Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

N^{6} -(4-Fluorobenzyl)-3-nitropyridine-2,6diamine

Ji-long Ge^a* and Xiao-min Qian^b

^aChangzhou Siyao Pharmaceuticals Co. Ltd, Changzhou 213004, People's Republic of China, and ^bOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China

Correspondence e-mail: chmsunbw@seu.edu.cn

Received 18 April 2011; accepted 17 May 2011

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.004 Å; disorder in main residue; R factor = 0.052; wR factor = 0.140; data-to-parameter ratio = 9.6

In the title compound, $C_{12}H_{11}FN_4O_2$, the pyridine ring is connected to a benzene ring by a -CH₂-NH₂- chain. The nitro group is twisted out of the pyridine ring plane [torsion angle $O-N-C-C = 10.41 (10)^{\circ}$]. An intramolecular N- $H \cdots O$ hydrogen bond occurs. The fluorobenzene ring is disordered over two positions [occupancy ratio = 0.59 (3):0.41 (3)]. Intermolecular N-H···O and N-H···N hydrogen bonds stabilize the crystal structure.

Related literature

The title compound is an intermediate in the synthesis of analgesic drugs. For the analgesic properties of flupirtine (systematic name ethyl{2-amino-6-[(4-fluorobenzyl)amino]pyridin-3-yl}carbamate), see: Klawe & Maschke (2009). For synthetic procedures, see: Gerhard & Ilia (2010). For a related structure, see: Wang (2009).

NO₂

V = 1244.3 (2) Å³

Mo $K\alpha$ radiation

 $0.38 \times 0.15 \times 0.11 \text{ mm}$

5923 measured reflections

2184 independent reflections

1169 reflections with $I > 2\sigma(I)$

 $\mu = 0.11 \text{ mm}^-$

T = 298 K

 $R_{\rm int} = 0.056$

Z = 4

Experimental

Crystal data

$C_{12}H_{11}FN_4O_2$
$M_r = 262.25$
Monoclinic, $P2_1/n$
a = 14.8187 (14) Å
b = 5.9972 (6) Å
c = 14.8840 (15) Å
$\beta = 109.827 \ (1)^{\circ}$

Data collection

Rigaku SCXmini CCD diffractometer Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) $T_{\min} = 0.960, \ T_{\max} = 0.988$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.052$	227 parameters
$wR(F^2) = 0.140$	H-atom parameters constrained
S = 1.03	$\Delta \rho_{\rm max} = 0.21 \text{ e } \text{\AA}^{-3}$
2184 reflections	$\Delta \rho_{\rm min} = -0.22 \text{ e} \text{ Å}^{-3}$

Table 1 F

lyd	lrogen-	bond	geometry	(A,	°).	

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
N3−H3 <i>B</i> ···O1	0.86	2.03	2.651 (3)	129
$N3-H3A\cdots N1^{i}$	0.86	2.17	3.028 (3)	174
$N2-H2\cdots O1^{ii}$	0.86	2.35	3.060 (3)	141

Symmetry codes: (i) -x + 1, -y, -z + 1; (ii) $x - \frac{1}{2}$, $-y + \frac{1}{2}$, $z - \frac{1}{2}$.

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2411).

References

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. Gerhard. J & Ilia, F. (2010). Patent WO 2010/136113 A1, 2 December 2010. Klawe, C. & Maschke, M. (2009). Expert Opin. Pharmacother. 10, 1495–1500. Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122. Spek, A. L. (2009). Acta Cryst. D65, 148-155. Wang, B. (2009). Acta Cryst. E65, m861.

supporting information

Acta Cryst. (2011). E67, o1481 [doi:10.1107/S1600536811018642]

N⁶-(4-Fluorobenzyl)-3-nitropyridine-2,6-diamine

Ji-long Ge and Xiao-min Qian

S1. Comment

Flupirtine, ethyl{2-amino-6-[(4-fluorobenzyl)amino]pyridin-3-yl}carbamate, is of great importance owing to its analgesic properties (Klawe & Maschke, 2009). In this article, we report the crystal structure of the title compound which is one of the key intermediates in the synthesis of analgesia drugs (Gerhard & Ilia, 2010).

In the title molecule (Fig. 1), a pyridine ring is connected with a benzene ring by $-CH_2$ — NH_2 - chain and the nitro group is twisted out of the pyridine ring plane [torsion angle O1—N4—C4— $C5 = 10.41 (10)^{\circ}$]. The crystal structure is stabilized by intermolecular N—H···O and N—H···N hydrogen bonds (Figure 2 and Table 1).

S2. Experimental

To a solution of 2-amino-3-nitro-6-chloropyridine (7.8 g, 45 mmol) in 2-propanol (50 ml) were added 4-fluorobenzylamine (5.63 g, 45 mmol) and triethylamine (6.45 g,64 mmol) (Gerhard & Ilia, 2010). Then another 30 ml 2-propanol was add to the above solution. The mixture was heated to backflow and stirred for 3 h. Then 100 ml water was add to the mixture to obtain the title compound which was recrystallized from ethanol by slow evaporation (yield 10.2 g, 91%).

S3. Refinement

H atoms bonded to C atoms were placed geometrically and treated as riding, with C—H = 0.93 (benzene ring) or 0.97 Å (methylene) and N—H = 0.86 Å with $U_{iso}(H) = 1.2U_{eq}(C \text{ or } N)$ or $U_{iso}(H) = 1.5U_{eq}(methylene)$. The fluoro benzene ring was disordered over two positions with site occupancy factors 0.59 (3) and 0.41 (3).

Figure 1

An ORTEP (Farrugia, 1997) view of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Smaller fraction of the fluorobenzene ring has been plotted with hollow bonds.

Figure 2

A packing diagram of the title compound showing hydrogen bonds. Smaller fraction of the fluorobenzene ring has been excluded.

N⁶-(4-Fluorobenzyl)-3-nitropyridine-2,6-diamine

Crystal data

F(000) = 544C₁₂H₁₁FN₄O₂ $M_r = 262.25$ $D_{\rm x} = 1.400 {\rm Mg} {\rm m}^{-3}$ Monoclinic, $P2_1/n$ Mo *K* α radiation, $\lambda = 0.71073$ Å Hall symbol: -P 2yn Cell parameters from 1144 reflections $\theta = 2.4 - 26.9^{\circ}$ a = 14.8187 (14) Åb = 5.9972 (6) Å $\mu = 0.11 \text{ mm}^{-1}$ T = 298 Kc = 14.8840 (15) Å $\beta = 109.827 (1)^{\circ}$ Prism, yellow V = 1244.3 (2) Å³ $0.38 \times 0.15 \times 0.11 \text{ mm}$ Z = 4Data collection Rigaku SCXmini CCD 5923 measured reflections diffractometer 2184 independent reflections Radiation source: fine-focus sealed tube 1169 reflections with $I > 2\sigma(I)$ Graphite monochromator $R_{\rm int} = 0.056$ Detector resolution: 8.192 pixels mm⁻¹ $\theta_{\rm max} = 25.0^{\circ}, \ \theta_{\rm min} = 2.4^{\circ}$ φ and ω scans $h = -14 \rightarrow 17$ Absorption correction: multi-scan $k = -5 \rightarrow 7$ (CrystalClear; Rigaku, 2005) $l = -17 \rightarrow 17$ $T_{\rm min} = 0.960, \ T_{\rm max} = 0.988$ Refinement Refinement on F^2 Primary atom site location: structure-invariant Least-squares matrix: full direct methods $R[F^2 > 2\sigma(F^2)] = 0.052$ Secondary atom site location: difference Fourier $wR(F^2) = 0.140$ map *S* = 1.03 Hydrogen site location: inferred from 2184 reflections

neighbouring sites H-atom parameters constrained

227 parameters

0 restraints

$w = 1/[\sigma^2(F_o^2) + (0.0585P)^2]$	$\Delta \rho_{\rm max} = 0.21 \text{ e} \text{ Å}^{-3}$
where $P = (F_o^2 + 2F_c^2)/3$	$\Delta ho_{ m min} = -0.22 \ { m e} \ { m \AA}^{-3}$
$(\Delta/\sigma)_{\rm max} = 0.001$	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , accurational *R* factors *R* are based on *F* with *F* sat to zero for parentius F^2 . The threshold currents of $F^2 > \sigma(F^2)$ is used

conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates	and isotropic o	r equivalent i	isotropic d	displacement	parameters	$(Å^2)$
	1	1	1	1	1	\ /

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
F1	0.6846 (16)	0.5113 (18)	0.0036 (13)	0.121 (4)	0.59 (3)
F1′	0.7330 (17)	0.538 (2)	0.050 (2)	0.105 (5)	0.41 (3)
N1	0.55771 (13)	0.2584 (4)	0.46588 (14)	0.0474 (6)	
N2	0.49151 (15)	0.4615 (4)	0.33021 (15)	0.0608 (7)	
H2	0.4453	0.3666	0.3173	0.073*	
N3	0.61662 (15)	0.0425 (4)	0.59818 (14)	0.0597 (7)	
H3A	0.5670	-0.0413	0.5754	0.072*	
H3B	0.6593	0.0109	0.6523	0.072*	
N4	0.78769 (16)	0.3201 (4)	0.66405 (17)	0.0611 (7)	
01	0.78379 (14)	0.1726 (4)	0.72145 (14)	0.0792 (7)	
O2	0.86264 (15)	0.4308 (4)	0.68041 (15)	0.0852 (7)	
C1	0.56363 (18)	0.4356 (5)	0.41323 (18)	0.0487 (7)	
C2	0.6413 (2)	0.5883 (5)	0.4429 (2)	0.0604 (8)	
H2A	0.6429	0.7126	0.4061	0.072*	
C3	0.71288 (19)	0.5481 (5)	0.5260 (2)	0.0581 (8)	
H3	0.7649	0.6448	0.5463	0.070*	
C4	0.70977 (17)	0.3639 (4)	0.58174 (18)	0.0488 (7)	
C5	0.62743 (17)	0.2205 (4)	0.54982 (17)	0.0454 (6)	
C6	0.4844 (2)	0.6355 (5)	0.2601 (2)	0.0666 (8)	
H6A	0.5020	0.7765	0.2934	0.080*	
H6B	0.4180	0.6470	0.2188	0.080*	
C7	0.5459 (2)	0.6006 (5)	0.1989 (2)	0.0611 (8)	
C8	0.6128 (14)	0.425 (4)	0.2145 (16)	0.067 (4)	0.59 (3)
H8	0.6195	0.3224	0.2632	0.081*	0.59 (3)
C9	0.669 (3)	0.407 (6)	0.156 (3)	0.097 (7)	0.59 (3)
Н9	0.7225	0.3149	0.1712	0.116*	0.59 (3)
C10	0.6390 (18)	0.540 (6)	0.071 (2)	0.087 (6)	0.59 (3)
C11	0.5858 (15)	0.726 (3)	0.0609 (13)	0.082 (4)	0.59 (3)
H11	0.5823	0.8329	0.0145	0.099*	0.59 (3)
C12	0.5373 (18)	0.747 (4)	0.1241 (16)	0.072 (4)	0.59 (3)
H12	0.4958	0.8669	0.1164	0.086*	0.59 (3)
C8′	0.581 (2)	0.398 (6)	0.186 (2)	0.081 (6)	0.41 (3)

supporting information

H8′	0.5631	0.2733	0.2137	0.097*	0.41 (3)	
C9′	0.641 (3)	0.369 (8)	0.134 (3)	0.086 (8)	0.41 (3)	
H9′	0.6603	0.2268	0.1225	0.103*	0.41 (3)	
C10′	0.673 (3)	0.559 (7)	0.098 (3)	0.078 (7)	0.41 (3)	
C11′	0.626 (2)	0.753 (4)	0.099 (2)	0.082 (6)	0.41 (3)	
H11′	0.6350	0.8719	0.0630	0.099*	0.41 (3)	
C12′	0.566 (2)	0.782 (7)	0.152 (3)	0.080(7)	0.41 (3)	
H12′	0.5393	0.9213	0.1550	0.096*	0.41 (3)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
F1	0.158 (10)	0.109 (4)	0.135 (8)	0.014 (5)	0.100 (7)	0.009 (5)
F1′	0.124 (10)	0.090 (5)	0.141 (11)	0.018 (6)	0.097 (9)	0.018 (6)
N1	0.0386 (12)	0.0553 (15)	0.0437 (12)	-0.0061 (10)	0.0080 (10)	0.0023 (11)
N2	0.0504 (14)	0.0698 (17)	0.0557 (14)	-0.0039 (11)	0.0096 (12)	0.0163 (12)
N3	0.0514 (13)	0.0679 (17)	0.0481 (12)	-0.0160 (12)	0.0016 (11)	0.0080 (12)
N4	0.0469 (15)	0.0722 (18)	0.0548 (15)	-0.0129 (13)	0.0050 (13)	-0.0155 (14)
01	0.0631 (13)	0.0991 (18)	0.0574 (12)	-0.0146 (12)	-0.0030 (10)	0.0125 (12)
O2	0.0537 (13)	0.0941 (18)	0.0881 (15)	-0.0231 (12)	-0.0015 (11)	-0.0111 (13)
C1	0.0441 (15)	0.0529 (18)	0.0504 (15)	-0.0001 (13)	0.0180 (13)	0.0025 (14)
C2	0.0638 (18)	0.0505 (19)	0.0666 (19)	-0.0090 (15)	0.0218 (16)	0.0059 (14)
C3	0.0485 (16)	0.0545 (19)	0.0687 (18)	-0.0170 (14)	0.0165 (15)	-0.0079 (16)
C4	0.0418 (15)	0.0527 (18)	0.0478 (15)	-0.0069 (12)	0.0100 (13)	-0.0068 (13)
C5	0.0399 (14)	0.0534 (18)	0.0417 (14)	-0.0054 (13)	0.0121 (12)	-0.0031 (13)
C6	0.0653 (19)	0.071 (2)	0.0636 (18)	0.0142 (16)	0.0224 (16)	0.0190 (16)
C7	0.0670 (19)	0.054 (2)	0.0666 (19)	0.0078 (16)	0.0278 (16)	0.0107 (16)
C8	0.078 (9)	0.056 (7)	0.074 (8)	0.010 (6)	0.034 (7)	0.010 (6)
С9	0.108 (15)	0.074 (14)	0.122 (15)	0.017 (10)	0.056 (12)	0.005 (9)
C10	0.101 (14)	0.081 (11)	0.102 (13)	0.014 (11)	0.063 (10)	0.009 (9)
C11	0.101 (10)	0.073 (7)	0.083 (8)	0.011 (7)	0.044 (7)	0.024 (6)
C12	0.082 (11)	0.064 (9)	0.079 (10)	0.015 (7)	0.039 (8)	0.019 (7)
C8′	0.101 (18)	0.060 (9)	0.090 (16)	-0.004 (11)	0.045 (12)	0.012 (10)
C9′	0.11 (2)	0.057 (12)	0.111 (19)	0.010 (13)	0.069 (16)	0.007 (13)
C10′	0.096 (18)	0.057 (10)	0.11 (2)	-0.003 (13)	0.066 (14)	0.010 (12)
C11′	0.098 (14)	0.067 (9)	0.098 (14)	-0.004 (9)	0.054 (11)	0.019 (10)
C12′	0.091 (17)	0.062 (10)	0.097 (19)	0.003 (11)	0.044 (13)	0.010 (11)

Geometric parameters (Å, °)

F1—C10	1.39 (3)	С6—Н6В	0.9700	
F1′—C10′	1.32 (4)	C7—C8′	1.36 (3)	
N1-C1	1.341 (3)	C7—C12′	1.38 (4)	
N1C5	1.343 (3)	C7—C12	1.39 (3)	
N2-C1	1.341 (3)	C7—C8	1.41 (2)	
N2—C6	1.454 (3)	C8—C9	1.40 (4)	
N2—H2	0.8600	C8—H8	0.9300	
N3—C5	1.327 (3)	C9—C10	1.43 (5)	

N3—H3A	0.8600	С9—Н9	0.9300
N3—H3B	0.8600	C10—C11	1.35 (4)
N4—O1	1.245 (3)	C11—C12	1.37 (3)
N4—O2	1.245 (3)	С11—Н11	0.9300
N4—C4	1.394 (3)	C12—H12	0.9300
C1-C2	1 419 (4)	C8' - C9'	1 38 (6)
$C^2 - C^3$	1 350 (4)	C8'—H8'	0.9300
$C_2 - H_2 A$	0.9300	C9'-C10'	1.41(7)
$C_2 = C_4$	1 392 (4)	C9' - H9'	0.9300
C3—H3	0.9300	C10'-C11'	1.36(5)
C4-C5	1 436 (3)	C11'-C12'	1.30(3) 1.38(4)
C4 C7	1.506 (4)		0.0300
C6 H6A	0.0700	C12' $H12'$	0.9300
Со—поя	0.9700	С12—П12	0.9300
C1—N1—C5	119.7 (2)	C12—C7—C8	118.1 (15)
C1—N2—C6	125.8 (2)	C8′—C7—C6	123.0 (15)
C1—N2—H2	117.1	C12′—C7—C6	118.4 (18)
C6—N2—H2	117.1	C12—C7—C6	119.2 (12)
C5—N3—H3A	120.0	C8—C7—C6	122.6 (10)
C5—N3—H3B	120.0	C9-C8-C7	119(2)
H3A—N3—H3B	120.0	C9—C8—H8	120.4
01—N4—02	1194(2)	C7—C8—H8	120.1
01 - N4 - C4	121.3(2)	C8 - C9 - C10	120.1
Ω^2 _N4_C4	121.3(2) 1193(3)	C8 - C9 - H9	122.0
$N_2 - C_1 - N_1$	119.3(3) 116.1(2)	C10-C9-H9	122.0
$N_2 = C_1 = N_1$	110.1(2) 121A(3)	$C_{10} = C_{20} = C_{10}$	122.0 116(2)
$N_2 - C_1 - C_2$	121.4(3) 122.5(2)	$C_{11} = C_{10} = C_{11}$	110(2) 123(3)
N1 = C1 = C2	122.3(2) 118 1 (2)	$E_{1} = C_{10} = C_{9}$	123(3) 110(3)
$C_3 = C_2 = C_1$	110.1 (5)	$r_1 = c_1 c_2$	119(3) 115(2)
$C_3 = C_2 = H_2 A$	120.9	C10 - C11 - C12	113 (2)
C1 = C2 = H2A	120.9		122.5
$C_2 = C_3 = C_4$	120.9 (5)	C12—C11—H11	122.5
$C_2 = C_3 = H_3$	119.0	$C_{11} = C_{12} = C_{12}$	125 (2)
C4 - C3 - H3	119.6	CII—CI2—HI2	11/./
$C_3 - C_4 - N_4$	119.2 (2)	C/-C12-H12	11/./
$C_3 - C_4 - C_5$	118.3 (2)	C/-C8'-C9'	123 (3)
N4—C4—C5	122.4 (2)	C/-C8'-H8'	118.7
N3—C5—N1	116.4 (2)	C9'—C8'—H8'	118.7
N3—C5—C4	123.2 (2)	C8'—C9'—C10'	119 (4)
N1—C5—C4	120.4 (2)	С8'—С9'—Н9'	120.7
N2—C6—C7	115.0 (2)	С10'—С9'—Н9'	120.7
N2—C6—H6A	108.5	F1'—C10'—C11'	122 (3)
С7—С6—Н6А	108.5	F1'C10'C9'	120 (4)
N2—C6—H6B	108.5	C11'—C10'—C9'	116 (4)
С7—С6—Н6В	108.5	C10'—C11'—C12'	123 (3)
Н6А—С6—Н6В	107.5	C10'—C11'—H11'	118.3
C8'—C7—C12'	119 (2)	C12'—C11'—H11'	118.3
C8′—C7—C12	112.9 (17)	C7—C12′—C11′	119 (3)
C12′—C7—C12	21.8 (14)	C7—C12′—H12′	120.7

C8′—C7—C8	22.5 (12)	C11'—C12'—H12'	120.7
C12′—C7—C8	114.4 (19)		
C6—N2—C1—N1	-177.6 (2)	C12—C7—C8—C9	1.3 (19)
C6—N2—C1—C2	2.4 (4)	C6—C7—C8—C9	-178.4 (13)
C5—N1—C1—N2	179.7 (2)	C7—C8—C9—C10	-14 (3)
C5—N1—C1—C2	-0.3 (4)	C8—C9—C10—C11	24 (3)
N2—C1—C2—C3	-178.1 (2)	C8—C9—C10—F1	-172.7 (18)
N1—C1—C2—C3	2.0 (4)	F1-C10-C11-C12	176.8 (13)
C1—C2—C3—C4	-0.9 (4)	C9—C10—C11—C12	-19 (3)
C2-C3-C4-N4	176.0 (2)	C10-C11-C12-C7	5 (2)
C2—C3—C4—C5	-1.5 (4)	C8′—C7—C12—C11	-21 (2)
O1—N4—C4—C3	171.9 (3)	C12'—C7—C12—C11	89 (8)
O2—N4—C4—C3	-8.0 (4)	C8—C7—C12—C11	3.6 (19)
O1—N4—C4—C5	-10.7 (4)	C6-C7-C12-C11	-176.7 (11)
O2—N4—C4—C5	169.3 (2)	C12'—C7—C8'—C9'	5 (3)
C1—N1—C5—N3	179.8 (2)	C12—C7—C8′—C9′	29 (3)
C1—N1—C5—C4	-2.3 (3)	C8—C7—C8′—C9′	-80 (6)
C3—C4—C5—N3	-179.0 (2)	C6—C7—C8′—C9′	-177 (2)
N4—C4—C5—N3	3.6 (4)	C7—C8′—C9′—C10′	5 (4)
C3—C4—C5—N1	3.2 (4)	C8'—C9'—C10'—F1'	178 (3)
N4—C4—C5—N1	-174.2 (2)	C8′—C9′—C10′—C11′	-14 (5)
C1—N2—C6—C7	77.2 (3)	F1'-C10'-C11'-C12'	-177.8 (19)
N2—C6—C7—C8′	20.6 (16)	C9'—C10'—C11'—C12'	15 (4)
N2—C6—C7—C12′	-161.0 (15)	C8′—C7—C12′—C11′	-5 (2)
N2—C6—C7—C12	174.1 (10)	C12—C7—C12′—C11′	-85 (8)
N2—C6—C7—C8	-6.3 (10)	C8—C7—C12′—C11′	20 (2)
C8′—C7—C8—C9	83 (6)	C6—C7—C12′—C11′	176.8 (13)
C12′—C7—C8—C9	-23 (2)	C10′—C11′—C12′—C7	-6 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	$D \cdots A$	D—H··· A
N3—H3 <i>B</i> …O1	0.86	2.03	2.651 (3)	129
N3—H3A···N1 ⁱ	0.86	2.17	3.028 (3)	174
N2—H2…O1 ⁱⁱ	0.86	2.35	3.060 (3)	141

Symmetry codes: (i) -x+1, -y, -z+1; (ii) x-1/2, -y+1/2, z-1/2.