

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

N-tert-Butyl-3-mesitylpropanamide

Abel M. Maharramov,^a Ali N. Khalilov,^a Atash V. Gurbanov^a and Iván Brito^b*

^aDepartment of Organic Chemistry, Baku State University, Baku, Azerbaijan, and ^bDepartamento de Química, Facultad de Ciencias Básicas, Universidad de Antofagasta, Casilla 170, Antofagasta - Chile Correspondence e-mail: ivanbritob@yahoo.com

Received 18 April 2011; accepted 26 April 2011

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.003 Å; R factor = 0.065; wR factor = 0.173; data-to-parameter ratio = 22.9.

In the title compound, $C_{16}H_{25}NO$, the *N-tert*-butylpropanamide fragment is essentially planar, with the exception of two C atoms of the *tert*-butyl group (r.m.s. deviation = 0.005 Å), forming a dihedral angle of 84.09 $(10)^{\circ}$ with the plane of the mesityl fragment (r.m.s. deviation = 0.002 Å). The crystal packing is stabilized by an intermolecular N-H···O hydrogen bond, which links the molecules into chains with graph-set notation C(4) running parallel to the c axis.

Related literature

For graph-set notation, see: Bernstein et al. (1995).

Experimental

Crystal data

C ₁₆ H ₂₅ NO	a = 12.8851 (11) Å
$M_r = 247.37$	b = 13.3441 (11) Å
Monoclinic, $P2_1/c$	c = 9.4741 (8) Å

 $\beta = 106.540 \ (2)^{\circ}$ V = 1561.6 (2) Å³ Z = 4Mo $K\alpha$ radiation

Data collection

Bruker APEXII CCD diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 2003) $T_{\min} = 0.987, T_{\max} = 0.987$

Refinement

D N.

 $R[F^2 > 2\sigma(F^2)] = 0.065$ $wR(F^2) = 0.173$ S = 1.003870 reflections

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N1 - H1N \cdots O1^i$	0.83	2.17	2.979 (2)	165
Symmetry code: (i) x,	$-y + \frac{1}{2}, z - \frac{1}{2}.$			

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL and PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL.

The authors are grateful to Baku State University for supporting this study. IB thanks the Spanish Research Council (CSIC) for the provision of a free-of-charge license to the Cambridge Structural Database.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: OM2425).

References

Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573. Bruker (2001). SAINT. . Bruker AXS Inc., Madison, Wisconsin, USA. Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA. Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122. Spek, A. L. (2009). Acta Cryst. D65, 148-155.

 $\mu = 0.06 \text{ mm}^{-1}$

 $0.20 \times 0.20 \times 0.20$ mm

11870 measured reflections

3870 independent reflections

1738 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

T = 296 K

 $R_{\rm int} = 0.052$

169 parameters

 $\Delta \rho_{\rm max} = 0.15 \ {\rm e} \ {\rm \AA}^ \Delta \rho_{\rm min} = -0.14 \text{ e } \text{\AA}^{-3}$

supporting information

Acta Cryst. (2011). E67, o1307 [doi:10.1107/S1600536811015856]

N-tert-Butyl-3-mesitylpropanamide

Abel M. Maharramov, Ali N. Khalilov, Atash V. Gurbanov and Iván Brito

S1. Comment

Fig. 1 shows the structure of title compound. Bond lengths and angles are unexceptional. The dihedral angle between the mesityl fragment and the C7/C6/C5/O1/N1/C4/C3 plane is 84.09 (10)°. Methyl groups of the benzene ring are into the same plane (r.m.s. deviation = 0.002 Å). In the crystal, molecules are linked by N— H…O interactions into chains with graph-set notation C(4) along [001], Figure 2, Table 1 (Bernstein *et al.*, 1995).

S2. Experimental

A mixture of 0.001 mol of 1-chloro-3-(2,4,6-trimethylphenyl)propan-2-one and 0.001 mol of *tert*-butylamine was stirred in water in presence of sodium hydroxide (0.003 mol) for 35–40 minutes. The crystals were recrystallized from ethanol solution (Yield 86%, melting point 143°C).¹H NMRspectrum, DMSO-d₆, δ , p.p.m..: 1.25 (s, 9H, 3CH₃), 2.15 (s, 2H, CH₂CO),2.25 (s, 9H, 3CH₃), 2.75 (t, 2H, CH₂Ar), 6.75 (s, 2H, 2CH_{Ar}),7.45 (s, 1H, NHCO). ¹³C NMR spectrum, DMSO-d₆, δ , p.p.m..: 19 (2CH₃), 21 (CH₃), 23(CH₂CO), 25 [(CH₃)₃], 37 (CH₂Ar),50 (C_i), 129 (CH_{Ar}), 136 (C_i), 137 (C_i),162 (CONH). IR spectrum, *v* (cm⁻¹). 3360,3170, 3005, 2928, 2878, 1645,1615, 1470, 1430, 715, 605.

S3. Refinement

All H-atoms were placed in calculated positions [C—H = 0.93 to 0.97 Å, $U_{iso}(H)$ =1.2 to 1.5 $U_{eq}(C)$ and N—H = 0.83 Å, $U_{iso}(H)$ =1.5 $U_{eq}(N)$] and were included in the refinement in the riding model approximation. Due to weak diffracting ability of the crystal the ratio observed/unique reflections is low (45%).

Figure 1

The molecular structure of the title compound, showing the atom labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are shown as circles of arbitrary radius.

Figure 2

Part of the crystal structure showing the formation of a C(4) chain along [001]. Hydrogen bond shown as dashed lines. Symmetry code: (a) x, 1/2 - y, -1/2 + z.

N-tert-Butyl-3-mesitylpropanamide

Crystal data F(000) = 544C₁₆H₂₅NO $M_r = 247.37$ $D_{\rm x} = 1.052 {\rm Mg} {\rm m}^{-3}$ Mo K α radiation, $\lambda = 0.71073$ Å Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc Cell parameters from 1996 reflections *a* = 12.8851 (11) Å $\theta = 2.3 - 28.0^{\circ}$ *b* = 13.3441 (11) Å $\mu = 0.06 \text{ mm}^{-1}$ c = 9.4741 (8) Å T = 296 K $\beta = 106.540 \ (2)^{\circ}$ Prism, colourless V = 1561.6 (2) Å³ $0.20\times0.20\times0.20~mm$ Z = 4

Data collection

Bruker APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 2003) $T_{\min} = 0.987, T_{\max} = 0.987$ Refinement	11870 measured reflections 3870 independent reflections 1738 reflections with $I > 2\sigma(I)$ $R_{int} = 0.052$ $\theta_{max} = 28.3^{\circ}, \ \theta_{min} = 2.3^{\circ}$ $h = -17 \rightarrow 17$ $k = -15 \rightarrow 17$ $l = -12 \rightarrow 12$
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.065$ $wR(F^2) = 0.173$ S = 1.00 3870 reflections 169 parameters 0 restraints Primary atom site location: structure-invariant direct methods	Secondary atom site location: difference Fourier map Hydrogen site location: difference Fourier map H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0732P)^2 + 0.0483P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.15$ e Å ⁻³ $\Delta\rho_{min} = -0.14$ e Å ⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.13712 (13)	0.29736 (13)	0.94818 (15)	0.0737 (5)	
N1	0.09333 (13)	0.20507 (13)	0.74037 (17)	0.0506 (5)	
H1N	0.1102	0.1935	0.6635	0.076*	
C1	0.0057 (2)	0.1074 (2)	0.8929 (3)	0.0898 (9)	
H1A	0.0617	0.0580	0.9039	0.135*	
H1B	-0.0606	0.0750	0.8940	0.135*	
H1C	0.0263	0.1545	0.9727	0.135*	
C2	-0.0933 (2)	0.2444 (2)	0.7318 (3)	0.0853 (8)	
H2A	-0.0668	0.2942	0.8065	0.128*	
H2B	-0.1597	0.2168	0.7417	0.128*	
H2C	-0.1062	0.2746	0.6364	0.128*	
C3	-0.0456 (2)	0.0878 (2)	0.6233 (3)	0.0851 (8)	
H3A	0.0075	0.0357	0.6355	0.128*	
H3B	-0.0529	0.1218	0.5316	0.128*	
H3C	-0.1140	0.0592	0.6231	0.128*	
C4	-0.01024 (17)	0.16181 (16)	0.7488 (2)	0.0521 (6)	

C5	0.15762 (17)	0.26650 (16)	0.8371 (2)	0.0510 (5)
C6	0.25971 (18)	0.29603 (19)	0.8001 (2)	0.0676 (7)
H6A	0.2405	0.3213	0.7000	0.081*
H6B	0.3040	0.2368	0.8039	0.081*
C7	0.32616 (18)	0.37485 (17)	0.9021 (2)	0.0607 (6)
H7A	0.2826	0.4347	0.8977	0.073*
H7B	0.3454	0.3500	1.0025	0.073*
C8	0.42772 (17)	0.40167 (16)	0.8626 (2)	0.0505 (5)
С9	0.5242 (2)	0.35047 (15)	0.9257 (2)	0.0570 (6)
C10	0.61689 (19)	0.37656 (17)	0.8878 (2)	0.0611 (6)
H10	0.6810	0.3426	0.9316	0.073*
C11	0.61718 (18)	0.45079 (17)	0.7879 (3)	0.0587 (6)
C12	0.52139 (19)	0.49934 (17)	0.7257 (2)	0.0630 (6)
H12	0.5199	0.5495	0.6570	0.076*
C13	0.42684 (17)	0.47697 (17)	0.7607 (2)	0.0572 (6)
C14	0.3253 (2)	0.5357 (2)	0.6890 (3)	0.0936 (9)
H14A	0.3410	0.5858	0.6252	0.140*
H14B	0.2998	0.5676	0.7636	0.140*
H14C	0.2706	0.4912	0.6326	0.140*
C15	0.7201 (2)	0.4793 (2)	0.7516 (3)	0.0929 (9)
H15A	0.7026	0.5186	0.6631	0.139*
H15B	0.7576	0.4197	0.7374	0.139*
H15C	0.7655	0.5177	0.8311	0.139*
C16	0.5308 (2)	0.26788 (19)	1.0379 (3)	0.0885 (9)
H16A	0.6026	0.2403	1.0664	0.133*
H16B	0.4797	0.2162	0.9954	0.133*
H16C	0.5144	0.2949	1.1229	0.133*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0738 (12)	0.1073 (13)	0.0501 (8)	-0.0259 (10)	0.0340 (8)	-0.0230 (9)
N1	0.0494 (11)	0.0637 (11)	0.0448 (9)	-0.0096 (9)	0.0234 (8)	-0.0049 (9)
C1	0.088 (2)	0.106 (2)	0.0798 (17)	-0.0271 (17)	0.0309 (15)	0.0263 (16)
C2	0.0554 (16)	0.092 (2)	0.112 (2)	0.0023 (14)	0.0289 (15)	-0.0023 (16)
C3	0.0772 (18)	0.098 (2)	0.0874 (18)	-0.0387 (16)	0.0342 (15)	-0.0283 (16)
C4	0.0465 (13)	0.0615 (13)	0.0528 (12)	-0.0089 (11)	0.0211 (10)	0.0006 (11)
C5	0.0506 (13)	0.0637 (14)	0.0426 (11)	-0.0100 (11)	0.0193 (10)	-0.0045 (11)
C6	0.0587 (15)	0.0892 (17)	0.0620 (13)	-0.0250 (13)	0.0287 (12)	-0.0247 (13)
C7	0.0588 (15)	0.0677 (14)	0.0581 (13)	-0.0112 (12)	0.0204 (11)	-0.0143 (12)
C8	0.0481 (13)	0.0538 (12)	0.0503 (11)	-0.0108 (11)	0.0151 (10)	-0.0124 (11)
C9	0.0636 (16)	0.0493 (13)	0.0551 (12)	-0.0051 (12)	0.0120 (11)	-0.0082 (11)
C10	0.0482 (14)	0.0597 (14)	0.0708 (15)	0.0019 (11)	0.0097 (12)	-0.0091 (13)
C11	0.0501 (14)	0.0606 (14)	0.0681 (14)	-0.0077 (12)	0.0211 (11)	-0.0114 (12)
C12	0.0674 (17)	0.0595 (14)	0.0639 (14)	-0.0038 (13)	0.0216 (12)	0.0052 (12)
C13	0.0487 (13)	0.0610 (14)	0.0592 (13)	-0.0004 (11)	0.0113 (11)	-0.0035 (12)
C14	0.0691 (19)	0.103 (2)	0.101 (2)	0.0138 (16)	0.0129 (16)	0.0256 (18)
C15	0.0692 (18)	0.105 (2)	0.116 (2)	-0.0129 (16)	0.0455 (16)	-0.0076 (18)

C16	0.095 (2)	0.0770 (18) 0.	0887 (18) -0.00	0.0175 (16)	0.0204 (15)			
Geome	Geometric parameters (Å, °)							
01-0	5	1.226 (2)	С7—Н7Н	3	0.9700			
N1—C	5	1.329 (2)	C8—C13	3	1.391 (3)			
N1—C	4	1.477 (2)	С8—С9		1.395 (3)			
N1—H	[1N	0.8310	C9—C10)	1.386 (3)			
C1—C	4	1.508 (3)	C9—C16	5	1.517 (3)			
С1—Н	1A	0.9600	C10—C1	1	1.371 (3)			
С1—Н	1B	0.9600	C10—H1	10	0.9300			
С1—Н	1C	0.9600	C11—C1	2	1.370 (3)			
С2—С	4	1.513 (3)	C11—C1	.5	1.510 (3)			
С2—Н	2A	0.9600	C12—C1	13	1.383 (3)			
С2—Н	2B	0.9600	С12—Н1	12	0.9300			
С2—Н	2C	0.9600	C13—C1	4	1.511 (3)			
С3—С	4	1.512 (3)	C14—H1	4A	0.9600			
С3—Н	3A	0.9600	C14—H1	4B	0.9600			
С3—Н	3B	0.9600	C14—H1	4C	0.9600			
С3—Н	3C	0.9600	C15—H1	5A	0.9600			
С5—С	6	1.507 (3)	C15—H1	5B	0.9600			
С6—С	7	1.517 (3)	C15—H1	15C	0.9600			
С6—Н	6A	0.9700	C16—H1	6A	0.9600			
С6—Н	6B	0.9700	C16—H1	6B	0.9600			
С7—С	8	1.503 (3)	C16—H1	16C	0.9600			
С7—Н	7A	0.9700						
C5—N	1—C4	126.81 (16)	C8—C7-	—H7B	109.1			
C5—N	1—H1N	116.8	C6—C7-	-H7B	109.1			
C4—N	1—H1N	116.1	H7A—C	7—H7B	107.9			
C4—C	1—H1A	109.5	C13—C8	З—С9	118.8 (2)			
C4—C	1—H1B	109.5	C13—C8	3—C7	120.6 (2)			
H1A—	-C1—H1B	109.5	C9—C8-	C7	120.6 (2)			
C4—C	1—H1C	109.5	C10—C9)—C8	119.6 (2)			
H1A—	-C1—H1C	109.5	C10—C9)—C16	118.9 (2)			
H1B—	C1—H1C	109.5	C8—C9-	C16	121.4 (2)			
C4—C	2—H2A	109.5	C11—C1	.0—C9	122.2 (2)			
C4—C	2—H2B	109.5	C11—C1	0—H10	118.9			
H2A—	-C2—H2B	109.5	C9—C10)—H10	118.9			
C4—C	2—H2C	109.5	C12—C1	.1—C10	117.4 (2)			
H2A—	-C2—H2C	109.5	C12—C1	.1—C15	121.7 (2)			
H2B—	-C2—H2C	109.5	C10—C1	.1—C15	121.0 (2)			
C4—C	3—H3A	109.5	C11—C1	2—C13	122.8 (2)			
C4—C	3—H3B	109.5	C11—C1	2—H12	118.6			
H3A—	-C3—H3B	109.5	C13—C1	.2—H12	118.6			
C4—C	3—H3C	109.5	C12—C1	.3—C8	119.2 (2)			
H3A—	-C3—H3C	109.5	C12—C1	.3—C14	119.3 (2)			
H3B—	C3—H3C	109.5	C8—C13	ы—С14	121.5 (2)			

supporting information

N1-C4-C1	110.16 (18)	C13—C14—H14A	109.5
N1—C4—C3	106.71 (16)	C13—C14—H14B	109.5
C1—C4—C3	109.3 (2)	H14A—C14—H14B	109.5
N1-C4-C2	109.41 (18)	C13—C14—H14C	109.5
C1—C4—C2	110.9 (2)	H14A—C14—H14C	109.5
C3—C4—C2	110.2 (2)	H14B—C14—H14C	109.5
O1—C5—N1	123.68 (19)	C11—C15—H15A	109.5
O1—C5—C6	121.82 (19)	C11—C15—H15B	109.5
N1—C5—C6	114.49 (17)	H15A—C15—H15B	109.5
C5—C6—C7	113.87 (17)	C11—C15—H15C	109.5
С5—С6—Н6А	108.8	H15A—C15—H15C	109.5
С7—С6—Н6А	108.8	H15B—C15—H15C	109.5
С5—С6—Н6В	108.8	C9—C16—H16A	109.5
С7—С6—Н6В	108.8	C9—C16—H16B	109.5
H6A—C6—H6B	107.7	H16A—C16—H16B	109.5
C8—C7—C6	112.32 (17)	C9—C16—H16C	109.5
С8—С7—Н7А	109.1	H16A—C16—H16C	109.5
С6—С7—Н7А	109.1	H16B—C16—H16C	109.5
C5—N1—C4—C1	-54.9 (3)	C7—C8—C9—C16	-1.2 (3)
C5—N1—C4—C3	-173.5 (2)	C8—C9—C10—C11	-0.9 (3)
C5—N1—C4—C2	67.3 (3)	C16—C9—C10—C11	-179.6 (2)
C4—N1—C5—O1	-1.4 (3)	C9—C10—C11—C12	0.1 (3)
C4—N1—C5—C6	178.5 (2)	C9—C10—C11—C15	178.5 (2)
O1—C5—C6—C7	-6.5 (3)	C10-C11-C12-C13	0.6 (3)
N1—C5—C6—C7	173.65 (19)	C15—C11—C12—C13	-177.8 (2)
C5—C6—C7—C8	179.5 (2)	C11—C12—C13—C8	-0.4 (3)
C6—C7—C8—C13	88.1 (2)	C11—C12—C13—C14	178.8 (2)
C6—C7—C8—C9	-90.9 (2)	C9—C8—C13—C12	-0.5 (3)
C13—C8—C9—C10	1.1 (3)	C7—C8—C13—C12	-179.47 (19)
C7—C8—C9—C10	-179.89 (18)	C9—C8—C13—C14	-179.6 (2)
C13—C8—C9—C16	179.8 (2)	C7—C8—C13—C14	1.4 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
N1—H1 <i>N</i> ···O1 ⁱ	0.83	2.17	2.979 (2)	165

Symmetry code: (i) x, -y+1/2, z-1/2.