metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis{μ-2-[(pyridin-2-yl)imino­meth­yl]phenolato}bis­­[(2-formyl­phenolato)copper(II)]

aCavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, England
*Correspondence e-mail: jmc61@cam.ac.uk

(Received 23 February 2011; accepted 26 April 2011; online 7 May 2011)

The asymmetric unit of the title compound, [Cu2(C12H9N2O)2(C7H5O2)2], contains two independent (2-formyl­phen­olato){2-[(pyridin-2-yl)imino­meth­yl]phenolato}copper(II) mol­ecules that form pseudocentrosymmetric dimers via inter­actions between the Cu and pyridyl N atoms of independent monomers. The square-planar geometry of the Cu atoms in the monomer thus becomes square-based pyramidal in the dimer. The crystal studied was an inversion twin, with unequal populations of 0.353 (17) and 0.647 (17).

Related literature

For related structures containing the salicyl­aldehyde ligand, see: McKinnon et al. (1964[McKinnon, A. J., Waters, T. N. & Hall, D. (1964). J. Chem. Soc. p. 3290.]); Hall et al. (1965[Hall, D., McKinnon, A. J. & Waters, T. N. (1965). J. Chem. Soc. p. 425.]). For a related structure containing the (2-pyridyl­salicylaldimine) ligand, see: Drummond & Wood (1972[Drummond, J. & Wood, J. S. (1972). J. Chem. Soc. Dalton Trans. p. 365.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2(C12H9N2O)2(C7H5O2)2]

  • Mr = 763.72

  • Orthorhombic, P 21 21 21

  • a = 8.9811 (18) Å

  • b = 18.856 (4) Å

  • c = 19.612 (4) Å

  • V = 3321.2 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.34 mm−1

  • T = 150 K

  • 0.20 × 0.12 × 0.06 mm

Data collection
  • Rigaku Saturn724+ diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.736, Tmax = 1

  • 33976 measured reflections

  • 6782 independent reflections

  • 6545 reflections with I > 2σ(I)

  • Rint = 0.076

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.106

  • S = 1.20

  • 6782 reflections

  • 452 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.41 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2964 Friedel pairs

  • Flack parameter: 0.353 (17)

Data collection: CrystalClear (Rigaku, 2008[Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The title compound forms dimers in which the monomer units are related by a non-crystallographic inversion operation. Intermolecular contacts are present between the copper(II) atoms and pyridyl nitrogen atoms (2.482 (4)Å and 2.469 (4) Å) with angles between the Cu—N contact and the plane of the pyridyl group observed to be 157.1 (5)° and 150.4 (5)°. These contacts appear to be the predominant cause of dimer formation since there is no evidence for any other significant intermolecular interactions. The bonding between the salicylaldehyde ligand and the copper atom can be compared to the two known polymorphs of homoleptic bissalicylaldehydatocopper(II), one described with the symmetry of P21/n (McKinnon et al., 1964), and the other as P21/c (Hall et al., 1965). The Cu—O bonds Cu1—O2 and Cu2—O5 in the title compound are observed to be 1.917 (3)Å and 1.918 (3)Å respectively, which is longer than the values of the equivalent bonds in the two polymorphs of bissalicylaldehydatocopper(II) where Cu—O1 is 1.86Å in the P21/n polymorph and 1.90Å in the P21/c polymorph. The Cu—O bonds Cu1—O3 and Cu2—O6 in the title compound are observed to be 2.022 (3)Å and 2.019 (3)Å respectively, also longer than the values of the equivalent bonds in the two polymorphs of bissalicylaldehydatocopper(II) where Cu—O2 is 1.98Å in the P21/n polymorph and 1.94Å in the P21/c polymorph. Additionally, the ligand bite-angles O2—Cu1—O3 and O5—Cu2—O6 are observed to be 91.05 (14)° and 90.89 (14)° respectively, lower than the equivalent angle O1—Cu—O2 in both of the known polymorphs of bissalicylaldehydatocopper(II), which are observed to be 94.8° in the P21/n polymorph and 95° in the P21/c polymorph. Bond distances from the copper atom to the 2-pyridylsalicylaldimine ligand are observed to be smaller than observed in a (2-pyridylsalicylaldimine)copper(I) tetramer (Drummond et al., 1972). In the title compound the bond lengths Cu1—O1 and Cu2—O4 are observed to be 1.916 (4)Å and 1.914 (3)Å respectively, shorter than the equivalent bond length Cu1—O1 in the (2-pyridylsalicylaldimine) copper(I) tetramer which is observed to be 1.965 (6) Å. The Cu1—N1 and Cu2—N3 bond lengths in the title compound, which are observed to be 2.022 (4)Å and 2.022 (4)Å respectively, can be compared to the equivalent bond length Cu1—N1 in the (2-pyridylsalicylaldimine) copper(I) tetramer, which is observed to be 1.975 (8) Å, shorter than those observed in the title compound. These differences can be attributed to the lower oxidation state of copper in the (2-pyridylsalicylaldimine) copper(I) tetramer compared to that in the title compound.

Related literature top

For related structures containing the salicylaldehyde ligand, see: McKinnon et al. (1964); Hall et al. (1965). For a related structure containing the (2-pyridylsalicylaldimine) ligand, see: Drummond et al. (1972).

Experimental top

A suspension of bis(2-pyridylsalicylaldimine)copper(II) (1 mg, 0.0022 mmol) in methanol (ca. 3 ml) was heated to ca. 323 K until fully dissolved. The solution was then allowed to cool to room temperature. Crystals suitable for single-crystal X-ray crystallography were grown via slow evaporation of methanol over seven days.

Computing details top

Data collection: CrystalClear (Rigaku, 2008); cell refinement: CrystalClear (Rigaku, 2008); data reduction: CrystalClear (Rigaku, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The structure of the asymmetric unit of the title compound with displacement ellipsoids drawn at the 50% probability level.
Bis{µ-2-[(pyridin-2-yl)iminomethyl]phenolato}bis[(2- formylphenolato)copper(II)] top
Crystal data top
[Cu2(C12H9N2O)2(C7H5O2)2]F(000) = 1560
Mr = 763.72Dx = 1.527 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 9105 reflections
a = 8.9811 (18) Åθ = 2.1–30.4°
b = 18.856 (4) ŵ = 1.34 mm1
c = 19.612 (4) ÅT = 150 K
V = 3321.2 (12) Å3Prism, yellow
Z = 40.20 × 0.12 × 0.06 mm
Data collection top
Rigaku Saturn724+
diffractometer
6782 independent reflections
Graphite monochromator6545 reflections with I > 2σ(I)
Detector resolution: 28.6 pixels mm-1Rint = 0.076
ω scansθmax = 26.4°, θmin = 3.1°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1110
Tmin = 0.736, Tmax = 1k = 2322
33976 measured reflectionsl = 2324
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.057H-atom parameters constrained
wR(F2) = 0.106 w = 1/[σ2(Fo2) + (0.0194P)2 + 4.0051P]
where P = (Fo2 + 2Fc2)/3
S = 1.20(Δ/σ)max = 0.001
6782 reflectionsΔρmax = 0.39 e Å3
452 parametersΔρmin = 0.41 e Å3
0 restraintsAbsolute structure: Flack (1983), 2964 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.353 (17)
Crystal data top
[Cu2(C12H9N2O)2(C7H5O2)2]V = 3321.2 (12) Å3
Mr = 763.72Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.9811 (18) ŵ = 1.34 mm1
b = 18.856 (4) ÅT = 150 K
c = 19.612 (4) Å0.20 × 0.12 × 0.06 mm
Data collection top
Rigaku Saturn724+
diffractometer
6782 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
6545 reflections with I > 2σ(I)
Tmin = 0.736, Tmax = 1Rint = 0.076
33976 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.057H-atom parameters constrained
wR(F2) = 0.106Δρmax = 0.39 e Å3
S = 1.20Δρmin = 0.41 e Å3
6782 reflectionsAbsolute structure: Flack (1983), 2964 Friedel pairs
452 parametersAbsolute structure parameter: 0.353 (17)
0 restraints
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.18124 (6)0.99821 (3)0.80722 (3)0.02880 (13)
Cu20.34241 (6)0.77028 (3)0.70000 (3)0.02792 (13)
O20.0380 (4)0.99272 (19)0.73492 (16)0.0324 (8)
N30.1713 (5)0.80580 (19)0.75822 (18)0.0234 (8)
N10.3472 (5)0.9601 (2)0.74793 (18)0.0254 (8)
O40.2110 (4)0.74573 (18)0.62687 (16)0.0323 (8)
O60.5021 (4)0.7284 (2)0.63978 (16)0.0347 (8)
C310.8313 (6)0.6798 (3)0.7383 (3)0.0348 (11)
H310.88220.65950.70190.042*
O10.3198 (4)1.02568 (18)0.87665 (17)0.0375 (9)
O30.0291 (4)1.0429 (2)0.86985 (17)0.0354 (8)
C10.4496 (5)0.9962 (3)0.8891 (2)0.0322 (11)
O50.4773 (4)0.77314 (19)0.77578 (15)0.0312 (7)
C170.2743 (6)0.9990 (3)0.5662 (2)0.0391 (12)
H170.23791.03550.5390.047*
C250.0007 (5)0.8201 (3)0.6601 (2)0.0258 (10)
C150.3331 (6)0.9506 (2)0.6754 (2)0.0270 (10)
C200.0858 (5)0.7781 (3)0.6120 (2)0.0272 (10)
C300.8958 (6)0.6803 (3)0.8016 (3)0.0407 (12)
H300.98980.66080.80830.049*
C210.0235 (6)0.7718 (3)0.5450 (2)0.0348 (11)
H210.07410.74530.51240.042*
C130.1640 (6)1.0600 (2)0.7855 (2)0.0300 (10)
C30.6615 (7)0.9818 (3)0.9673 (3)0.0501 (15)
H30.7080.99371.00810.06*
C330.6283 (6)0.7067 (3)0.6591 (3)0.0343 (12)
H330.68930.68680.6260.041*
C270.6080 (5)0.7423 (3)0.7829 (3)0.0309 (11)
C280.6772 (6)0.7409 (3)0.8474 (2)0.0366 (11)
H280.62810.76040.88470.044*
C180.3240 (6)0.9365 (3)0.5366 (2)0.0391 (12)
H180.32430.93070.48950.047*
C60.5217 (5)0.9478 (3)0.8436 (2)0.0287 (11)
C70.4716 (6)0.9365 (3)0.7743 (2)0.0302 (11)
H70.53330.91010.7460.036*
C20.5278 (6)1.0136 (3)0.9505 (3)0.0443 (14)
H20.48751.04720.97990.053*
C260.0461 (5)0.8277 (2)0.7302 (2)0.0247 (10)
H260.02050.85070.75890.03*
C160.2791 (5)1.0069 (3)0.6366 (2)0.0318 (11)
H160.24731.04870.65730.038*
C50.6610 (6)0.9168 (3)0.8619 (3)0.0353 (11)
H50.70750.88580.83170.042*
C320.6868 (6)0.7099 (2)0.7272 (2)0.0276 (10)
C140.0977 (6)1.0650 (3)0.8514 (3)0.0355 (12)
H140.15451.08710.88490.043*
N40.1434 (4)0.8785 (2)0.85692 (18)0.0282 (9)
C230.1931 (6)0.8431 (3)0.5754 (2)0.0316 (11)
H230.28340.86380.56330.038*
N20.3766 (4)0.8885 (2)0.64818 (19)0.0294 (9)
C240.1378 (5)0.8501 (2)0.6410 (2)0.0267 (10)
H240.19290.87490.67330.032*
C380.1394 (6)0.8842 (3)0.9252 (2)0.0347 (12)
H380.11430.92790.94410.042*
C290.8168 (6)0.7110 (3)0.8563 (3)0.0374 (12)
H290.85950.71120.89950.045*
C90.1666 (6)1.0256 (2)0.6661 (2)0.0330 (11)
H90.12061.00520.62830.04*
C100.3053 (6)1.0558 (3)0.6585 (3)0.0423 (13)
H100.35151.05430.61610.051*
C340.1807 (5)0.8147 (2)0.8304 (2)0.0261 (10)
C220.1100 (6)0.8042 (3)0.5273 (3)0.0379 (13)
H220.14520.80.48290.045*
C190.3730 (5)0.8830 (3)0.5794 (2)0.0322 (11)
H190.40540.84080.55970.039*
C360.2157 (7)0.7636 (3)0.9410 (3)0.0461 (15)
H360.24030.72570.96910.055*
C350.2229 (6)0.7568 (3)0.8709 (2)0.0340 (12)
H350.25510.71480.8510.041*
C80.0916 (5)1.0247 (2)0.7303 (2)0.0269 (10)
C40.7286 (6)0.9319 (3)0.9240 (3)0.0433 (14)
H40.81660.90940.93660.052*
C110.3798 (6)1.0892 (3)0.7140 (3)0.0407 (14)
H110.4741.10890.70870.049*
C120.3068 (6)1.0911 (2)0.7758 (3)0.0378 (13)
H120.35251.11360.81240.045*
C370.1707 (7)0.8285 (3)0.9690 (2)0.0434 (13)
H370.16210.83411.0160.052*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0285 (3)0.0316 (3)0.0263 (3)0.0020 (3)0.0013 (3)0.0047 (3)
Cu20.0274 (3)0.0311 (3)0.0253 (3)0.0031 (2)0.0006 (3)0.0039 (2)
O20.0307 (18)0.0324 (19)0.0341 (18)0.0088 (16)0.0011 (14)0.0055 (16)
N30.023 (2)0.0243 (19)0.0230 (18)0.0007 (17)0.0021 (18)0.0017 (15)
N10.028 (2)0.026 (2)0.0216 (18)0.0002 (18)0.0025 (18)0.0029 (15)
O40.0283 (18)0.038 (2)0.0305 (18)0.0045 (15)0.0007 (14)0.0087 (15)
O60.0349 (19)0.039 (2)0.0298 (18)0.0015 (17)0.0035 (15)0.0071 (17)
C310.028 (3)0.028 (3)0.049 (3)0.005 (2)0.006 (3)0.006 (2)
O10.034 (2)0.044 (2)0.0344 (19)0.0005 (17)0.0016 (17)0.0126 (15)
O30.034 (2)0.041 (2)0.0313 (19)0.0075 (17)0.0045 (16)0.0032 (16)
C10.034 (3)0.038 (3)0.024 (2)0.003 (2)0.0014 (19)0.003 (2)
O50.0316 (17)0.0340 (19)0.0280 (17)0.0060 (16)0.0017 (14)0.0036 (15)
C170.040 (3)0.042 (3)0.035 (3)0.001 (3)0.000 (2)0.012 (3)
C250.025 (2)0.028 (3)0.025 (2)0.0067 (19)0.0025 (19)0.0025 (19)
C150.024 (2)0.033 (2)0.025 (2)0.002 (2)0.003 (2)0.0017 (18)
C200.034 (3)0.024 (2)0.024 (2)0.001 (2)0.006 (2)0.001 (2)
C300.034 (3)0.028 (3)0.060 (3)0.005 (2)0.001 (3)0.010 (3)
C210.036 (3)0.043 (3)0.025 (2)0.000 (2)0.003 (2)0.007 (2)
C130.026 (2)0.025 (2)0.039 (3)0.001 (2)0.002 (2)0.0011 (19)
C30.045 (3)0.073 (4)0.032 (3)0.009 (3)0.005 (3)0.001 (3)
C330.031 (3)0.032 (3)0.040 (3)0.002 (2)0.008 (2)0.005 (2)
C270.033 (3)0.022 (2)0.037 (3)0.0062 (19)0.004 (2)0.004 (2)
C280.036 (3)0.038 (3)0.036 (3)0.001 (3)0.003 (2)0.001 (2)
C180.042 (3)0.051 (3)0.024 (2)0.006 (3)0.003 (3)0.002 (2)
C60.029 (3)0.028 (3)0.029 (2)0.005 (2)0.001 (2)0.002 (2)
C70.030 (3)0.023 (2)0.037 (3)0.002 (2)0.005 (2)0.001 (2)
C20.048 (3)0.055 (4)0.030 (3)0.004 (3)0.001 (2)0.010 (3)
C260.025 (2)0.023 (2)0.026 (2)0.0013 (19)0.0034 (19)0.0048 (19)
C160.034 (3)0.027 (3)0.035 (2)0.000 (2)0.006 (2)0.001 (2)
C50.031 (3)0.037 (3)0.037 (3)0.002 (2)0.001 (3)0.007 (2)
C320.029 (2)0.021 (2)0.033 (2)0.0026 (19)0.006 (2)0.0026 (18)
C140.038 (3)0.031 (3)0.037 (3)0.000 (2)0.014 (2)0.002 (2)
N40.030 (2)0.031 (2)0.0240 (18)0.0013 (17)0.0035 (17)0.0006 (16)
C230.029 (3)0.031 (3)0.035 (3)0.002 (2)0.003 (2)0.002 (2)
N20.027 (2)0.035 (2)0.027 (2)0.0006 (17)0.0028 (16)0.0009 (18)
C240.028 (3)0.024 (2)0.028 (2)0.0013 (19)0.005 (2)0.0018 (19)
C380.036 (3)0.041 (3)0.027 (2)0.004 (2)0.006 (2)0.005 (2)
C290.037 (3)0.034 (3)0.040 (3)0.004 (2)0.009 (3)0.012 (2)
C90.033 (3)0.029 (2)0.037 (3)0.002 (2)0.001 (2)0.0013 (19)
C100.040 (3)0.031 (3)0.056 (3)0.002 (2)0.014 (3)0.007 (2)
C340.022 (2)0.032 (2)0.024 (2)0.003 (2)0.001 (2)0.0017 (18)
C220.039 (3)0.046 (3)0.028 (3)0.011 (2)0.006 (2)0.001 (2)
C190.033 (3)0.036 (3)0.028 (2)0.002 (2)0.003 (2)0.003 (2)
C360.059 (4)0.050 (4)0.029 (3)0.000 (3)0.010 (3)0.013 (3)
C350.038 (3)0.034 (3)0.029 (2)0.005 (2)0.000 (2)0.002 (2)
C80.026 (2)0.022 (2)0.032 (3)0.0022 (18)0.001 (2)0.0059 (19)
C40.034 (3)0.063 (4)0.034 (3)0.004 (3)0.009 (2)0.008 (3)
C110.033 (3)0.027 (3)0.062 (4)0.004 (2)0.004 (3)0.004 (3)
C120.034 (3)0.021 (2)0.059 (3)0.002 (2)0.010 (3)0.002 (2)
C370.055 (4)0.049 (3)0.026 (2)0.001 (3)0.002 (3)0.000 (2)
Geometric parameters (Å, º) top
Cu1—O11.916 (4)C33—H330.93
Cu1—O21.917 (3)C27—C281.410 (7)
Cu1—O32.022 (3)C27—C321.437 (6)
Cu1—N12.022 (4)C28—C291.386 (7)
Cu2—O41.914 (3)C28—H280.93
Cu2—O51.918 (3)C18—C191.384 (7)
Cu2—O62.019 (3)C18—H180.93
Cu2—N32.028 (4)C6—C51.427 (7)
O2—C81.315 (6)C6—C71.447 (6)
N3—C261.318 (6)C7—H70.93
N3—C341.429 (5)C2—H20.93
N1—C71.309 (6)C26—H260.93
N1—C151.439 (5)C16—H160.93
O4—C201.312 (6)C5—C41.390 (7)
O6—C331.262 (6)C5—H50.93
C31—C301.369 (7)C14—H140.93
C31—C321.433 (7)N4—C381.345 (6)
C31—H310.93N4—C341.352 (6)
O1—C11.315 (6)C23—C241.386 (6)
O3—C141.265 (6)C23—C221.410 (7)
C1—C61.432 (7)C23—H230.93
C1—C21.432 (7)N2—C191.354 (6)
O5—C271.318 (6)C24—H240.93
C17—C181.388 (8)C38—C371.386 (7)
C17—C161.390 (6)C38—H380.93
C17—H170.93C29—H290.93
C25—C241.417 (7)C9—C101.378 (7)
C25—C261.441 (6)C9—C81.429 (6)
C25—C201.448 (6)C9—H90.93
C15—N21.345 (6)C10—C111.423 (8)
C15—C161.394 (7)C10—H100.93
C20—C211.434 (6)C34—C351.402 (6)
C30—C291.412 (8)C22—H220.93
C30—H300.93C19—H190.93
C21—C221.390 (7)C36—C351.383 (7)
C21—H210.93C36—C371.401 (8)
C13—C121.424 (7)C36—H360.93
C13—C141.426 (7)C35—H350.93
C13—C81.427 (6)C4—H40.93
C3—C21.382 (8)C11—C121.379 (7)
C3—C41.403 (8)C11—H110.93
C3—H30.93C12—H120.93
C33—C321.437 (6)C37—H370.93
O1—Cu1—O2167.40 (15)N1—C7—H7117
O1—Cu1—O383.95 (14)C6—C7—H7117
O2—Cu1—O391.05 (14)C3—C2—C1121.8 (5)
O1—Cu1—N191.50 (16)C3—C2—H2119.1
O2—Cu1—N192.86 (14)C1—C2—H2119.1
O3—Cu1—N1174.69 (16)N3—C26—C25127.5 (4)
O4—Cu2—O5167.61 (15)N3—C26—H26116.3
O4—Cu2—O684.55 (13)C25—C26—H26116.3
O5—Cu2—O690.89 (14)C17—C16—C15118.1 (5)
O4—Cu2—N391.98 (15)C17—C16—H16120.9
O5—Cu2—N391.89 (14)C15—C16—H16120.9
O6—Cu2—N3175.40 (15)C4—C5—C6121.3 (5)
C8—O2—Cu1128.3 (3)C4—C5—H5119.3
C26—N3—C34115.3 (4)C6—C5—H5119.3
C26—N3—Cu2121.0 (3)C31—C32—C33117.2 (4)
C34—N3—Cu2123.5 (3)C31—C32—C27119.9 (4)
C7—N1—C15115.0 (4)C33—C32—C27122.9 (5)
C7—N1—Cu1121.5 (3)O3—C14—C13127.8 (5)
C15—N1—Cu1123.2 (3)O3—C14—H14116.1
C20—O4—Cu2125.6 (3)C13—C14—H14116.1
C33—O6—Cu2126.0 (3)C38—N4—C34117.4 (4)
C30—C31—C32121.2 (5)C24—C23—C22118.8 (5)
C30—C31—H31119.4C24—C23—H23120.6
C32—C31—H31119.4C22—C23—H23120.6
C1—O1—Cu1126.4 (3)C15—N2—C19117.1 (4)
C14—O3—Cu1124.9 (3)C23—C24—C25121.5 (4)
O1—C1—C6123.7 (4)C23—C24—H24119.3
O1—C1—C2119.6 (5)C25—C24—H24119.3
C6—C1—C2116.7 (5)N4—C38—C37123.4 (5)
C27—O5—Cu2129.2 (3)N4—C38—H38118.3
C18—C17—C16119.8 (5)C37—C38—H38118.3
C18—C17—H17120.1C28—C29—C30121.7 (5)
C16—C17—H17120.1C28—C29—H29119.2
C24—C25—C26117.4 (4)C30—C29—H29119.2
C24—C25—C20120.6 (4)C10—C9—C8121.6 (5)
C26—C25—C20121.7 (4)C10—C9—H9119.2
N2—C15—C16123.2 (4)C8—C9—H9119.2
N2—C15—N1118.4 (4)C9—C10—C11121.8 (5)
C16—C15—N1118.4 (4)C9—C10—H10119.1
O4—C20—C21119.9 (4)C11—C10—H10119.1
O4—C20—C25124.2 (4)N4—C34—C35122.8 (4)
C21—C20—C25115.8 (4)N4—C34—N3118.1 (4)
C31—C30—C29118.6 (5)C35—C34—N3119.0 (4)
C31—C30—H30120.7C21—C22—C23121.2 (5)
C29—C30—H30120.7C21—C22—H22119.4
C22—C21—C20122.0 (5)C23—C22—H22119.4
C22—C21—H21119N2—C19—C18123.8 (5)
C20—C21—H21119N2—C19—H19118.1
C12—C13—C14118.1 (5)C18—C19—H19118.1
C12—C13—C8120.0 (5)C35—C36—C37119.0 (5)
C14—C13—C8121.9 (5)C35—C36—H36120.5
C2—C3—C4121.4 (5)C37—C36—H36120.5
C2—C3—H3119.3C36—C35—C34118.5 (5)
C4—C3—H3119.3C36—C35—H35120.7
O6—C33—C32126.5 (5)C34—C35—H35120.7
O6—C33—H33116.8O2—C8—C13124.4 (4)
C32—C33—H33116.8O2—C8—C9118.9 (4)
O5—C27—C28119.7 (4)C13—C8—C9116.7 (4)
O5—C27—C32123.1 (4)C5—C4—C3118.7 (5)
C28—C27—C32117.2 (5)C5—C4—H4120.7
C29—C28—C27121.4 (5)C3—C4—H4120.7
C29—C28—H28119.3C12—C11—C10117.4 (5)
C27—C28—H28119.3C12—C11—H11121.3
C19—C18—C17117.9 (4)C10—C11—H11121.3
C19—C18—H18121C11—C12—C13122.4 (5)
C17—C18—H18121C11—C12—H12118.8
C5—C6—C1120.0 (4)C13—C12—H12118.8
C5—C6—C7116.7 (5)C38—C37—C36118.5 (5)
C1—C6—C7122.6 (5)C38—C37—H37120.7
N1—C7—C6125.9 (5)C36—C37—H37120.7

Experimental details

Crystal data
Chemical formula[Cu2(C12H9N2O)2(C7H5O2)2]
Mr763.72
Crystal system, space groupOrthorhombic, P212121
Temperature (K)150
a, b, c (Å)8.9811 (18), 18.856 (4), 19.612 (4)
V3)3321.2 (12)
Z4
Radiation typeMo Kα
µ (mm1)1.34
Crystal size (mm)0.20 × 0.12 × 0.06
Data collection
DiffractometerRigaku Saturn724+
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.736, 1
No. of measured, independent and
observed [I > 2σ(I)] reflections
33976, 6782, 6545
Rint0.076
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.106, 1.20
No. of reflections6782
No. of parameters452
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.41
Absolute structureFlack (1983), 2964 Friedel pairs
Absolute structure parameter0.353 (17)

Computer programs: CrystalClear (Rigaku, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), WinGX (Farrugia, 1999).

 

Footnotes

Other affiliation: Department of Chemistry, University of New Brunswick, Fredericton, NB, Canada E3B 5A3.

Acknowledgements

JMC thanks the Royal Society for a University Research Fellowship, the Taiwanese Ministry of Education for a partially funded PhD studentship (for TCL), the University of New Brunswick for the UNB Vice-Chancellor's Research Chair (JMC), and NSERC Discovery Grant 355708 (for PGW).

References

First citationDrummond, J. & Wood, J. S. (1972). J. Chem. Soc. Dalton Trans. p. 365.  CrossRef Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHall, D., McKinnon, A. J. & Waters, T. N. (1965). J. Chem. Soc. p. 425.  CrossRef Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationMcKinnon, A. J., Waters, T. N. & Hall, D. (1964). J. Chem. Soc. p. 3290.  CrossRef Google Scholar
First citationRigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds