metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­benzyl ferrocene-1,1′-di­carboxyl­ate

aDepartment of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, Canada V6T 1Z1, and bDepartment of Chemistry, University of British Columbia, Okanagan Campus, 3333 University Way, Kelowna, BC, Canada V1V 1V7
*Correspondence e-mail: bpatrick@chem.ubc.ca

(Received 21 March 2011; accepted 2 May 2011; online 14 May 2011)

In the title compound, [Fe(C13H11O2)2], there are markedly different orientations of the two phenyl­meth­oxy­carbonyl substituents [O—C—C—C torsion angles = 84.5 (3) and 139.6 (2)°]. These orientations are mediated by a number of inter­molecular C—H⋯O inter­actions, which result in a one-dimensional hydrogen-bonded network of mol­ecules.

Related literature

For properties of ferrocene-incorporated compounds, see: Abd-El-Aziz et al. (2007[Abd-El-Aziz, A. S. & Manners, I. (2007). In Frontiers in Transition Metal-Containing Polymers. Hoboken, NJ: Wiley.]). For the crystal structure of a ferroecene ester, see: Hur et al. (2010[Hur, D., Ekti, S. F. & Dal, H. (2010). J. Organomet. Chem. 695, 1031-1034.]). For the crystallization of monoacetylferrocene, see: Khrustalev et al. (2006[Khrustalev, V. N., Nikitin, L. N., Vasil'kov, A. Y. & Khoklov, A. R. (2006). Russ. Chem. Bull. 55, 576-578.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe(C13H11O2)2]

  • Mr = 454.29

  • Orthorhombic, P c a 21

  • a = 13.1120 (14) Å

  • b = 5.9366 (6) Å

  • c = 25.538 (3) Å

  • V = 1987.9 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.79 mm−1

  • T = 100 K

  • 0.15 × 0.05 × 0.05 mm

Data collection
  • Bruker X8 APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.830, Tmax = 0.961

  • 16738 measured reflections

  • 4726 independent reflections

  • 3820 reflections with I > 2σ(I)

  • Rint = 0.050

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.070

  • S = 1.02

  • 4726 reflections

  • 280 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.33 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2280 Friedel pairs

  • Flack parameter: 0.016 (14)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O2i 0.95 2.46 3.368 (3) 160
C7—H7B⋯O1ii 0.99 2.44 3.350 (3) 152
C9—H9⋯O1ii 0.95 2.59 3.374 (3) 141
C20—H20B⋯O3ii 0.99 2.54 3.421 (3) 148
C22—H22⋯O3ii 0.95 2.51 3.233 (3) 133
Symmetry codes: (i) x, y-1, z; (ii) x, y+1, z.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Ferrocene has well defined redox properties and has successfully been incorporated into larger compounds in order to take advantage of these properties (Abd-El-Aziz et al., 2007). The monoester of the title compound was reported as a classic example of a ferroecene ester (Hur et al., 2010).

The stucture of the title compound is presented in Fig. 1. While the molecule posesses internal inversion symmetry, this symmetry is broken in the solid state. The two benzyl cyclopentadienylcarboxylate groups stack almost perfectly eclipsed. However, there is a significant difference between the orientation of the two benzyl substituents, as denoted by the O2—C7—C8—C9 and O4—C20—C21—C22 torsion angles [84.5 (3) and 139.6 (2)°, respectively]. Of the two torsion angles described above, the former resembles most closely that of the monoester, with a torsion angle of 82.4° (Hur et al., 2010). These different orientations are mediated by a variety of intermolecular C—H···O interactions. These interactions ultimately form a one-dimensional hydrogen-bonded network of molecules; details have been given in Table 1 and Figure 2.

Related literature top

For properties of ferrocene-incorporated compounds, see: Abd-El-Aziz et al. (2007). For the crystal structure of a ferroecene ester, see: Hur et al. (2010). For related literature [on what subject?], see: Khrustalev et al. (2006).

Experimental top

The title compound was formed during attempts to incorporate ferrocene along with free arenes into larger dendrimers and polymers. 1,1'-Ddicarboxylic acid ferrocene (4 mmol), benzyl alcohol (4 mmol), N,N'-dicyclohexylcarbodiimide(DCC) (4.4 mmol) and dimethylaminopyride (DMAP) (4.4 mmol) were combined in 50 mL of dimethylformamide (DMF) and stirred under an atmosphere of nitrogen for 15 h. The mixture was then cooled to 269 K for 30 minutes before gravity filtration. The filtrate was washed with 1.2 M HCl and deionized water consecutively. The solution was then dried using MgSO4 and the solvent removed in vacuo. The di-substituted form was separated from the mono-substituted (i.e., monoester) form using a silica gel column, using ethyl acetate as the eluent. Red crystals of the product were grown using ethyl acetate.

Refinement top

All hydrogen atoms were placed in calculated positions, riding on C atoms with Uiso(H) = 1.2Ueq(C). The Cp and phenyl H atoms were placed at C—H = 0.95 Å and methylene H atoms at C—H = 0.99 Å. The absolute stereochemistry was determined on the basis of the refined Flack x-parameter, with x = 0.02 (1) (Flack, 1983) using 2280 Friedel pairs of reflections which were not merged.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atomic labels and 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. One-dimensional C—H···O hydrogen bonded network formed by the title compound.
Dibenzyl ferrocene-1,1'-dicarboxylate top
Crystal data top
[Fe(C13H11O2)2]F(000) = 944
Mr = 454.29Dx = 1.518 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2a2Cell parameters from 3257 reflections
a = 13.1120 (14) Åθ = 3.2–26.1°
b = 5.9366 (6) ŵ = 0.79 mm1
c = 25.538 (3) ÅT = 100 K
V = 1987.9 (4) Å3Irregular, orange
Z = 40.15 × 0.05 × 0.05 mm
Data collection top
Bruker X8 APEXII
diffractometer
4726 independent reflections
Radiation source: fine-focus sealed tube3820 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
area detector scansθmax = 28.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1417
Tmin = 0.830, Tmax = 0.961k = 77
16738 measured reflectionsl = 3333
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.070 w = 1/[σ2(Fo2) + (0.0277P)2 + 0.1317P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.002
4726 reflectionsΔρmax = 0.31 e Å3
280 parametersΔρmin = 0.33 e Å3
1 restraintAbsolute structure: Flack (1983), 2280 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.016 (14)
Crystal data top
[Fe(C13H11O2)2]V = 1987.9 (4) Å3
Mr = 454.29Z = 4
Orthorhombic, Pca21Mo Kα radiation
a = 13.1120 (14) ŵ = 0.79 mm1
b = 5.9366 (6) ÅT = 100 K
c = 25.538 (3) Å0.15 × 0.05 × 0.05 mm
Data collection top
Bruker X8 APEXII
diffractometer
4726 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
3820 reflections with I > 2σ(I)
Tmin = 0.830, Tmax = 0.961Rint = 0.050
16738 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.070Δρmax = 0.31 e Å3
S = 1.02Δρmin = 0.33 e Å3
4726 reflectionsAbsolute structure: Flack (1983), 2280 Friedel pairs
280 parametersAbsolute structure parameter: 0.016 (14)
1 restraint
Special details top

Experimental. Data were scaled in point group 222 in order to keep all Friedel pairs unmerged. In total 97% of all Friedel pairs were measured.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.01829 (18)0.0437 (4)0.19218 (9)0.0126 (5)
H10.01850.07910.21600.015*
C20.0484 (2)0.0360 (4)0.13853 (10)0.0147 (5)
H20.07300.09280.12040.018*
C30.03515 (19)0.2546 (5)0.11696 (10)0.0168 (5)
H30.04820.29640.08170.020*
C40.0009 (2)0.3998 (5)0.15699 (9)0.0137 (6)
H40.01490.55600.15340.016*
C50.01225 (18)0.2695 (4)0.20357 (10)0.0130 (5)
C60.04033 (19)0.3471 (4)0.25657 (10)0.0132 (5)
C70.0510 (2)0.6662 (4)0.31290 (10)0.0148 (5)
H7A0.09990.57140.33260.018*
H7B0.07960.82010.31030.018*
C80.0496 (2)0.6733 (4)0.34143 (9)0.0145 (6)
C90.1152 (2)0.8552 (5)0.33434 (10)0.0175 (6)
H90.09480.97710.31260.021*
C100.2096 (2)0.8607 (5)0.35846 (11)0.0229 (7)
H100.25360.98580.35330.027*
C110.2400 (2)0.6838 (5)0.39020 (11)0.0250 (7)
H110.30500.68660.40660.030*
C120.1750 (2)0.5026 (5)0.39792 (11)0.0259 (7)
H120.19520.38190.42000.031*
C130.0805 (2)0.4967 (5)0.37356 (10)0.0197 (6)
H130.03660.37150.37880.024*
C140.22644 (18)0.5344 (4)0.19765 (9)0.0130 (5)
H140.20710.68860.19710.016*
C150.21971 (19)0.3869 (4)0.24127 (10)0.0149 (5)
H150.19520.42520.27510.018*
C160.2561 (2)0.1719 (4)0.22540 (10)0.0156 (5)
H160.26010.04170.24690.019*
C170.28541 (17)0.1843 (4)0.17215 (11)0.0137 (5)
H170.31220.06450.15170.016*
C180.26740 (19)0.4098 (4)0.15472 (9)0.0126 (5)
C190.29004 (18)0.4912 (4)0.10128 (10)0.0128 (5)
C200.2863 (2)0.8194 (5)0.04625 (10)0.0188 (6)
H20A0.32730.71670.02410.023*
H20B0.32690.95720.05270.023*
C210.1895 (2)0.8802 (5)0.01829 (10)0.0146 (6)
C220.1823 (2)1.0860 (5)0.00775 (10)0.0204 (6)
H220.23761.18930.00640.025*
C230.0947 (2)1.1407 (5)0.03571 (11)0.0250 (6)
H230.09121.27920.05430.030*
C240.0130 (2)0.9952 (5)0.03662 (11)0.0264 (7)
H240.04721.03470.05510.032*
C250.0187 (2)0.7918 (5)0.01058 (10)0.0257 (7)
H250.03750.69100.01130.031*
C260.1066 (2)0.7348 (5)0.01658 (11)0.0216 (6)
H260.11010.59430.03430.026*
O10.06304 (14)0.2228 (3)0.29215 (7)0.0176 (4)
O20.03591 (13)0.5731 (3)0.26035 (6)0.0134 (4)
O30.32897 (14)0.3805 (3)0.06757 (7)0.0185 (4)
O40.26322 (14)0.7100 (3)0.09598 (7)0.0167 (4)
Fe10.13475 (2)0.26824 (5)0.179289 (17)0.01072 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0091 (12)0.0132 (12)0.0156 (14)0.0014 (10)0.0005 (9)0.0005 (9)
C20.0097 (12)0.0179 (13)0.0164 (12)0.0032 (11)0.0006 (10)0.0038 (11)
C30.0120 (13)0.0238 (15)0.0146 (12)0.0039 (11)0.0016 (10)0.0022 (11)
C40.0067 (12)0.0147 (14)0.0197 (13)0.0005 (11)0.0050 (10)0.0016 (11)
C50.0048 (12)0.0162 (13)0.0181 (11)0.0022 (11)0.0001 (9)0.0017 (11)
C60.0068 (13)0.0137 (13)0.0191 (13)0.0003 (10)0.0008 (10)0.0005 (10)
C70.0137 (14)0.0154 (13)0.0155 (12)0.0018 (11)0.0033 (11)0.0017 (10)
C80.0134 (14)0.0171 (14)0.0129 (12)0.0038 (11)0.0035 (10)0.0016 (10)
C90.0182 (16)0.0181 (15)0.0161 (13)0.0011 (12)0.0020 (11)0.0007 (11)
C100.0183 (16)0.0288 (17)0.0214 (14)0.0038 (13)0.0006 (12)0.0048 (13)
C110.0182 (16)0.0400 (18)0.0168 (13)0.0038 (13)0.0043 (11)0.0096 (12)
C120.0310 (18)0.0289 (17)0.0178 (14)0.0087 (14)0.0054 (12)0.0031 (12)
C130.0241 (16)0.0191 (15)0.0160 (13)0.0009 (12)0.0006 (11)0.0022 (11)
C140.0074 (12)0.0140 (12)0.0175 (12)0.0022 (10)0.0033 (9)0.0019 (10)
C150.0112 (13)0.0197 (14)0.0140 (12)0.0008 (11)0.0016 (10)0.0021 (10)
C160.0125 (13)0.0168 (13)0.0175 (13)0.0035 (11)0.0039 (11)0.0024 (10)
C170.0068 (11)0.0141 (12)0.0202 (15)0.0002 (8)0.0001 (11)0.0016 (11)
C180.0065 (12)0.0145 (13)0.0170 (12)0.0012 (11)0.0001 (10)0.0005 (10)
C190.0070 (12)0.0140 (13)0.0172 (12)0.0039 (11)0.0028 (10)0.0020 (10)
C200.0187 (15)0.0198 (15)0.0181 (13)0.0028 (12)0.0053 (11)0.0057 (11)
C210.0163 (15)0.0163 (14)0.0112 (12)0.0005 (12)0.0027 (11)0.0027 (11)
C220.0270 (16)0.0180 (14)0.0163 (13)0.0035 (12)0.0021 (12)0.0033 (11)
C230.0338 (18)0.0241 (15)0.0171 (14)0.0017 (14)0.0042 (13)0.0030 (11)
C240.0221 (16)0.0402 (18)0.0170 (13)0.0047 (14)0.0032 (12)0.0011 (13)
C250.0230 (15)0.0371 (18)0.0169 (14)0.0096 (14)0.0016 (12)0.0005 (13)
C260.0276 (16)0.0201 (15)0.0171 (13)0.0064 (13)0.0019 (11)0.0046 (12)
O10.0211 (10)0.0130 (9)0.0187 (9)0.0000 (8)0.0052 (7)0.0016 (8)
O20.0140 (9)0.0107 (9)0.0155 (9)0.0006 (7)0.0019 (7)0.0006 (7)
O30.0195 (11)0.0174 (10)0.0185 (9)0.0003 (8)0.0044 (8)0.0026 (8)
O40.0194 (10)0.0157 (10)0.0150 (9)0.0029 (8)0.0036 (7)0.0024 (7)
Fe10.00747 (14)0.01212 (15)0.01259 (13)0.00068 (14)0.00029 (19)0.0001 (2)
Geometric parameters (Å, º) top
C1—C21.426 (4)C14—C151.419 (3)
C1—C51.429 (3)C14—C181.427 (3)
C1—Fe12.053 (2)C14—Fe12.040 (2)
C1—H10.9500C14—H140.9500
C2—C31.420 (4)C15—C161.422 (4)
C2—Fe12.066 (2)C15—Fe12.060 (2)
C2—H20.9500C15—H150.9500
C3—C41.418 (4)C16—C171.415 (4)
C3—Fe12.061 (2)C16—Fe12.061 (3)
C3—H30.9500C16—H160.9500
C4—C51.427 (3)C17—C181.431 (3)
C4—Fe12.024 (3)C17—Fe12.046 (2)
C4—H40.9500C17—H170.9500
C5—C61.476 (3)C18—C191.478 (3)
C5—Fe12.025 (2)C18—Fe12.031 (2)
C6—O11.208 (3)C19—O31.197 (3)
C6—O21.346 (3)C19—O41.353 (3)
C7—O21.465 (3)C20—O41.458 (3)
C7—C81.508 (4)C20—C211.501 (4)
C7—H7A0.9900C20—H20A0.9900
C7—H7B0.9900C20—H20B0.9900
C8—C131.391 (3)C21—C261.389 (4)
C8—C91.392 (4)C21—C221.394 (4)
C9—C101.383 (4)C22—C231.391 (4)
C9—H90.9500C22—H220.9500
C10—C111.385 (4)C23—C241.376 (4)
C10—H100.9500C23—H230.9500
C11—C121.386 (4)C24—C251.380 (4)
C11—H110.9500C24—H240.9500
C12—C131.387 (4)C25—C261.386 (4)
C12—H120.9500C25—H250.9500
C13—H130.9500C26—H260.9500
C2—C1—C5107.7 (2)C14—C18—C17107.9 (2)
C2—C1—Fe170.20 (14)C14—C18—C19128.0 (2)
C5—C1—Fe168.42 (14)C17—C18—C19124.1 (2)
C2—C1—H1126.2C14—C18—Fe169.81 (14)
C5—C1—H1126.2C17—C18—Fe169.99 (13)
Fe1—C1—H1126.8C19—C18—Fe1126.34 (18)
C3—C2—C1108.0 (2)O3—C19—O4124.5 (2)
C3—C2—Fe169.67 (14)O3—C19—C18124.8 (2)
C1—C2—Fe169.28 (15)O4—C19—C18110.7 (2)
C3—C2—H2126.0O4—C20—C21110.2 (2)
C1—C2—H2126.0O4—C20—H20A109.6
Fe1—C2—H2126.6C21—C20—H20A109.6
C4—C3—C2108.5 (2)O4—C20—H20B109.6
C4—C3—Fe168.30 (14)C21—C20—H20B109.6
C2—C3—Fe170.06 (14)H20A—C20—H20B108.1
C4—C3—H3125.8C26—C21—C22118.5 (3)
C2—C3—H3125.8C26—C21—C20121.9 (2)
Fe1—C3—H3127.4C22—C21—C20119.6 (2)
C3—C4—C5107.8 (2)C23—C22—C21120.3 (3)
C3—C4—Fe171.08 (15)C23—C22—H22119.8
C5—C4—Fe169.40 (14)C21—C22—H22119.8
C3—C4—H4126.1C24—C23—C22120.3 (3)
C5—C4—H4126.1C24—C23—H23119.8
Fe1—C4—H4125.0C22—C23—H23119.8
C4—C5—C1108.0 (2)C23—C24—C25119.9 (3)
C4—C5—C6128.4 (2)C23—C24—H24120.0
C1—C5—C6123.3 (2)C25—C24—H24120.0
C4—C5—Fe169.33 (14)C24—C25—C26120.0 (3)
C1—C5—Fe170.57 (14)C24—C25—H25120.0
C6—C5—Fe1121.29 (17)C26—C25—H25120.0
O1—C6—O2124.4 (2)C25—C26—C21120.9 (3)
O1—C6—C5124.1 (2)C25—C26—H26119.5
O2—C6—C5111.5 (2)C21—C26—H26119.5
O2—C7—C8109.6 (2)C6—O2—C7115.83 (19)
O2—C7—H7A109.8C19—O4—C20117.4 (2)
C8—C7—H7A109.8C4—Fe1—C541.27 (10)
O2—C7—H7B109.8C4—Fe1—C18120.38 (10)
C8—C7—H7B109.8C5—Fe1—C18155.26 (10)
H7A—C7—H7B108.2C4—Fe1—C14106.47 (10)
C13—C8—C9118.8 (3)C5—Fe1—C14119.19 (10)
C13—C8—C7121.2 (2)C18—Fe1—C1441.05 (9)
C9—C8—C7120.0 (2)C4—Fe1—C17156.55 (10)
C10—C9—C8120.9 (3)C5—Fe1—C17161.36 (10)
C10—C9—H9119.6C18—Fe1—C1741.09 (10)
C8—C9—H9119.6C14—Fe1—C1768.91 (10)
C9—C10—C11120.0 (3)C4—Fe1—C169.04 (10)
C9—C10—H10120.0C5—Fe1—C141.01 (10)
C11—C10—H10120.0C18—Fe1—C1162.74 (10)
C10—C11—C12119.7 (3)C14—Fe1—C1154.70 (10)
C10—C11—H11120.2C17—Fe1—C1125.05 (10)
C12—C11—H11120.2C4—Fe1—C15124.01 (11)
C11—C12—C13120.3 (3)C5—Fe1—C15106.15 (10)
C11—C12—H12119.8C18—Fe1—C1568.45 (10)
C13—C12—H12119.8C14—Fe1—C1540.51 (10)
C12—C13—C8120.3 (3)C17—Fe1—C1568.26 (10)
C12—C13—H13119.8C1—Fe1—C15120.07 (10)
C8—C13—H13119.8C4—Fe1—C16161.16 (10)
C15—C14—C18107.9 (2)C5—Fe1—C16124.14 (10)
C15—C14—Fe170.49 (14)C18—Fe1—C1668.29 (10)
C18—C14—Fe169.14 (14)C14—Fe1—C1668.19 (10)
C15—C14—H14126.1C17—Fe1—C1640.31 (10)
C18—C14—H14126.1C1—Fe1—C16107.61 (10)
Fe1—C14—H14125.9C15—Fe1—C1640.38 (10)
C14—C15—C16108.0 (2)C4—Fe1—C340.62 (10)
C14—C15—Fe169.00 (14)C5—Fe1—C368.50 (10)
C16—C15—Fe169.85 (14)C18—Fe1—C3108.69 (10)
C14—C15—H15126.0C14—Fe1—C3125.56 (10)
C16—C15—H15126.0C17—Fe1—C3122.25 (10)
Fe1—C15—H15126.7C1—Fe1—C368.09 (10)
C17—C16—C15108.6 (2)C15—Fe1—C3161.78 (11)
C17—C16—Fe169.26 (14)C16—Fe1—C3156.92 (11)
C15—C16—Fe169.77 (15)C4—Fe1—C268.54 (11)
C17—C16—H16125.7C5—Fe1—C268.59 (10)
C15—C16—H16125.7C18—Fe1—C2126.16 (10)
Fe1—C16—H16126.8C14—Fe1—C2162.92 (10)
C16—C17—C18107.6 (2)C17—Fe1—C2108.77 (10)
C16—C17—Fe170.42 (14)C1—Fe1—C240.52 (10)
C18—C17—Fe168.92 (13)C15—Fe1—C2155.79 (10)
C16—C17—H17126.2C16—Fe1—C2121.74 (10)
C18—C17—H17126.2C3—Fe1—C240.27 (10)
Fe1—C17—H17126.0
C5—C1—C2—C30.8 (3)C14—C18—Fe1—C1160.7 (3)
Fe1—C1—C2—C359.10 (17)C17—C18—Fe1—C141.8 (4)
C5—C1—C2—Fe158.34 (17)C19—C18—Fe1—C176.4 (4)
C1—C2—C3—C41.3 (3)C14—C18—Fe1—C1537.69 (14)
Fe1—C2—C3—C457.60 (18)C17—C18—Fe1—C1581.20 (15)
C1—C2—C3—Fe158.85 (17)C19—C18—Fe1—C15160.6 (3)
C2—C3—C4—C51.3 (3)C14—C18—Fe1—C1681.28 (15)
Fe1—C3—C4—C559.93 (17)C17—C18—Fe1—C1637.61 (15)
C2—C3—C4—Fe158.68 (18)C19—C18—Fe1—C16155.8 (3)
C3—C4—C5—C10.8 (3)C14—C18—Fe1—C3123.13 (15)
Fe1—C4—C5—C160.23 (17)C17—C18—Fe1—C3117.98 (15)
C3—C4—C5—C6175.2 (2)C19—C18—Fe1—C30.2 (3)
Fe1—C4—C5—C6114.2 (3)C14—C18—Fe1—C2164.50 (14)
C3—C4—C5—Fe161.00 (18)C17—C18—Fe1—C276.62 (18)
C2—C1—C5—C40.0 (3)C19—C18—Fe1—C241.5 (3)
Fe1—C1—C5—C459.45 (16)C15—C14—Fe1—C4123.50 (15)
C2—C1—C5—C6174.7 (2)C18—C14—Fe1—C4117.61 (15)
Fe1—C1—C5—C6115.3 (2)C15—C14—Fe1—C580.60 (17)
C2—C1—C5—Fe159.45 (17)C18—C14—Fe1—C5160.51 (14)
C4—C5—C6—O1168.6 (2)C15—C14—Fe1—C18118.9 (2)
C1—C5—C6—O117.8 (4)C15—C14—Fe1—C1780.81 (16)
Fe1—C5—C6—O1104.0 (3)C18—C14—Fe1—C1738.08 (14)
C4—C5—C6—O212.4 (4)C15—C14—Fe1—C147.8 (3)
C1—C5—C6—O2161.2 (2)C18—C14—Fe1—C1166.7 (2)
Fe1—C5—C6—O275.0 (2)C18—C14—Fe1—C15118.9 (2)
O2—C7—C8—C1393.1 (3)C15—C14—Fe1—C1637.36 (15)
O2—C7—C8—C984.5 (3)C18—C14—Fe1—C1681.54 (15)
C13—C8—C9—C100.3 (4)C15—C14—Fe1—C3163.89 (15)
C7—C8—C9—C10177.3 (2)C18—C14—Fe1—C377.21 (17)
C8—C9—C10—C110.1 (4)C15—C14—Fe1—C2166.2 (3)
C9—C10—C11—C120.5 (4)C18—C14—Fe1—C247.3 (4)
C10—C11—C12—C130.8 (4)C16—C17—Fe1—C4163.5 (2)
C11—C12—C13—C80.5 (4)C18—C17—Fe1—C444.7 (3)
C9—C8—C13—C120.1 (4)C16—C17—Fe1—C538.7 (4)
C7—C8—C13—C12177.6 (2)C18—C17—Fe1—C5157.5 (3)
C18—C14—C15—C160.1 (3)C16—C17—Fe1—C18118.8 (2)
Fe1—C14—C15—C1659.15 (18)C16—C17—Fe1—C1480.74 (16)
C18—C14—C15—Fe159.27 (16)C18—C17—Fe1—C1438.04 (14)
C14—C15—C16—C170.1 (3)C16—C17—Fe1—C175.20 (18)
Fe1—C15—C16—C1758.55 (17)C18—C17—Fe1—C1166.02 (13)
C14—C15—C16—Fe158.62 (17)C16—C17—Fe1—C1537.09 (15)
C15—C16—C17—C180.2 (3)C18—C17—Fe1—C1581.70 (15)
Fe1—C16—C17—C1859.10 (16)C18—C17—Fe1—C16118.8 (2)
C15—C16—C17—Fe158.86 (18)C16—C17—Fe1—C3159.67 (15)
C15—C14—C18—C170.3 (3)C18—C17—Fe1—C381.54 (16)
Fe1—C14—C18—C1759.85 (16)C16—C17—Fe1—C2117.27 (16)
C15—C14—C18—C19179.0 (2)C18—C17—Fe1—C2123.94 (15)
Fe1—C14—C18—C19120.9 (3)C2—C1—Fe1—C481.09 (16)
C15—C14—C18—Fe160.12 (17)C5—C1—Fe1—C438.19 (15)
C16—C17—C18—C140.3 (3)C2—C1—Fe1—C5119.3 (2)
Fe1—C17—C18—C1459.74 (16)C2—C1—Fe1—C1845.2 (4)
C16—C17—C18—C19179.0 (2)C5—C1—Fe1—C18164.5 (3)
Fe1—C17—C18—C19121.0 (2)C2—C1—Fe1—C14165.4 (2)
C16—C17—C18—Fe160.05 (16)C5—C1—Fe1—C1446.1 (3)
C14—C18—C19—O3176.3 (2)C2—C1—Fe1—C1777.55 (18)
C17—C18—C19—O32.8 (4)C5—C1—Fe1—C17163.17 (14)
Fe1—C18—C19—O391.9 (3)C2—C1—Fe1—C15160.85 (15)
C14—C18—C19—O42.1 (4)C5—C1—Fe1—C1579.87 (17)
C17—C18—C19—O4178.8 (2)C2—C1—Fe1—C16118.56 (16)
Fe1—C18—C19—O489.7 (2)C5—C1—Fe1—C16122.15 (15)
O4—C20—C21—C2641.8 (3)C2—C1—Fe1—C337.32 (15)
O4—C20—C21—C22139.6 (2)C5—C1—Fe1—C381.97 (15)
C26—C21—C22—C231.4 (4)C5—C1—Fe1—C2119.3 (2)
C20—C21—C22—C23177.3 (3)C14—C15—Fe1—C474.74 (17)
C21—C22—C23—C242.0 (4)C16—C15—Fe1—C4165.68 (15)
C22—C23—C24—C251.3 (4)C14—C15—Fe1—C5116.27 (15)
C23—C24—C25—C260.2 (4)C16—C15—Fe1—C5124.14 (15)
C24—C25—C26—C210.3 (4)C14—C15—Fe1—C1838.18 (14)
C22—C21—C26—C250.3 (4)C16—C15—Fe1—C1881.40 (16)
C20—C21—C26—C25178.4 (3)C16—C15—Fe1—C14119.6 (2)
O1—C6—O2—C75.8 (4)C14—C15—Fe1—C1782.55 (16)
C5—C6—O2—C7173.27 (19)C16—C15—Fe1—C1737.03 (15)
C8—C7—O2—C686.9 (3)C14—C15—Fe1—C1158.54 (14)
O3—C19—O4—C201.9 (4)C16—C15—Fe1—C181.88 (17)
C18—C19—O4—C20176.5 (2)C14—C15—Fe1—C16119.6 (2)
C21—C20—O4—C19114.0 (2)C14—C15—Fe1—C346.2 (4)
C3—C4—Fe1—C5118.3 (2)C16—C15—Fe1—C3165.8 (3)
C3—C4—Fe1—C1883.51 (17)C14—C15—Fe1—C2170.1 (2)
C5—C4—Fe1—C18158.14 (14)C16—C15—Fe1—C250.6 (3)
C3—C4—Fe1—C14125.93 (15)C17—C16—Fe1—C4159.6 (3)
C5—C4—Fe1—C14115.72 (14)C15—C16—Fe1—C439.4 (4)
C3—C4—Fe1—C1751.1 (3)C17—C16—Fe1—C5166.02 (14)
C5—C4—Fe1—C17169.4 (2)C15—C16—Fe1—C573.83 (18)
C3—C4—Fe1—C180.39 (16)C17—C16—Fe1—C1838.32 (14)
C5—C4—Fe1—C137.96 (14)C15—C16—Fe1—C1881.83 (16)
C3—C4—Fe1—C15166.73 (15)C17—C16—Fe1—C1482.68 (15)
C5—C4—Fe1—C1574.92 (17)C15—C16—Fe1—C1437.47 (15)
C3—C4—Fe1—C16163.5 (3)C15—C16—Fe1—C17120.1 (2)
C5—C4—Fe1—C1645.2 (4)C17—C16—Fe1—C1123.86 (15)
C5—C4—Fe1—C3118.3 (2)C15—C16—Fe1—C1115.99 (15)
C3—C4—Fe1—C236.78 (15)C17—C16—Fe1—C15120.1 (2)
C5—C4—Fe1—C281.57 (16)C17—C16—Fe1—C348.5 (3)
C1—C5—Fe1—C4118.9 (2)C15—C16—Fe1—C3168.7 (2)
C6—C5—Fe1—C4123.2 (3)C17—C16—Fe1—C281.71 (17)
C4—C5—Fe1—C1850.1 (3)C15—C16—Fe1—C2158.14 (15)
C1—C5—Fe1—C18169.1 (2)C2—C3—Fe1—C4120.5 (2)
C6—C5—Fe1—C1873.1 (3)C4—C3—Fe1—C538.61 (14)
C4—C5—Fe1—C1481.72 (16)C2—C3—Fe1—C581.84 (16)
C1—C5—Fe1—C14159.36 (14)C4—C3—Fe1—C18115.19 (16)
C6—C5—Fe1—C1441.5 (2)C2—C3—Fe1—C18124.36 (16)
C4—C5—Fe1—C17166.8 (3)C4—C3—Fe1—C1472.65 (18)
C1—C5—Fe1—C1747.9 (4)C2—C3—Fe1—C14166.89 (15)
C6—C5—Fe1—C1770.0 (4)C4—C3—Fe1—C17158.53 (15)
C4—C5—Fe1—C1118.9 (2)C2—C3—Fe1—C1781.02 (17)
C6—C5—Fe1—C1117.9 (3)C4—C3—Fe1—C182.91 (16)
C4—C5—Fe1—C15123.56 (15)C2—C3—Fe1—C137.55 (15)
C1—C5—Fe1—C15117.51 (15)C4—C3—Fe1—C1537.5 (4)
C6—C5—Fe1—C150.4 (2)C2—C3—Fe1—C15157.9 (3)
C4—C5—Fe1—C16163.94 (15)C4—C3—Fe1—C16166.5 (2)
C1—C5—Fe1—C1677.14 (17)C2—C3—Fe1—C1646.0 (3)
C6—C5—Fe1—C1640.7 (2)C4—C3—Fe1—C2120.5 (2)
C4—C5—Fe1—C338.01 (15)C3—C2—Fe1—C437.09 (15)
C1—C5—Fe1—C380.91 (15)C1—C2—Fe1—C482.43 (16)
C6—C5—Fe1—C3161.2 (2)C3—C2—Fe1—C581.59 (16)
C4—C5—Fe1—C281.43 (16)C1—C2—Fe1—C537.93 (14)
C1—C5—Fe1—C237.50 (14)C3—C2—Fe1—C1875.60 (18)
C6—C5—Fe1—C2155.4 (2)C1—C2—Fe1—C18164.88 (15)
C14—C18—Fe1—C480.06 (16)C3—C2—Fe1—C1438.9 (4)
C17—C18—Fe1—C4161.05 (15)C1—C2—Fe1—C14158.4 (3)
C19—C18—Fe1—C442.9 (3)C3—C2—Fe1—C17118.08 (16)
C14—C18—Fe1—C544.1 (3)C1—C2—Fe1—C17122.40 (15)
C17—C18—Fe1—C5163.0 (2)C3—C2—Fe1—C1119.5 (2)
C19—C18—Fe1—C578.8 (3)C3—C2—Fe1—C15163.3 (2)
C17—C18—Fe1—C14118.9 (2)C1—C2—Fe1—C1543.8 (3)
C19—C18—Fe1—C14123.0 (3)C3—C2—Fe1—C16160.62 (14)
C14—C18—Fe1—C17118.9 (2)C1—C2—Fe1—C1679.86 (18)
C19—C18—Fe1—C17118.2 (3)C1—C2—Fe1—C3119.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O2i0.952.463.368 (3)160
C7—H7B···O1ii0.992.443.350 (3)152
C9—H9···O1ii0.952.593.374 (3)141
C20—H20A···O30.992.282.716 (3)106
C20—H20B···O3ii0.992.543.421 (3)148
C22—H22···O3ii0.952.513.233 (3)133
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Fe(C13H11O2)2]
Mr454.29
Crystal system, space groupOrthorhombic, Pca21
Temperature (K)100
a, b, c (Å)13.1120 (14), 5.9366 (6), 25.538 (3)
V3)1987.9 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.79
Crystal size (mm)0.15 × 0.05 × 0.05
Data collection
DiffractometerBruker X8 APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.830, 0.961
No. of measured, independent and
observed [I > 2σ(I)] reflections
16738, 4726, 3820
Rint0.050
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.070, 1.02
No. of reflections4726
No. of parameters280
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.33
Absolute structureFlack (1983), 2280 Friedel pairs
Absolute structure parameter0.016 (14)

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O2i0.952.463.368 (3)160
C7—H7B···O1ii0.992.443.350 (3)152
C9—H9···O1ii0.952.593.374 (3)141
C20—H20B···O3ii0.992.543.421 (3)148
C22—H22···O3ii0.952.513.233 (3)133
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z.
 

Acknowledgements

Financial support provided by the Natural Sciences Engin­eering and Research Council of Canada (NSERC), the Canada Foundation for Innovation and the University of British Columbia Okanagan is gratefully acknowledged.

References

First citationAbd-El-Aziz, A. S. & Manners, I. (2007). In Frontiers in Transition Metal-Containing Polymers. Hoboken, NJ: Wiley.  Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHur, D., Ekti, S. F. & Dal, H. (2010). J. Organomet. Chem. 695, 1031–1034.  CAS Google Scholar
First citationKhrustalev, V. N., Nikitin, L. N., Vasil'kov, A. Y. & Khoklov, A. R. (2006). Russ. Chem. Bull. 55, 576–578.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds