXS Inc., Madison, Wisconsin, USA. Bruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Gao, M., Yang, Y., Wu, Y.-D., Deng, C., Shu, W.-M., Zhang, D.-X., Cao, L.-P., She, N.-F. & Wu, A.-X. (2010). Org. Lett. 12, 4026-4029. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2011). E67, o1508 [doi:10.1107/S1600536811018733]

Methyl 3-(4-chlorophenyl)-2-(1,3-dimethyl-2,5-dioxo-4-phenylimidazolidin-4yl)-3-oxopropanoate

Dongxue Zhang, Cong Deng and Yan Yang

S1. Experimental

The title compound was synthesized according to the reported literature (Gao *et al.*, 2010). The crystal was grown by slow evaporation of the solvent at room temperature from a chloroform-methanol(1:1) solution of the title compound.

S2. Refinement

All H atoms were positioned in geometrically idealized positions and constrained to ride on their parent atoms, with C— H distances in the range of 0.93–0.98 Å and $U_{iso}(H) = 1.2U_{eq}(C)$ (1.5 for methyl H atoms).

Figure 1

A view of (I), showing the atom-labelling scheme, with displacement ellipsoids drawn at the 30% probability level. H atoms omitted for clarity.

Methyl 3-(4-chlorophenyl)-2-(1,3-dimethyl-2,5-dioxo-4-phenylimidazolidin- 4-yl)-3-oxopropanoate

F(000) = 864

 $\theta = 2.2 - 27.8^{\circ}$

 $\mu = 0.22 \text{ mm}^{-1}$ T = 298 K

Block, colourless

 $0.40 \times 0.30 \times 0.20 \text{ mm}$

 $D_{\rm x} = 1.350 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 6439 reflections

Crystal data

 $C_{21}H_{19}CIN_2O_5$ $M_r = 414.83$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn a = 11.4644 (11) Å b = 12.0231 (12) Å c = 15.1184 (15) Å $\beta = 101.731$ (2)° V = 2040.4 (3) Å³ Z = 4

Data collection

Bruker SMART CCD area-detector	3573 reflections with $I > 2\sigma(I)$ $P_{L} = 0.059$
unnacionicici	$\Lambda_{\rm int} = 0.059$
Radiation source: fine-focus sealed tube	$\theta_{\text{max}} = 26.0^{\circ}, \ \theta_{\text{min}} = 2.0^{\circ}$
Graphite monochromator	$h = -14 \rightarrow 14$
φ and ω scans	$k = -14 \rightarrow 14$
21013 measured reflections	$l = -18 \rightarrow 18$
4007 independent reflections	

Refinement

Secondary atom site location: difference Fourier
map
Hydrogen site location: inferred from
neighbouring sites
H-atom parameters constrained
$w = 1/[\sigma^2(F_o^2) + (0.0623P)^2 + 1.2007P]$
where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} = 0.001$
$\Delta \rho_{\rm max} = 0.32 \text{ e} \text{ Å}^{-3}$
$\Delta \rho_{\rm min} = -0.22 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.6491 (2)	0.2716 (2)	0.94021 (16)	0.0355 (5)	
C2	0.6948 (3)	0.3041 (2)	1.02851 (18)	0.0487 (7)	
H2	0.7238	0.2505	1.0718	0.058*	
C3	0.6979 (3)	0.4144 (3)	1.05292 (19)	0.0551 (8)	
H3	0.7286	0.4356	1.1122	0.066*	

C4	0.6548 (2)	0.4928 (2)	0.9885 (2)	0.0482 (7)
C5	0.6083 (3)	0.4641 (2)	0.90104 (19)	0.0493 (7)
Н5	0.5786	0.5183	0.8585	0.059*
C6	0.6058 (2)	0.3535 (2)	0.87671 (17)	0.0443 (6)
H6	0.5750	0.3333	0.8172	0.053*
C7	0.6478 (2)	0.1512 (2)	0.91874 (15)	0.0350 (5)
C8	0.6010 (2)	0.1162 (2)	0.81994 (15)	0.0344 (5)
H8	0.6337	0.1691	0.7821	0.041*
С9	0.4663 (2)	0.1244 (2)	0.79297 (18)	0.0437 (6)
C10	0.2854 (3)	0.1228 (4)	0.8447 (3)	0.0785 (11)
H10A	0.2548	0.1872	0.8102	0.118*
H10B	0.2578	0.1223	0.9006	0.118*
H10C	0.2582	0.0569	0.8109	0.118*
C11	0.6383 (2)	-0.0019 (2)	0.79438 (15)	0.0347 (5)
C12	0.6180 (2)	-0.0061 (2)	0.69012 (16)	0.0378 (6)
C13	0.5134 (2)	-0.1486 (2)	0.7368 (2)	0.0483 (7)
C14	0.5159 (3)	-0.1377 (3)	0.5715 (2)	0.0702 (10)
H14A	0.4433	-0.1012	0.5435	0.105*
H14B	0.5033	-0.2166	0.5712	0.105*
H14C	0.5771	-0.1207	0.5386	0.105*
C15	0.5383 (3)	-0.1235 (3)	0.9003 (2)	0.0591 (8)
H15A	0.5019	-0.1958	0.8957	0.089*
H15B	0.4867	-0.0708	0.9207	0.089*
H15C	0.6130	-0.1263	0.9426	0.089*
C16	0.7700 (2)	-0.0284 (2)	0.82963 (15)	0.0352 (5)
C17	0.8069 (3)	-0.1364 (2)	0.85344 (17)	0.0442 (6)
H17	0.7505	-0.1925	0.8509	0.053*
C18	0.9261 (3)	-0.1613 (3)	0.88070 (19)	0.0548 (7)
H18	0.9493	-0.2339	0.8966	0.066*
C19	1.0107 (3)	-0.0798 (3)	0.8845 (2)	0.0615 (8)
H19	1.0910	-0.0964	0.9040	0.074*
C20	0.9752 (3)	0.0270 (3)	0.8592 (2)	0.0607 (8)
H20	1.0322	0.0823	0.8606	0.073*
C21	0.8562 (2)	0.0526 (2)	0.83176 (19)	0.0457 (6)
H21	0.8336	0.1250	0.8146	0.055*
C11	0.66072 (9)	0.63209 (7)	1.01981 (7)	0.0773 (3)
N1	0.5525 (2)	-0.0993 (2)	0.66416 (14)	0.0480 (6)
N2	0.55847 (19)	-0.08964 (18)	0.81188 (14)	0.0425 (5)
01	0.68288 (17)	0.08220 (15)	0.97634 (11)	0.0474 (5)
O2	0.41472 (16)	0.12565 (17)	0.86363 (13)	0.0524 (5)
O3	0.41480 (19)	0.1265 (2)	0.71633 (14)	0.0767 (7)
O4	0.65545 (17)	0.05911 (16)	0.64252 (12)	0.0486 (5)
O5	0.4498 (2)	-0.22967 (19)	0.73042 (17)	0.0748 (7)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
C1	0.0306 (12)	0.0426 (13)	0.0341 (12)	-0.0007 (10)	0.0082 (9)	-0.0021 (10)

C2	0.0519 (16)	0.0500 (16)	0.0380 (14)	0.0056 (13)	-0.0052 (12)	-0.0034 (12)
C3	0.0582 (18)	0.0561 (17)	0.0433 (15)	0.0039 (14)	-0.0077 (13)	-0.0166 (13)
C4	0.0420 (14)	0.0442 (15)	0.0596 (17)	-0.0026 (12)	0.0135 (13)	-0.0134 (13)
C5	0.0577 (17)	0.0422 (15)	0.0504 (16)	0.0018 (13)	0.0165 (13)	0.0041 (12)
C6	0.0520 (15)	0.0484 (15)	0.0325 (13)	-0.0016 (12)	0.0086 (11)	-0.0028 (11)
C7	0.0290 (12)	0.0449 (13)	0.0312 (12)	0.0007 (10)	0.0064 (9)	-0.0012 (10)
C8	0.0341 (12)	0.0382 (13)	0.0310 (12)	-0.0004 (10)	0.0065 (9)	-0.0027 (10)
C9	0.0386 (14)	0.0498 (15)	0.0397 (14)	0.0030 (11)	0.0005 (11)	-0.0070 (12)
C10	0.0333 (16)	0.119 (3)	0.082 (2)	0.0004 (18)	0.0098 (15)	-0.023 (2)
C11	0.0357 (12)	0.0376 (13)	0.0316 (12)	-0.0044 (10)	0.0087 (10)	-0.0019 (10)
C12	0.0358 (13)	0.0432 (14)	0.0343 (13)	0.0058 (11)	0.0066 (10)	-0.0043 (11)
C13	0.0426 (15)	0.0441 (15)	0.0574 (17)	-0.0059 (12)	0.0084 (12)	-0.0077 (13)
C14	0.084 (2)	0.073 (2)	0.0471 (18)	-0.0079 (18)	-0.0021 (16)	-0.0221 (16)
C15	0.072 (2)	0.0542 (17)	0.0597 (19)	-0.0116 (15)	0.0324 (16)	0.0037 (14)
C16	0.0392 (13)	0.0381 (13)	0.0286 (11)	0.0018 (10)	0.0080 (10)	-0.0029 (10)
C17	0.0537 (16)	0.0414 (14)	0.0381 (14)	0.0002 (12)	0.0104 (12)	0.0021 (11)
C18	0.0620 (19)	0.0526 (17)	0.0472 (16)	0.0210 (15)	0.0047 (13)	0.0053 (13)
C19	0.0415 (16)	0.074 (2)	0.0642 (19)	0.0140 (15)	-0.0004 (14)	-0.0005 (16)
C20	0.0378 (15)	0.065 (2)	0.077 (2)	-0.0027 (14)	0.0069 (14)	-0.0041 (16)
C21	0.0388 (14)	0.0416 (14)	0.0568 (16)	0.0012 (11)	0.0102 (12)	0.0016 (12)
Cl1	0.0874 (7)	0.0451 (4)	0.0994 (7)	-0.0030 (4)	0.0187 (5)	-0.0212 (4)
N1	0.0512 (13)	0.0505 (13)	0.0394 (12)	-0.0044 (11)	0.0023 (10)	-0.0118 (10)
N2	0.0428 (12)	0.0443 (12)	0.0424 (12)	-0.0103 (9)	0.0132 (9)	-0.0039 (10)
01	0.0588 (12)	0.0461 (10)	0.0353 (10)	0.0056 (9)	0.0046 (8)	0.0028 (8)
O2	0.0337 (10)	0.0734 (14)	0.0498 (11)	0.0006 (9)	0.0076 (8)	-0.0116 (10)
O3	0.0454 (12)	0.133 (2)	0.0455 (12)	0.0053 (13)	-0.0058 (9)	-0.0075 (13)
O4	0.0559 (11)	0.0557 (11)	0.0364 (10)	0.0022 (9)	0.0147 (8)	0.0041 (8)
05	0.0732 (15)	0.0613 (14)	0.0883 (17)	-0.0323 (12)	0.0122 (13)	-0.0147 (12)

Geometric parameters (Å, °)

C1—C2	1.387 (3)	C11—C12	1.547 (3)	
C1—C6	1.394 (4)	C12—O4	1.201 (3)	
C1—C7	1.483 (3)	C12—N1	1.361 (3)	
С2—С3	1.375 (4)	C13—O5	1.209 (3)	
С2—Н2	0.9300	C13—N2	1.348 (3)	
C3—C4	1.373 (4)	C13—N1	1.400 (4)	
С3—Н3	0.9300	C14—N1	1.453 (3)	
C4—C5	1.366 (4)	C14—H14A	0.9600	
C4—C11	1.738 (3)	C14—H14B	0.9600	
C5—C6	1.378 (4)	C14—H14C	0.9600	
С5—Н5	0.9300	C15—N2	1.460 (3)	
С6—Н6	0.9300	C15—H15A	0.9600	
C7—O1	1.211 (3)	C15—H15B	0.9600	
С7—С8	1.540 (3)	C15—H15C	0.9600	
С8—С9	1.518 (3)	C16—C21	1.384 (4)	
C8—C11	1.554 (3)	C16—C17	1.390 (3)	
C8—H8	0.9800	C17—C18	1.377 (4)	

С9—ОЗ	1.189 (3)	С17—Н17	0.9300
С9—О2	1.322 (3)	C18—C19	1.372 (5)
C10—O2	1.452 (3)	C18—H18	0.9300
C10—H10A	0.9600	C19—C20	1.377 (5)
C10—H10B	0.9600	С19—Н19	0.9300
C10—H10C	0.9600	C20—C21	1.378 (4)
C11—N2	1.456 (3)	С20—Н20	0.9300
C11—C16	1.529 (3)	C21—H21	0.9300
C2—C1—C6	118.4 (2)	O4—C12—C11	126.2 (2)
C2—C1—C7	118.1 (2)	N1—C12—C11	106.3 (2)
C6—C1—C7	123.5 (2)	O5—C13—N2	127.8 (3)
C3—C2—C1	120.9 (3)	O5—C13—N1	124.2 (3)
С3—С2—Н2	119.5	N2—C13—N1	108.0 (2)
С1—С2—Н2	119.5	N1—C14—H14A	109.5
C4—C3—C2	119.1 (3)	N1—C14—H14B	109.5
С4—С3—Н3	120.5	H14A—C14—H14B	109.5
С2—С3—Н3	120.5	N1—C14—H14C	109.5
C5—C4—C3	121.8 (3)	H14A—C14—H14C	109.5
C5—C4—Cl1	119.5 (2)	H14B—C14—H14C	109.5
C3—C4—Cl1	118.7 (2)	N2—C15—H15A	109.5
C4—C5—C6	119.0 (3)	N2—C15—H15B	109.5
С4—С5—Н5	120.5	H15A—C15—H15B	109.5
С6—С5—Н5	120.5	N2—C15—H15C	109.5
C5—C6—C1	120.8 (2)	H15A—C15—H15C	109.5
С5—С6—Н6	119.6	H15B—C15—H15C	109.5
С1—С6—Н6	119.6	C21—C16—C17	118.3 (2)
O1—C7—C1	121.6 (2)	C21—C16—C11	120.7 (2)
O1—C7—C8	120.6 (2)	C17—C16—C11	120.8 (2)
C1—C7—C8	117.7 (2)	C18—C17—C16	120.8 (3)
C9—C8—C7	112.17 (19)	С18—С17—Н17	119.6
C9—C8—C11	107.97 (19)	С16—С17—Н17	119.6
C7—C8—C11	115.58 (19)	C19—C18—C17	120.5 (3)
С9—С8—Н8	106.9	C19—C18—H18	119.8
С7—С8—Н8	106.9	C17—C18—H18	119.8
С11—С8—Н8	106.9	C18—C19—C20	119.2 (3)
O3—C9—O2	124.9 (3)	С18—С19—Н19	120.4
03-09-08	122.7 (2)	С20—С19—Н19	120.4
O2—C9—C8	112.4 (2)	C19—C20—C21	120.7 (3)
O2-C10-H10A	109.5	С19—С20—Н20	119.6
O2—C10—H10B	109.5	C21—C20—H20	119.6
H10A—C10—H10B	109.5	C20—C21—C16	120.5 (3)
O2—C10—H10C	109.5	C20—C21—H21	119.7
H10A—C10—H10C	109.5	C16—C21—H21	119.7
H10B—C10—H10C	109.5	C12—N1—C13	111.6 (2)
N2—C11—C16	113.5 (2)	C12—N1—C14	125.0 (3)
N2—C11—C12	101.05 (18)	C13—N1—C14	123.1 (2)
C16—C11—C12	106.35 (18)	C13—N2—C11	112.1 (2)

N2—C11—C8	113.72 (19)	C13—N2—C15	121.2 (2)
C16—C11—C8	113.95 (19)	C11—N2—C15	126.2 (2)
C12—C11—C8	106.94 (19)	C9—O2—C10	116.6 (2)
O4—C12—N1	127.4 (2)		
C6-C1-C2-C3	-0.2 (4)	N2-C11-C16-C21	-169.5 (2)
C7—C1—C2—C3	-179.6 (3)	C12-C11-C16-C21	80.4 (3)
C1—C2—C3—C4	0.0 (5)	C8-C11-C16-C21	-37.2 (3)
C2—C3—C4—C5	0.5 (5)	N2-C11-C16-C17	15.7 (3)
C2—C3—C4—Cl1	-179.2 (2)	C12—C11—C16—C17	-94.4 (3)
C3—C4—C5—C6	-0.8 (4)	C8—C11—C16—C17	148.0 (2)
Cl1—C4—C5—C6	179.0 (2)	C21—C16—C17—C18	1.7 (4)
C4—C5—C6—C1	0.6 (4)	C11—C16—C17—C18	176.6 (2)
C2-C1-C6-C5	-0.1 (4)	C16—C17—C18—C19	-0.2 (4)
C7—C1—C6—C5	179.2 (2)	C17—C18—C19—C20	-1.2 (5)
C2-C1-C7-01	1.6 (4)	C18—C19—C20—C21	1.1 (5)
C6-C1-C7-O1	-177.7 (2)	C19—C20—C21—C16	0.3 (5)
C2—C1—C7—C8	-177.9 (2)	C17—C16—C21—C20	-1.7 (4)
C6—C1—C7—C8	2.8 (3)	C11—C16—C21—C20	-176.6 (3)
O1—C7—C8—C9	105.8 (3)	O4—C12—N1—C13	-173.5 (3)
C1—C7—C8—C9	-74.8 (3)	C11—C12—N1—C13	8.1 (3)
O1—C7—C8—C11	-18.6 (3)	O4—C12—N1—C14	0.5 (4)
C1—C7—C8—C11	160.9 (2)	C11—C12—N1—C14	-178.0 (3)
C7—C8—C9—O3	162.1 (3)	O5-C13-N1-C12	176.9 (3)
C11—C8—C9—O3	-69.4 (3)	N2-C13-N1-C12	-2.7 (3)
C7—C8—C9—O2	-19.6 (3)	O5-C13-N1-C14	2.9 (5)
C11—C8—C9—O2	108.9 (2)	N2-C13-N1-C14	-176.7 (3)
C9—C8—C11—N2	-39.6 (3)	O5-C13-N2-C11	176.0 (3)
C7—C8—C11—N2	86.9 (2)	N1-C13-N2-C11	-4.4 (3)
C9—C8—C11—C16	-171.7 (2)	O5-C13-N2-C15	3.3 (5)
C7—C8—C11—C16	-45.2 (3)	N1-C13-N2-C15	-177.1 (2)
C9—C8—C11—C12	71.1 (2)	C16-C11-N2-C13	-104.7 (2)
C7—C8—C11—C12	-162.42 (19)	C12-C11-N2-C13	8.7 (3)
N2-C11-C12-O4	171.7 (2)	C8—C11—N2—C13	122.9 (2)
C16—C11—C12—O4	-69.6 (3)	C16—C11—N2—C15	67.5 (3)
C8—C11—C12—O4	52.5 (3)	C12—C11—N2—C15	-179.1 (2)
N2-C11-C12-N1	-9.8 (2)	C8—C11—N2—C15	-64.9 (3)
C16—C11—C12—N1	108.9 (2)	O3—C9—O2—C10	3.8 (4)
C8—C11—C12—N1	-129.0 (2)	C8—C9—O2—C10	-174.4 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H···A
C3—H3…O3 ⁱ	0.93	2.49	3.168 (3)	129
C10—H10A…O5 ⁱⁱ	0.96	2.51	3.235 (4)	132
C15—H15 <i>B</i> ····O2	0.96	2.59	3.312 (4)	132

Symmetry codes: (i) x+1/2, -y+1/2, z+1/2; (ii) -x+1/2, y+1/2, -z+3/2.