organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Anthracen-9-ylmeth­yl)benzyl­ammonium chloride

aCollege of Sciences, Hebei University of Science & Technology, Shijiazhuang 050018, People's Republic of China, and bCollege of Chemical & Pharmaceutical Engineering, Hebei University of Science & Technology, Shijiazhuang 050018, People's Republic of China
*Correspondence e-mail: han_jianrong@126com

(Received 11 April 2011; accepted 4 May 2011; online 20 May 2011)

In the title compound, C22H20N+·Cl, the anthracene system makes a dihedral angle of 72.65 (4)° with the benzene ring. The C—N—C—C torsion angles in the chain connecting the benzene ring and anthracene system are 52.24 (15) and −170.73 (11)°. The crystal structure is stabilized by inter­molecular N—H⋯Cl and C—H⋯Cl hydrogen bonds, which link the mol­ecules into tetra­mers about inversion centers.

Related literature

For the synthesis and structures of related compounds, see: Ashton et al. (1997[Ashton, P. R., Ballardini, R., Balzani, V., Marcos, G.-L., Lawrence, S. M., Victoria, M.-D., Montalti, M., Piersanti, A., Prodi, L., Stoddart, J. F. & Williams, D. (1997). J. Am. Chem. Soc. 119, 10641-10651.]). For formation of rotaxanes from sec-ammonium salts and crown ethers, see: Nakazono et al. (2008[Nakazono, K., Kuwata, S. & Takata, T. (2008). Tetrahedron Lett. 49, 2397-2400.]).

[Scheme 1]

Experimental

Crystal data
  • C22H20N+·Cl

  • Mr = 333.84

  • Triclinic, [P \overline 1]

  • a = 6.7457 (13) Å

  • b = 10.761 (2) Å

  • c = 13.033 (3) Å

  • α = 94.45 (3)°

  • β = 104.84 (3)°

  • γ = 104.48 (3)°

  • V = 875.3 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 113 K

  • 0.28 × 0.24 × 0.20 mm

Data collection
  • Rigaku Saturn CCD area-detector diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]) Tmin = 0.941, Tmax = 0.957

  • 5882 measured reflections

  • 3048 independent reflections

  • 2342 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.088

  • S = 1.04

  • 3048 reflections

  • 226 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯Cl1i 0.92 (1) 2.26 (1) 3.0963 (13) 152 (1)
N1—H1B⋯Cl1 0.92 (1) 2.17 (1) 3.0781 (16) 170 (1)
C16—H16A⋯Cl1ii 0.97 2.60 3.4824 (16) 151
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x, -y+1, -z+1.

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Sec-ammonium salts and crown ethers combine well to yield a stable pseudorotaxanes as a precursor of rotaxanes (Nakazono et al., 2008). (9-Anthracenyl) benzylammonium hexafluorophosphate and aromatic crown ethers give hydrogen-bonded complexes pseudorotaxane-like geometries (Ashton et al., 1997). In this paper we report the synthesis and crystal strucure of (9-anthracenyl) benzyl ammonium chloride.

In the title compound (Fig. 1), anthracene ring makes a dihedral angle of 72.65 (4)° with benzene ring. The torsion angles in the chain connecting the benzene and the anthracene rings, (C15/N1—C16/C17 and (C16/N1—C15/C14) are 52.24 (15) ° and -170.73 (11)°, respectively. In the crystal structure, the crystal packing is stabilized by intermolecular N1—H1A···Cl1 and C16—H16A···Cl1 hydrogen bonds which link the molecules into tetramers about inversion centers (Table 1 and Fig. 2).

Related literature top

For synthesis and structures of related compounds, see: Ashton et al. (1997). For formation of rotaxanes from sec-ammonium salts and crown ethers, see: Nakazono et al. (2008).

Experimental top

A mixture of 9-anthracenealdehyde (6.18 g, 30 mmol) and benzylamine (3.86 g, 36 mmol) and molecular Sieve in toluene (200 mL) was heated under reflux with stirring in a water divider for 10 h. After the reaction mixture had cooled down to room temperature, the solvent was removed in vacuo to give the imine. The solid was dissolved in hot MeOH (150 mL), followed by drop-wise addition of NaBH4 (5.70 g, 150 mmol) and heating under reflux with stirring for 8 h. The reaction mixture was then allowed to cool down to room temperature, and concentrated HCl was added (pH<2). After evaporation of the solvent, the residue was suspended in H2O (70 mL) and extracted with CH2Cl2 (4 × 50 mL). The combined extracts were washed with 5% aqueous NaHCO3 (2× 70 mL) and H2O (70 mL) and then dried (MgSO4). Removal of the solvent in vacuo afforded the (9-anthracenyl)benzyl amine which was treated according to literature (Ashton et al., 1997) to prepare the title compound. Pale yellow single crystals of the title compound suitable for X-ray analysis were obtained by slow evaporation of an methnol solution.

Refinement top

The H atoms were included at calculated positions with C—H = 0.93 and 0.97 Å for aryl and methylene type H-atoms, respectively, and refined in a riding mode with Uiso(H) = 1.2Ueq(C). The amino H-atoms were located from a difference Fourier map and were allowed to refine freely.

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex, with 50% probablity ellipsoids.
[Figure 2] Fig. 2. Unit cell packing of the title complex, showing hydrogen bonded tetramers.
(Anthracen-9-ylmethyl)benzylammonium chloride top
Crystal data top
C22H20N+·ClZ = 2
Mr = 333.84F(000) = 352
Triclinic, P1Dx = 1.267 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.7457 (13) ÅCell parameters from 2756 reflections
b = 10.761 (2) Åθ = 2.4–27.9°
c = 13.033 (3) ŵ = 0.22 mm1
α = 94.45 (3)°T = 113 K
β = 104.84 (3)°Block, yellow
γ = 104.48 (3)°0.28 × 0.24 × 0.20 mm
V = 875.3 (3) Å3
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
3048 independent reflections
Radiation source: rotating anode2342 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.027
Detector resolution: 7.31 pixels mm-1θmax = 25.0°, θmin = 2.4°
ω and ϕ scansh = 88
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
k = 1210
Tmin = 0.941, Tmax = 0.957l = 1515
5882 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.088 w = 1/[σ2(Fo2) + (0.0502P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.002
3048 reflectionsΔρmax = 0.20 e Å3
226 parametersΔρmin = 0.21 e Å3
3 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.152 (9)
Crystal data top
C22H20N+·Clγ = 104.48 (3)°
Mr = 333.84V = 875.3 (3) Å3
Triclinic, P1Z = 2
a = 6.7457 (13) ÅMo Kα radiation
b = 10.761 (2) ŵ = 0.22 mm1
c = 13.033 (3) ÅT = 113 K
α = 94.45 (3)°0.28 × 0.24 × 0.20 mm
β = 104.84 (3)°
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
3048 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
2342 reflections with I > 2σ(I)
Tmin = 0.941, Tmax = 0.957Rint = 0.027
5882 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0313 restraints
wR(F2) = 0.088H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.20 e Å3
3048 reflectionsΔρmin = 0.21 e Å3
226 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.17351 (5)0.42040 (4)0.40032 (3)0.02288 (15)
N10.38238 (18)0.52936 (11)0.64009 (9)0.0139 (3)
C10.1631 (2)0.21072 (14)0.67206 (11)0.0184 (3)
C20.0472 (2)0.21057 (16)0.61273 (12)0.0242 (4)
H20.07740.28900.60180.029*
C30.2034 (3)0.09727 (16)0.57217 (13)0.0305 (4)
H30.33910.09950.53400.037*
C40.1629 (3)0.02440 (17)0.58713 (13)0.0341 (4)
H40.27210.10090.55970.041*
C50.0344 (3)0.02903 (16)0.64127 (12)0.0305 (4)
H50.05950.10910.65050.037*
C60.2045 (3)0.08678 (15)0.68441 (12)0.0227 (4)
C70.4101 (3)0.08322 (16)0.73768 (12)0.0262 (4)
H70.43650.00290.74380.031*
C80.5764 (2)0.19449 (15)0.78173 (11)0.0223 (4)
C90.7883 (3)0.18991 (18)0.83401 (12)0.0299 (4)
H90.81630.10980.83820.036*
C100.9485 (3)0.29980 (18)0.87736 (12)0.0315 (4)
H101.08530.29480.91030.038*
C110.9084 (2)0.42185 (17)0.87262 (11)0.0273 (4)
H111.01930.49690.90300.033*
C120.7099 (2)0.43137 (16)0.82427 (11)0.0221 (4)
H120.68710.51300.82310.026*
C130.5357 (2)0.31906 (15)0.77525 (11)0.0188 (3)
C140.3287 (2)0.32511 (14)0.72005 (11)0.0170 (3)
C150.2884 (2)0.45631 (14)0.71774 (11)0.0167 (3)
H15A0.13560.44540.69770.020*
H15B0.34990.50650.78910.020*
C160.3787 (2)0.66897 (14)0.64641 (11)0.0159 (3)
H16A0.23220.67250.62090.019*
H16B0.45710.71160.60000.019*
C170.4765 (2)0.74042 (14)0.75999 (11)0.0160 (3)
C180.3455 (2)0.75556 (14)0.82421 (12)0.0214 (4)
H180.19780.72470.79630.026*
C190.4352 (3)0.81680 (15)0.93001 (12)0.0277 (4)
H190.34720.82610.97290.033*
C200.6531 (3)0.86365 (16)0.97157 (13)0.0300 (4)
H200.71220.90461.04240.036*
C210.7851 (3)0.84988 (15)0.90801 (12)0.0254 (4)
H210.93260.88170.93600.030*
C220.6962 (2)0.78841 (14)0.80265 (11)0.0194 (3)
H220.78480.77930.76010.023*
H1A0.5219 (14)0.5298 (15)0.6487 (11)0.027 (4)*
H1B0.3065 (17)0.4908 (14)0.5707 (8)0.018 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0145 (2)0.0350 (3)0.0170 (2)0.00489 (17)0.00408 (14)0.00094 (16)
N10.0128 (6)0.0149 (7)0.0127 (6)0.0023 (5)0.0032 (5)0.0016 (5)
C10.0249 (8)0.0171 (8)0.0153 (7)0.0035 (7)0.0110 (6)0.0039 (6)
C20.0265 (9)0.0237 (9)0.0219 (8)0.0031 (7)0.0102 (7)0.0024 (7)
C30.0249 (9)0.0339 (11)0.0270 (9)0.0032 (8)0.0090 (7)0.0034 (8)
C40.0413 (11)0.0230 (9)0.0302 (9)0.0108 (8)0.0172 (8)0.0002 (8)
C50.0479 (11)0.0167 (9)0.0285 (9)0.0017 (8)0.0208 (8)0.0045 (7)
C60.0365 (10)0.0161 (8)0.0194 (8)0.0044 (7)0.0171 (7)0.0039 (7)
C70.0434 (10)0.0212 (9)0.0259 (8)0.0176 (8)0.0201 (8)0.0109 (7)
C80.0321 (9)0.0257 (9)0.0171 (7)0.0140 (8)0.0138 (7)0.0085 (7)
C90.0413 (10)0.0403 (11)0.0247 (9)0.0288 (9)0.0174 (8)0.0174 (8)
C100.0261 (9)0.0532 (12)0.0221 (8)0.0187 (9)0.0089 (7)0.0148 (8)
C110.0264 (9)0.0391 (10)0.0164 (8)0.0077 (8)0.0065 (7)0.0068 (7)
C120.0253 (8)0.0254 (9)0.0164 (7)0.0073 (7)0.0069 (6)0.0048 (7)
C130.0251 (8)0.0225 (8)0.0138 (7)0.0095 (7)0.0107 (6)0.0056 (6)
C140.0226 (8)0.0167 (8)0.0157 (7)0.0061 (6)0.0111 (6)0.0039 (6)
C150.0176 (8)0.0164 (8)0.0173 (7)0.0041 (6)0.0075 (6)0.0033 (6)
C160.0159 (7)0.0143 (8)0.0189 (7)0.0049 (6)0.0056 (6)0.0059 (6)
C170.0197 (8)0.0097 (7)0.0197 (7)0.0051 (6)0.0056 (6)0.0053 (6)
C180.0231 (8)0.0166 (8)0.0277 (8)0.0078 (7)0.0099 (7)0.0057 (7)
C190.0395 (10)0.0256 (9)0.0255 (8)0.0147 (8)0.0168 (7)0.0038 (7)
C200.0439 (10)0.0219 (9)0.0211 (8)0.0095 (8)0.0049 (7)0.0015 (7)
C210.0251 (8)0.0180 (8)0.0269 (8)0.0029 (7)0.0006 (7)0.0008 (7)
C220.0216 (8)0.0148 (8)0.0224 (8)0.0046 (6)0.0079 (6)0.0031 (6)
Geometric parameters (Å, º) top
N1—C151.4990 (17)C10—H100.9300
N1—C161.5051 (18)C11—C121.359 (2)
N1—H1A0.917 (8)C11—H110.9300
N1—H1B0.922 (8)C12—C131.426 (2)
C1—C141.410 (2)C12—H120.9300
C1—C21.431 (2)C13—C141.418 (2)
C1—C61.442 (2)C14—C151.504 (2)
C2—C31.360 (2)C15—H15A0.9700
C2—H20.9300C15—H15B0.9700
C3—C41.421 (2)C16—C171.512 (2)
C3—H30.9300C16—H16A0.9700
C4—C51.352 (2)C16—H16B0.9700
C4—H40.9300C17—C221.386 (2)
C5—C61.425 (2)C17—C181.3922 (19)
C5—H50.9300C18—C191.391 (2)
C6—C71.394 (2)C18—H180.9300
C7—C81.383 (2)C19—C201.374 (2)
C7—H70.9300C19—H190.9300
C8—C91.432 (2)C20—C211.388 (2)
C8—C131.438 (2)C20—H200.9300
C9—C101.353 (2)C21—C221.386 (2)
C9—H90.9300C21—H210.9300
C10—C111.408 (2)C22—H220.9300
C15—N1—C16114.67 (10)C11—C12—C13121.55 (16)
C15—N1—H1A112.3 (10)C11—C12—H12119.2
C16—N1—H1A106.5 (10)C13—C12—H12119.2
C15—N1—H1B109.8 (9)C14—C13—C12123.26 (14)
C16—N1—H1B106.0 (9)C14—C13—C8119.31 (14)
H1A—N1—H1B107.2 (9)C12—C13—C8117.42 (14)
C14—C1—C2123.40 (14)C1—C14—C13120.77 (14)
C14—C1—C6118.93 (14)C1—C14—C15120.96 (13)
C2—C1—C6117.67 (14)C13—C14—C15118.23 (13)
C3—C2—C1120.89 (16)N1—C15—C14112.01 (10)
C3—C2—H2119.6N1—C15—H15A109.2
C1—C2—H2119.6C14—C15—H15A109.2
C2—C3—C4121.11 (16)N1—C15—H15B109.2
C2—C3—H3119.4C14—C15—H15B109.2
C4—C3—H3119.4H15A—C15—H15B107.9
C5—C4—C3120.06 (16)N1—C16—C17111.53 (12)
C5—C4—H4120.0N1—C16—H16A109.3
C3—C4—H4120.0C17—C16—H16A109.3
C4—C5—C6121.12 (16)N1—C16—H16B109.3
C4—C5—H5119.4C17—C16—H16B109.3
C6—C5—H5119.4H16A—C16—H16B108.0
C7—C6—C5121.68 (15)C22—C17—C18119.11 (13)
C7—C6—C1119.21 (15)C22—C17—C16120.99 (12)
C5—C6—C1119.11 (15)C18—C17—C16119.88 (13)
C8—C7—C6122.54 (15)C19—C18—C17120.05 (14)
C8—C7—H7118.7C19—C18—H18120.0
C6—C7—H7118.7C17—C18—H18120.0
C7—C8—C9122.15 (15)C20—C19—C18120.37 (14)
C7—C8—C13119.11 (14)C20—C19—H19119.8
C9—C8—C13118.74 (15)C18—C19—H19119.8
C10—C9—C8121.28 (16)C19—C20—C21120.05 (14)
C10—C9—H9119.4C19—C20—H20120.0
C8—C9—H9119.4C21—C20—H20120.0
C9—C10—C11120.10 (15)C22—C21—C20119.72 (15)
C9—C10—H10119.9C22—C21—H21120.1
C11—C10—H10119.9C20—C21—H21120.1
C12—C11—C10120.87 (16)C17—C22—C21120.71 (13)
C12—C11—H11119.6C17—C22—H22119.6
C10—C11—H11119.6C21—C22—H22119.6
C14—C1—C2—C3177.07 (13)C7—C8—C13—C12178.28 (12)
C6—C1—C2—C31.8 (2)C9—C8—C13—C121.57 (19)
C1—C2—C3—C40.1 (2)C2—C1—C14—C13178.15 (12)
C2—C3—C4—C50.9 (2)C6—C1—C14—C133.01 (19)
C3—C4—C5—C60.2 (2)C2—C1—C14—C154.2 (2)
C4—C5—C6—C7178.11 (14)C6—C1—C14—C15174.63 (12)
C4—C5—C6—C11.5 (2)C12—C13—C14—C1179.28 (12)
C14—C1—C6—C73.89 (19)C8—C13—C14—C10.21 (19)
C2—C1—C6—C7177.20 (12)C12—C13—C14—C153.02 (19)
C14—C1—C6—C5176.47 (12)C8—C13—C14—C15177.92 (12)
C2—C1—C6—C52.44 (19)C16—N1—C15—C14170.73 (11)
C5—C6—C7—C8178.83 (13)C1—C14—C15—N1106.13 (14)
C1—C6—C7—C81.5 (2)C13—C14—C15—N176.17 (15)
C6—C7—C8—C9178.44 (13)C15—N1—C16—C1752.24 (15)
C6—C7—C8—C131.7 (2)N1—C16—C17—C2281.05 (17)
C7—C8—C9—C10179.48 (14)N1—C16—C17—C1897.18 (15)
C13—C8—C9—C100.4 (2)C22—C17—C18—C190.7 (2)
C8—C9—C10—C110.6 (2)C16—C17—C18—C19177.52 (14)
C9—C10—C11—C120.4 (2)C17—C18—C19—C200.6 (2)
C10—C11—C12—C130.9 (2)C18—C19—C20—C210.1 (2)
C11—C12—C13—C14177.20 (13)C19—C20—C21—C220.2 (2)
C11—C12—C13—C81.9 (2)C18—C17—C22—C210.5 (2)
C7—C8—C13—C142.6 (2)C16—C17—C22—C21177.76 (13)
C9—C8—C13—C14177.55 (11)C20—C21—C22—C170.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl1i0.92 (1)2.26 (1)3.0963 (13)152 (1)
N1—H1B···Cl10.92 (1)2.17 (1)3.0781 (16)170 (1)
C16—H16A···Cl1ii0.972.603.4824 (16)151
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC22H20N+·Cl
Mr333.84
Crystal system, space groupTriclinic, P1
Temperature (K)113
a, b, c (Å)6.7457 (13), 10.761 (2), 13.033 (3)
α, β, γ (°)94.45 (3), 104.84 (3), 104.48 (3)
V3)875.3 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.28 × 0.24 × 0.20
Data collection
DiffractometerRigaku Saturn CCD area-detector
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2005)
Tmin, Tmax0.941, 0.957
No. of measured, independent and
observed [I > 2σ(I)] reflections
5882, 3048, 2342
Rint0.027
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.088, 1.04
No. of reflections3048
No. of parameters226
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.20, 0.21

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl1i0.917 (8)2.257 (11)3.0963 (13)151.9 (13)
N1—H1B···Cl10.922 (8)2.165 (9)3.0781 (16)170.3 (12)
C16—H16A···Cl1ii0.9702.6003.4824 (16)151
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z+1.
 

Footnotes

Additional correspondence author, e-mail: chlsx@263.net.

Acknowledgements

We are grateful for financial support from the Hebei Natural Science Fundation (No. B2009000670) and the Foundation of the Education Department of Hebei Province (grant No. 2009117), People's Republic of China.

References

First citationAshton, P. R., Ballardini, R., Balzani, V., Marcos, G.-L., Lawrence, S. M., Victoria, M.-D., Montalti, M., Piersanti, A., Prodi, L., Stoddart, J. F. & Williams, D. (1997). J. Am. Chem. Soc. 119, 10641–10651.  CrossRef CAS Google Scholar
First citationNakazono, K., Kuwata, S. & Takata, T. (2008). Tetrahedron Lett. 49, 2397–2400.  CrossRef CAS Google Scholar
First citationRigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds