organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

3-(Piperidin-1-ium-1-yl)-6-azoniaspiro-[5.5]undecane dibromide monohydrate

Jorge Gonzalez,^a Roberto Atilano-Coral,^a Ana Lilia Peraza-Campos,^a David Ortegón-Reyna^a and Eleuterio Álvarez^b*

^aFacultad de Ciencias Químicas, Campus Coquimatlán, Kilometro 9, Carretera Colima-Coquimatlán, Colima, CP 28400, Mexico, and ^bInstituto de Investigaciones Químicas - CSIC - Universidad de Sevilla, Avda. Américo Vespucio 49, 41092 Sevilla, Spain

Correspondence e-mail: ealvarez@iig.csic.es

Received 4 February 2011; accepted 7 March 2011

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.003 Å; R factor = 0.027; wR factor = 0.068; data-to-parameter ratio = 27.0.

The title compound, C₁₅H₃₀N₂²⁺·2Br⁻·H₂O, was synthesized by reaction of 4-piperidinopiperidine with dibromopentane. The dication is built up from three linked piperidine rings, two of which have one quaternary N atom in common (azoniaspiro), whereas the third is N-C bonded to the azoniaspiro system and protonated on the N atom (piperidinium). All three piperidine rings adopt chair conformations. The crystal structure features O-H···Br and N-H···Br hydrogen bonds.

Related literature

For applications of spiro compounds, see: Camblor et al. (2001); Jiang et al. (1998); Kolocouris et al. (2007); Pinto et al. (1992); Salbeck et al. (2002). For related structures, see: Clemente (2003); Day et al. (2005); Estienne et al. (1984); Huber (1969); Monkowius et al. (2004); Rosen & Guarino (1991). For the synthesis, see: Tchoubar & Verrier (1960).

Experimental

Crystal data $C_{15}H_{30}N_2^{2+}\cdot 2Br^-\cdot H_2O$ $M_{\rm m} = 416.25$ Monoclinic, $P2_1/c$ a = 6.5491 (2) Å b = 23.3325 (9) Å c = 12.2715 (5) Å $\beta = 102.141 \ (1)^{\circ}$

$V = 1833.23 (12) \text{ Å}^3$
Z = 4
Mo $K\alpha$ radiation
$\mu = 4.42 \text{ mm}^{-1}$
T = 173 K
$0.34 \times 0.32 \times 0.30 \text{ mm}$

28905 measured reflections

 $R_{\rm int} = 0.026$

5130 independent reflections 4273 reflections with $I > 2\sigma(I)$

Data collection

Bruker–Nonius X8 Kappa APEXII
CCD area-detector
diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
$T_{\text{min}} = 0.245$ $T_{\text{max}} = 0.271$

Refinement

4

$R[F^2 > 2\sigma(F^2)] = 0.027$	H atoms treated by a mixture of
$wR(F^2) = 0.068$	independent and constrained
S = 1.03	refinement
5130 reflections	$\Delta \rho_{\rm max} = 0.81 \text{ e } \text{\AA}^{-3}$
190 parameters	$\Delta \rho_{\rm min} = -0.48 \text{ e } \text{\AA}^{-3}$
4 restraints	

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D{\cdots}A$	$D - \mathbf{H} \cdots A$
$N2-H1N2\cdots Br1$	0.90	2.36 (1)	3.2425 (11)	168 (2)
O1-H1O1···Br2	0.90	2.48 (1)	3.3664 (8)	168 (1)
$O1 - H2O1 \cdots Br2^{i}$	0.90	2.54 (1)	3.3528 (7)	151 (2)

Symmetry code: (i) $x_{1} - y + \frac{3}{2}, z - \frac{1}{2}$

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007): data reduction: SAINT: program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL and publCIF (Westrip, 2010).

Financial support from the Junta de Andalucía (project P09-FQM-4826), CSIC (PIF08-017-1) and the Fondo Mixto CONACyT - Gobierno del Estado de Colima, is gratefully acknowledged by the authors.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: QK2002).

References

- Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.
- Camblor, M. A., Barrett, P. A., Diaz-Cabañas, M. J., Villaescusa, L. A., Puche, M., Boix, T., Pérez, E. & Koller, H. (2001). Microporous Mesoporous Mater. 48. 11-22
- Clemente, D. A. (2003). Tetrahedron, 59, 8445-8455.
- Day, M. W., Ogino, I. & Davis, M. E. (2005). Private communication (deposition No. 196139). CCDC, Cambridge, England.
- Estienne, J., Pierrot, M., Baldy, A., Rosenberg, J. & Robert, G. (1984). Acta Cryst. C40, 1478-1480.
- Huber, C. S. (1969). Acta Cryst. B25, 1140-1149.
- Jiang, Y., Xue, S., Li, Z., Deng, J., Mi, A. & Chan, A. S. C. (1998). Tetrahedron Asymmetry, 9, 3185-3189.
- Kolocouris, N., Zoidis, G., Foscolos, G. B., Fytas, G., Prathalingham, S. R., Kelly, J. M., Naesens, L. & De Clercq, E. (2007). Bioorg. Med. Chem. 17, 4358-4362.
- Monkowius, U., Nogal, S. & Schmidbaur, H. (2004). Z. Naturforsch. Teil B, 59, 259-263.

Pinto, L. H., Holsinger, L. J. & Lamb, R. A. (1992). *Cell*, 69, 517–528.
Rosen, T. & Guarino, K. J. (1991). *Tetrahedron*, 47, 5391–5400.
Salbeck, J., Schörner, M. & Fuhrmann, T. (2002). *Thin Solid Films*, 417, 20–25.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Tchoubar, B. & Verrier, M. (1960). Bull. Soc. Chim. Fr. pp. 2151–2156. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

supporting information

Acta Cryst. (2011). E67, o1308-o1309 [doi:10.1107/S1600536811008713]

3-(Piperidin-1-ium-1-yl)-6-azoniaspiro[5.5]undecane dibromide monohydrate Jorge Gonzalez, Roberto Atilano-Coral, Ana Lilia Peraza-Campos, David Ortegón-Reyna and

S1. Comment

Eleuterio Álvarez

In the past few years, spiro compounds having cyclic structures fused at a central nitrogen atom have received great attention due to their potential applications in medicine (Kolocouris *et al.*, 2007; Monkowius *et al.*, 2004; Pinto *et al.*, 1992; Rosen and Guarino, 1991), catalysis (Jiang *et al.*, 1998), optical materials (Salbeck *et al.*, 2002) and zeolitic solids synthesis (Camblor *et al.*, 2001). The title compound was synthesized by reaction of 4-piperidinopiperidine with dibromopentane (Tchoubar and Verrier, 1960).

The structure of the title compound is shown in Fig. 1, and the geometrical parameters are given in the Supplementary Information and the archived CIF. The compound crystallized in the centrosymmetric space group $P2_1/c$ with one dicationic molecule, two bromide anions and one water molecule in the asymmetric unit. The bond lengths and angles in the dicationic molecule are similar to those observed in some azoniaspiro analogues (Clemente, 2003; Day *et al.*, 2005; Estienne *et al.*, 1984; Huber, 1969). In all these compounds quaternary nitrogen centers appear with a very slightly distorted tetrahedral configuration.

One of the two bromide anions, Br1, is N—H…Br hydrogen bonded to a dicationic molecule and embedded in a double layer of the organocations parallel to (010) showing a number of weak C—H…Br interactions with them (Fig. 1). The second bromide, Br2, and the water molecule form infinite hydrogen bonded chains parallel to [001]. These chains are arranged in layers parallel to (010), which are inserted between the double layers of the organocations and Br1 (Fig. 2).

S2. Experimental

The title compound (I) was synthesized by reaction of 4-piperidinopiperidine with dibromopentane. 3.0 g of 4-piperidinopiperidine (0.0178 mol) and 4.09 g of 1,5-dibromopentane (0.0178 mol) were dissolved in 170 ml of ethanol. The mixture was heated under reflux for 48 h. After that, the reaction mixture was cooled at 5 °C for 48 h. The precipitate thus formed was recovered by filtration, washed with fresh ethanol and dried at 80°C overnight (yield 70%) and then recrystallyzed from absolute ethanol. Crystals suitable for single-crystal X-Ray diffraction analysis were isolated and data collection was performed in order to determine the molecular structure of (I). The melting point, 336–337 °C (accompanied by thermal decomposition: bubbles were observed to develop during melting), was determined in a Barnstead 1201D Electrothermal MEL-TEMP apparatus.

NMR spectra were recorded on a Jeol 500 MHz spectrometer with D₂O as solvent. Chemical shifts were expressed in p.p.m. relative to TMS (tetramethylsilane) as internal standard. Signals associated with different hydrogen and carbon atoms (Fig.1) where identified by means of COSY, DEPT and HETCOR experiments.¹H NMR (500 MHz, D₂O): δ 3.95 and 3.32 (d, and m, 2H_{1ax-eq}, 2H_{5ax-eq}), 3.61 (m, 1H₃), 3.54 (t, 2H₁₁, 2H₁₅), 3.42 (t, 2H₆, 2H₁₀), 2.30 (m, 2H₂, 2H₄), 1.95 (m, 2H₉, 2H₇), 1.85 (m, 2H₁₂, 2H₁₄, 2H₈), 1.73 (m, 2H₁₃). ¹³C NMR (500 MHz, D₂O): δ 65.1 (C₆, C₁₀), 59.9 (C₃), 57.1 (C₁, C₅), 54.5 (C₁₁, C₁₅), 23.0 (C₁₂, C₁₄), 20.9 (C₁₃), 20.3 (C₂, C₄), 19.3 (C₇, C₉), 18.9 (C₈).

S3. Refinement

The water hydrogen atoms and the piperidinium N–H were located from a difference Fourier map and refined isotropically, with the O–H and N–H distance restrained both to 0.90 Å, $U_{iso} = 1.5 U_{eq}$ (O or N). The remaining H atoms were positioned geometrically [C–H = 0.99 Å] and were refined using a riding model, with $U_{iso} = 1.2 U_{eq}$ (C).

Figure 1

ORTEP drawing of the asymmetric unit of the title compound, $(C_{15}H_{30}N_2)^{+2}.2(Br^{-1}).H_2O$, with atom labeling and numbering. Atoms are represented by 50% probability thermal ellipsoids except for H atoms, which are shown as small spheres. The dotted line is a hydrogen bond. C-bonded hydrogen atoms have been omitted for clarity.

Figure 2

The crystal packing of (I) projected down the *a* axis. The hydrogen bonds are depicted as dotted lines. H atoms not involved in hydrogen bonding have been omitted for clarity.

3-(Piperidin-1-ium-1-yl)-6-azoniaspiro[5.5]undecane dibromide monohydrate

Crystal data	
$C_{15}H_{30}N_2^{2+}\cdot 2Br^-\cdot H_2O$	F(000) = 856
$M_r = 416.25$	$D_{\rm x} = 1.508 {\rm Mg} {\rm m}^{-3}$
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 9946 reflections
a = 6.5491 (2) Å	$\theta = 2.4 - 30.5^{\circ}$
b = 23.3325 (9) Å	$\mu = 4.42 \text{ mm}^{-1}$
c = 12.2715 (5) Å	T = 173 K
$\beta = 102.141 \ (1)^{\circ}$	Block, colourless
$V = 1833.23 (12) Å^3$	$0.34 \times 0.32 \times 0.30 \text{ mm}$
Z = 4	
Data collection	
Bruker–Nonius X8 Kappa APEXII CCD area- detector diffractometer	$T_{\min} = 0.245, T_{\max} = 0.271$ 28905 measured reflections 5130 independent reflections
Radiation source: fine-focus sealed tube	4273 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.026$
Detector resolution: 8.26 pixels mm ⁻¹	$\theta_{\text{max}} = 30.5^{\circ}, \ \theta_{\text{min}} = 2.4^{\circ}$
φ and ω scans with narrow frames	$h = -5 \rightarrow 9$
Absorption correction: multi-scan	$k = -33 \rightarrow 33$
(SADABS; Bruker, 2001)	$l = -17 \rightarrow 17$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.027$	Hydrogen site location: inferred from
$wR(F^2) = 0.068$	neighbouring sites
S = 1.03	H atoms treated by a mixture of independent
5130 reflections	and constrained refinement
190 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0323P)^2 + 1.2017P]$
4 restraints	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} = 0.007$
direct methods	$\Delta ho_{ m max} = 0.81 \ m e \ m \AA^{-3}$
	$\Delta \rho_{\rm min} = -0.48 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
Br1	-0.24994 (3)	0.514171 (7)	0.206959 (17)	0.02573 (6)
N1	0.0568 (2)	0.62958 (6)	-0.05069 (13)	0.0193 (3)
N2	0.11027 (8)	0.60709 (6)	0.30473 (13)	0.0200 (3)
H1N2	0.015 (3)	0.5790 (7)	0.2883 (19)	0.030*
C1	-0.0033 (3)	0.67931 (7)	0.01514 (16)	0.0215 (3)
H1A	-0.1333	0.6969	-0.0276	0.026*
H1B	0.1081	0.7087	0.0246	0.026*
C2	-0.0370 (3)	0.66163 (7)	0.12916 (16)	0.0218 (3)
H2A	-0.1569	0.6349	0.1199	0.026*
H2B	-0.0714	0.6959	0.1692	0.026*
C3	0.1568 (3)	0.63259 (7)	0.19865 (16)	0.0204 (3)
Н3	0.2700	0.6618	0.2192	0.024*
C4	0.2337 (3)	0.58485 (8)	0.13157 (17)	0.0252 (4)
H4A	0.3706	0.5708	0.1733	0.030*
H4B	0.1340	0.5524	0.1231	0.030*
C5	0.2562 (3)	0.60481 (8)	0.01682 (17)	0.0244 (4)
H5A	0.3675	0.6342	0.0254	0.029*
H5B	0.2996	0.5720	-0.0241	0.029*
C6	0.1035 (3)	0.65089 (8)	-0.16009 (16)	0.0240 (4)
H6A	0.2073	0.6823	-0.1443	0.029*
H6B	0.1663	0.6193	-0.1957	0.029*
C7	-0.0892 (3)	0.67244 (8)	-0.24058 (17)	0.0283 (4)
H7A	-0.0508	0.6843	-0.3111	0.034*
H7B	-0.1453	0.7064	-0.2083	0.034*

C8	-0.2572 (3)	0.62608 (9)	-0.26500 (19)	0.0318 (4)
H8A	-0.3850	0.6418	-0.3134	0.038*
H8B	-0.2073	0.5937	-0.3047	0.038*
C9	-0.3071 (3)	0.60483 (9)	-0.15585 (19)	0.0297 (4)
H9A	-0.3705	0.6364	-0.1203	0.036*
H9B	-0.4098	0.5732	-0.1717	0.036*
C10	-0.1114 (3)	0.58381 (7)	-0.07634 (17)	0.0228 (4)
H10A	-0.1485	0.5713	-0.0059	0.027*
H10B	-0.0553	0.5502	-0.1096	0.027*
C11	0.0009 (3)	0.64804 (8)	0.36873 (17)	0.0251 (4)
H11A	-0.1286	0.6623	0.3195	0.030*
H11B	0.0925	0.6813	0.3938	0.030*
C12	-0.0526 (3)	0.61806 (9)	0.46940 (17)	0.0305 (4)
H12A	-0.1230	0.6455	0.5109	0.037*
H12B	-0.1508	0.5862	0.4437	0.037*
C13	0.1417 (4)	0.59460 (10)	0.54675 (18)	0.0339 (5)
H13A	0.2347	0.6266	0.5785	0.041*
H13B	0.1018	0.5734	0.6090	0.041*
C14	0.2555 (4)	0.55475 (9)	0.48168 (18)	0.0327 (4)
H14A	0.1677	0.5206	0.4579	0.039*
H14B	0.3869	0.5416	0.5308	0.039*
C15	0.3059 (3)	0.58378 (8)	0.37943 (17)	0.0262 (4)
H15A	0.4057	0.6155	0.4033	0.031*
H15B	0.3728	0.5558	0.3374	0.031*
Br2	0.52616 (3)	0.736064 (9)	0.44763 (2)	0.03739 (7)
01	0.32909 (7)	0.76797 (9)	0.17852 (6)	0.0581 (5)
H1O1	0.3996 (2)	0.7627 (12)	0.2491 (4)	0.087*
H2O1	0.412 (3)	0.7572 (16)	0.1321 (8)	0.087*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.01828 (9)	0.02090 (8)	0.03781 (11)	-0.00131 (6)	0.00543 (8)	-0.00437 (7)
N1	0.0162 (7)	0.0175 (6)	0.0255 (8)	-0.0007 (5)	0.0070 (6)	-0.0009(5)
N2	0.0181 (7)	0.0169 (6)	0.0245 (8)	0.0012 (5)	0.0035 (6)	-0.0005 (5)
C1	0.0231 (8)	0.0161 (7)	0.0254 (9)	0.0024 (6)	0.0052 (7)	-0.0009 (6)
C2	0.0217 (8)	0.0179 (7)	0.0259 (9)	0.0053 (6)	0.0049 (8)	-0.0005 (6)
C3	0.0168 (8)	0.0196 (7)	0.0250 (9)	0.0005 (6)	0.0049 (7)	0.0011 (6)
C4	0.0209 (9)	0.0258 (8)	0.0303 (10)	0.0086 (7)	0.0084 (8)	0.0028 (7)
C5	0.0163 (8)	0.0291 (9)	0.0288 (10)	0.0051 (7)	0.0072 (8)	0.0018 (7)
C6	0.0215 (9)	0.0269 (8)	0.0255 (10)	-0.0042 (7)	0.0097 (8)	0.0004 (7)
C7	0.0301 (10)	0.0292 (9)	0.0259 (10)	-0.0001 (7)	0.0063 (9)	0.0008 (7)
C8	0.0243 (10)	0.0367 (10)	0.0322 (11)	0.0000 (8)	0.0008 (9)	-0.0064 (8)
C9	0.0184 (8)	0.0306 (9)	0.0410 (12)	-0.0058 (7)	0.0082 (9)	-0.0079 (8)
C10	0.0204 (8)	0.0174 (7)	0.0327 (10)	-0.0047 (6)	0.0101 (8)	-0.0042 (7)
C11	0.0254 (9)	0.0226 (8)	0.0272 (10)	0.0069 (7)	0.0054 (8)	-0.0019 (7)
C12	0.0320 (11)	0.0352 (10)	0.0262 (10)	0.0078 (8)	0.0102 (9)	-0.0002 (8)
C13	0.0384 (12)	0.0371 (11)	0.0250 (10)	0.0088 (9)	0.0038 (9)	-0.0001 (8)

supporting information

C14	0.0378 (11)	0.0297 (9)	0.0296 (11)	0.0102 (8)	0.0045 (10)	0.0046 (8)
C15	0.0220 (9)	0.0257 (9)	0.0290 (10)	0.0068 (7)	0.0013 (8)	0.0026 (7)
Br2	0.02488 (10)	0.02888 (10)	0.05666 (16)	-0.00384 (7)	0.00461 (10)	0.00798 (9)
01	0.0556 (12)	0.0605 (12)	0.0594 (13)	-0.0124 (10)	0.0147 (11)	-0.0090 (10)

Geometric parameters (Å, °)

N1—C5	1.507 (2)	С7—Н7В	0.9900
N1—C1	1.513 (2)	C8—C9	1.527 (3)
N1-C10	1.519 (2)	C8—H8A	0.9900
N1—C6	1.522 (2)	C8—H8B	0.9900
N2-C11	1.510 (2)	C9—C10	1.520 (3)
N2—C15	1.511 (2)	С9—Н9А	0.9900
N2—C3	1.519 (2)	С9—Н9В	0.9900
N2—H1N2	0.9000(1)	C10—H10A	0.9900
C1—C2	1.519 (3)	C10—H10B	0.9900
C1—H1A	0.9900	C11—C12	1.523 (3)
C1—H1B	0.9900	C11—H11A	0.9900
С2—С3	1.530 (2)	C11—H11B	0.9900
C2—H2A	0.9900	C12—C13	1.521 (3)
C2—H2B	0.9900	C12—H12A	0.9900
C3—C4	1.532 (2)	C12—H12B	0.9900
С3—Н3	1.0000	C13—C14	1.519 (3)
C4—C5	1.519 (3)	C13—H13A	0.9900
C4—H4A	0.9900	C13—H13B	0.9900
C4—H4B	0.9900	C14—C15	1.522 (3)
С5—Н5А	0.9900	C14—H14A	0.9900
С5—Н5В	0.9900	C14—H14B	0.9900
C6—C7	1.515 (3)	C15—H15A	0.9900
С6—Н6А	0.9900	C15—H15B	0.9900
С6—Н6В	0.9900	O1—H1O1	0.9000 (1)
С7—С8	1.527 (3)	O1—H2O1	0.9000
С7—Н7А	0.9900		
C5—N1—C1	107.06 (14)	С8—С7—Н7В	109.4
C5—N1—C10	110.54 (13)	H7A—C7—H7B	108.0
C1—N1—C10	113.04 (13)	C9—C8—C7	109.64 (17)
C5—N1—C6	107.37 (13)	C9—C8—H8A	109.7
C1—N1—C6	110.11 (13)	C7—C8—H8A	109.7
C10—N1—C6	108.57 (14)	C9—C8—H8B	109.7
C11—N2—C15	110.28 (15)	C7—C8—H8B	109.7
C11—N2—C3	113.61 (13)	H8A—C8—H8B	108.2
C15—N2—C3	111.31 (11)	С10—С9—С8	111.16 (16)
C11—N2—H1N2	101.2 (16)	С10—С9—Н9А	109.4
C15—N2—H1N2	109.5 (15)	С8—С9—Н9А	109.4
C3—N2—H1N2	110.4 (15)	С10—С9—Н9В	109.4
N1-C1-C2	112.84 (13)	С8—С9—Н9В	109.4
N1—C1—H1A	109.0	H9A—C9—H9B	108.0

C2—C1—H1A	109.0	N1—C10—C9	112.51 (14)
N1—C1—H1B	109.0	N1-C10-H10A	109.1
C2—C1—H1B	109.0	С9—С10—Н10А	109.1
H1A—C1—H1B	107.8	N1-C10-H10B	109.1
C1—C2—C3	111.69 (15)	С9—С10—Н10В	109.1
C1—C2—H2A	109.3	H10A—C10—H10B	107.8
C3—C2—H2A	109.3	N2-C11-C12	110.28 (15)
C1—C2—H2B	109.3	N2—C11—H11A	109.6
C3—C2—H2B	109.3	C12—C11—H11A	109.6
H2A—C2—H2B	107.9	N2—C11—H11B	109.6
N2—C3—C2	111.00 (13)	C12—C11—H11B	109.6
N2—C3—C4	108.88 (13)	H11A—C11—H11B	108.1
C2—C3—C4	110.52 (15)	C13—C12—C11	111.48 (17)
N2—C3—H3	108.8	C13—C12—H12A	109.3
С2—С3—Н3	108.8	C11—C12—H12A	109.3
С4—С3—Н3	108.8	C13—C12—H12B	109.3
C5—C4—C3	112.45 (15)	C11—C12—H12B	109.3
C5—C4—H4A	109.1	H12A—C12—H12B	108.0
C3—C4—H4A	109.1	C14—C13—C12	109.32 (18)
C5—C4—H4B	109.1	C14—C13—H13A	109.8
C3—C4—H4B	109.1	C12—C13—H13A	109.8
H4A—C4—H4B	107.8	C14—C13—H13B	109.8
N1—C5—C4	112.68 (14)	C12—C13—H13B	109.8
N1—C5—H5A	109.1	H13A—C13—H13B	108.3
C4—C5—H5A	109.1	C13—C14—C15	112.11 (17)
N1—C5—H5B	109.1	C13—C14—H14A	109.2
C4—C5—H5B	109.1	C15—C14—H14A	109.2
H5A—C5—H5B	107.8	C13—C14—H14B	109.2
C7—C6—N1	112.89 (15)	C15—C14—H14B	109.2
С7—С6—Н6А	109.0	H14A—C14—H14B	107.9
N1—C6—H6A	109.0	N2-C15-C14	110.93 (16)
С7—С6—Н6В	109.0	N2—C15—H15A	109.5
N1—C6—H6B	109.0	C14—C15—H15A	109.5
H6A—C6—H6B	107.8	N2—C15—H15B	109.5
C6—C7—C8	111.08 (16)	C14—C15—H15B	109.5
С6—С7—Н7А	109.4	H15A—C15—H15B	108.0
C8—C7—H7A	109.4	H1O1—O1—H2O1	108.409 (8)
С6—С7—Н7В	109.4		
C5—N1—C1—C2	-59.45 (18)	C1—N1—C6—C7	-68.66 (19)
C10—N1—C1—C2	62.5 (2)	C10—N1—C6—C7	55.57 (19)
C6—N1—C1—C2	-175.88 (15)	N1—C6—C7—C8	-57.0 (2)
N1—C1—C2—C3	57.2 (2)	C6—C7—C8—C9	55.5 (2)
C11—N2—C3—C2	-48.88 (17)	C7—C8—C9—C10	-55.8 (2)
C15—N2—C3—C2	-174.09 (14)	C5—N1—C10—C9	-173.12 (15)
C11—N2—C3—C4	-170.75 (14)	C1—N1—C10—C9	66.9 (2)
C15—N2—C3—C4	64.03 (18)	C6—N1—C10—C9	-55.58 (19)
C1—C2—C3—N2	-171.29 (13)	C8—C9—C10—N1	57.4 (2)

supporting information

C1—C2—C3—C4	-50.38 (19)	C15—N2—C11—C12	-57.94 (19)
N2—C3—C4—C5	172.25 (14)	C3—N2—C11—C12	176.30 (15)
C2—C3—C4—C5	50.1 (2)	N2-C11-C12-C13	58.5 (2)
C1—N1—C5—C4	58.59 (19)	C11—C12—C13—C14	-56.2 (2)
C10—N1—C5—C4	-64.92 (19)	C12—C13—C14—C15	55.0 (3)
C6—N1—C5—C4	176.81 (15)	C11—N2—C15—C14	56.78 (19)
C3—C4—C5—N1	-56.1 (2)	C3—N2—C15—C14	-176.17 (15)
C5—N1—C6—C7	175.11 (15)	C13—C14—C15—N2	-56.1 (2)

Hydrogen-bond geometry (Å, °)

		/		
<i>D</i> —H··· <i>A</i>	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
N2—H1 <i>N</i> 2···Br1	0.90	2.36 (1)	3.2425 (11)	168 (2)
O1—H1 <i>O</i> 1···Br2	0.90	2.48 (1)	3.3664 (8)	168 (1)
O1—H2O1···Br2 ⁱ	0.90	2.54 (1)	3.3528 (7)	151 (2)

Symmetry code: (i) x, -y+3/2, z-1/2.