Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Triethylammonium tetrachlorido-(pyrazine-2-carboxylato- $\kappa^2 N^1$,O)stannate(IV)

Ezzatollah Najafi,^a Mostafa M. Amini^a and Seik Weng Ng^b*

^aDepartment of Chemistry, General Campus, Shahid Beheshti University, Tehran 1983963113, Iran, and ^bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Received 26 April 2011; accepted 2 May 2011

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.003 Å; R factor = 0.022; wR factor = 0.052; data-to-parameter ratio = 21.1.

The Sn^{IV} atom in the title ammonium stannate, (Et_3NH) -[Sn(C₅H₃N₂O₂)Cl₄], is chelated by an pyrazine-2-carboxylate ligand and exists in a *cis*-SnCl₄NO octahedral geometry. The cation and the anion are linked by an N-H···N hydrogen bond.

Related literature

For triethylammonium tetrachlorido(pyridine-2-carboxylato)stannate(IV), see: Najafi *et al.* (2011).

 $\gamma = 83.817 \ (2)^{\circ}$

Z = 2

 $V = 899.70(5) \text{ Å}^3$

Mo $K\alpha$ radiation

 $0.35 \times 0.30 \times 0.25$ mm

15321 measured reflections

4094 independent reflections

3800 reflections with $I > 2\sigma(I)$

 $\mu = 2.02 \text{ mm}^{-1}$

T = 100 K

 $R_{\rm int} = 0.030$

Experimental

Crystal data

 $\begin{array}{l} (C_{6}H_{16}N)[Sn(C_{5}H_{3}N_{2}O_{2})Cl_{4}]\\ M_{r} = 485.78\\ Triclinic, P\overline{1}\\ a = 7.4497 \ (2) \ \text{\AA}\\ b = 9.9752 \ (3) \ \text{\AA}\\ c = 12.3728 \ (4) \ \text{\AA}\\ \alpha = 86.491 \ (2)^{\circ}\\ \beta = 80.125 \ (3)^{\circ} \end{array}$

Data collection

Agilent SuperNova Dual diffractometer with an Atlas detector Absorption correction: multi-scan (*CrysAlis PRO*; Agilent, 2010) $T_{min} = 0.538, T_{max} = 0.632$

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.022 & \text{H atoms treated by a mixture of} \\ wR(F^2) &= 0.052 & \text{independent and constrained} \\ S &= 1.02 & \text{refinement} \\ 4094 \text{ reflections} & \Delta\rho_{\text{max}} &= 0.35 \text{ e } \text{ Å}^{-3} \\ 194 \text{ parameters} & \Delta\rho_{\text{min}} &= -0.65 \text{ e } \text{ Å}^{-3} \end{split}$$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N3-H1\cdots N2$	0.91 (3)	2.10 (3)	2.999 (2)	167 (2)

Data collection: *CrysAlis PRO* (Agilent, 2010); cell refinement: *CrysAlis PRO*; data reduction: *CrysAlis PRO*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *X-SEED* (Barbour, 2001); software used to prepare material for publication: *publCIF* (Westrip, 2010).

We thank Shahid Beheshti University and the University of Malaya for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: QK2007).

References

Agilent (2010). *CrysAlis PRO*. Agilent Technologies, Yarnton, England. Barbour, L. J. (2001). *J. Supramol. Chem.* **1**, 189–191. Najafi, E., Amini, M. M. & Ng, S. W. (2011). *Acta Cryst.* E**67**, m351. Sheldrick, G. M. (2008). *Acta Cryst.* A**64**, 112–122. Westrip, S. P. (2010). *J. Appl. Cryst.* **43**, 920–925.

supporting information

Acta Cryst. (2011). E67, m711 [doi:10.1107/S1600536811016473]

Triethylammonium tetrachlorido(pyrazine-2-carboxylato- $\kappa^2 N^1$,O)stannate(IV)

Ezzatollah Najafi, Mostafa M. Amini and Seik Weng Ng

S1. Comment

We have recently reported the crystal structure of triethylammonium tetrachlorido(pyridine-2-carboxylato)stannate, which was synthesized by the reaction of triethylammonium pyridine-2-carboxylate and stannic chloride. The Sn^{IV} atom in the anion is *N*,*O*-chelated by the pyridine-2-carboxylate in a *cis*-SnCl₄NO octahedral geometry (Najafi *et al.*, 2011). In our previous studies, we have reacted aromatic carboxylic acid with stannic chloride, with/without a proton-abstraction agent. In the present study, replacing pyrdine-2-carboxylic acid by pyrazine-2-carboxylic acid affords a similar salt, $(Et_3NH)^+$ [SnCl₄(C₅H₃N₂O₂)]⁻ (Scheme I, Fig. 1). The tin atom in the stannate is chelated by the pyrazine-2-carboxylate group in a *cis*-SnCl₄NO octahedral geometry. The cation forms an N–H…N hydrogen bond with the anion. Of the four Sn–Cl bonds, the ones that are *trans* to the Sn–O/Sn–N bonds are somewhat shorter than the other two. No Cl…Cl interactions are present.

S2. Experimental

The reaction was carried out under a nitrogen atmosphere. Pyrazine-2-carboxylic acid (1.0 mmol, 0.12 g) and the triethylamine (1.0 mmol, 0.10 g) were dissolved in dry methanol (20 ml). Stannic chloride (1.0 mmol, 0.35 g) was added to the mixture and stirred for 12 h. Suitable crystals were obtained by slow evaporation of the solvent.

S3. Refinement

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 to 0.98 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2 to 1.5U(C). The ammonium H-atom was located in a difference Fourier map, and was freely refined.

Figure 1

Thermal ellipsoid plot (Barbour, 2001) of $(Et_3NH)^+$ [SnCl₄(C₅H₃N₂O₂)]- at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius. The hydrogen bond is denoted by a dashed bond.

Triethylammonium tetrachlorido(pyrazine-2-carboxylato- $\kappa^2 N^1$, O)stannate(IV)

Crystal data	
$(C_{6}H_{16}N)[Sn(C_{5}H_{3}N_{2}O_{2})Cl_{4}]$ $M_{r} = 485.78$ Triclinic, <i>P</i> 1 Hall symbol: -P 1 a = 7.4497 (2) Å b = 9.9752 (3) Å c = 12.3728 (4) Å a = 86.491 (2)° $\beta = 80.125$ (3)° $\gamma = 83.817$ (2)° V = 899.70 (5) Å ³	Z = 2 F(000) = 480 $D_x = 1.793 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 10335 reflections $\theta = 2.6-29.2^{\circ}$ $\mu = 2.02 \text{ mm}^{-1}$ T = 100 K Irregular block, colorless $0.35 \times 0.30 \times 0.25 \text{ mm}$
Data collection	
Agilent SuperNova Dual diffractometer with an Atlas detector Radiation source: SuperNova (Mo) X-ray Source Mirror monochromator Detector resolution: 10.4041 pixels mm ⁻¹ ω scans	Absorption correction: multi-scan (<i>CrysAlis PRO</i> ; Agilent, 2010) $T_{min} = 0.538$, $T_{max} = 0.632$ 15321 measured reflections 4094 independent reflections 3800 reflections with $I > 2\sigma(I)$ $R_{int} = 0.030$

$\theta_{\rm max} = 27.5^\circ, \ \theta_{\rm min} = 2.6^\circ$	$k = -12 \rightarrow 12$
$h = -9 \rightarrow 9$	$l = -15 \rightarrow 16$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.022$	Hydrogen site location: inferred from
$wR(F^2) = 0.052$	neighbouring sites
S = 1.02	H atoms treated by a mixture of independent
4094 reflections	and constrained refinement
194 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0257P)^2 + 0.2896P]$
0 restraints	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} = 0.001$
direct methods	$\Delta \rho_{\rm max} = 0.35 \text{ e} \text{ Å}^{-3}$
	$\Delta \rho_{\rm min} = -0.65 \text{ e } \text{\AA}^{-3}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Sn1	0.310753 (18)	0.248889 (13)	0.740250 (10)	0.01198 (5)	
Cl1	0.46068 (7)	0.34171 (5)	0.86858 (4)	0.01988 (11)	
Cl2	0.00680 (7)	0.26586 (5)	0.83792 (4)	0.01703 (11)	
Cl3	0.39067 (7)	0.02423 (5)	0.80641 (4)	0.01605 (11)	
Cl4	0.26028 (7)	0.46373 (5)	0.64356 (4)	0.02064 (11)	
01	0.22917 (19)	0.16094 (14)	0.60971 (11)	0.0149 (3)	
O2	0.3047 (2)	0.10363 (15)	0.43513 (11)	0.0194 (3)	
N1	0.5661 (2)	0.22659 (16)	0.61249 (13)	0.0128 (3)	
N2	0.8334 (2)	0.21721 (17)	0.42643 (14)	0.0171 (4)	
N3	1.0881 (2)	0.24246 (17)	0.21208 (14)	0.0142 (3)	
C1	0.3419 (3)	0.14663 (19)	0.51771 (16)	0.0134 (4)	
C2	0.5317 (3)	0.18609 (19)	0.51747 (16)	0.0128 (4)	
C3	0.6667 (3)	0.18070 (19)	0.42525 (16)	0.0155 (4)	
H3A	0.6397	0.1501	0.3592	0.019*	
C4	0.8662 (3)	0.2544 (2)	0.52239 (17)	0.0179 (4)	
H4A	0.9846	0.2789	0.5264	0.021*	
C5	0.7345 (3)	0.2587 (2)	0.61660 (17)	0.0168 (4)	
H5A	0.7638	0.2844	0.6837	0.020*	
C6	0.9980 (3)	0.3321 (2)	0.13009 (16)	0.0161 (4)	
H6A	1.0734	0.3221	0.0564	0.019*	
H6B	0.9943	0.4272	0.1495	0.019*	
C7	0.8062 (3)	0.3011 (2)	0.12490 (18)	0.0201 (5)	
H7A	0.7565	0.3610	0.0691	0.030*	
H7B	0.7288	0.3151	0.1966	0.030*	
H7C	0.8084	0.2070	0.1057	0.030*	
C8	1.2722 (3)	0.2874 (2)	0.22036 (17)	0.0173 (4)	
H8A	1.3358	0.3118	0.1459	0.021*	
H8B	1.3477	0.2116	0.2511	0.021*	
C9	1.2544 (3)	0.4075 (2)	0.29232 (19)	0.0220 (5)	
H9A	1.3763	0.4344	0.2947	0.033*	
H9B	1.1952	0.3827	0.3668	0.033*	

H9C	1.1801	0.4829	0.2620	0.033*	
C10	1.1019 (3)	0.0937 (2)	0.19176 (16)	0.0168 (4)	
H10A	1.1673	0.0429	0.2470	0.020*	
H10B	0.9769	0.0646	0.2021	0.020*	
C11	1.2003 (3)	0.0582 (2)	0.07822 (17)	0.0189 (4)	
H11A	1.2039	-0.0392	0.0701	0.028*	
H11B	1.3255	0.0840	0.0681	0.028*	
H11C	1.1352	0.1067	0.0230	0.028*	
H1	1.015 (3)	0.249 (2)	0.279 (2)	0.027 (7)*	

Atomic displacement parameters $(Å^2)$

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(19)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	18)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	19)
O2 0.0241 (8) 0.0229 (8) 0.0123 (7) -0.0054 (6) -0.0030 (6) -0.0027 (7)N1 0.0154 (9) 0.0120 (8) 0.0104 (8) 0.0013 (7) -0.0017 (7) -0.0008 (7)N2 0.0182 (9) 0.0166 (9) 0.0150 (9) 0.0021 (7) -0.0011 (7) -0.0008 (7)N3 0.0151 (9) 0.0164 (9) 0.0103 (8) -0.0020 (7) 0.0002 (7) -0.0004 (7)C1 0.0183 (10) 0.0092 (9) 0.0121 (9) 0.0000 (8) -0.0028 (8) 0.0015 (7)C2 0.0167 (10) 0.0088 (9) 0.0116 (9) 0.0016 (7) -0.0011 (8) 0.0006 (7)C3 0.0201 (11) 0.0130 (10) 0.0126 (10) 0.0001 (8) -0.0023 (8) 0.0004 (8)C4 0.0133 (10) 0.0222 (11) 0.0161 (10) -0.0011 (8) -0.0038 (8) 0.0028 (8)C5 0.0157 (10) 0.0189 (10) 0.0161 (10) -0.0010 (8) -0.0025 (9) 0.0022 (7)	6)
N1 $0.0154(9)$ $0.0120(8)$ $0.0104(8)$ $0.0013(7)$ $-0.0017(7)$ $-0.0008(7)$ N2 $0.0182(9)$ $0.0166(9)$ $0.0150(9)$ $0.0021(7)$ $-0.0011(7)$ $0.0008(7)$ N3 $0.0151(9)$ $0.0164(9)$ $0.0103(8)$ $-0.0020(7)$ $0.0002(7)$ $-0.0004(6)$ C1 $0.0183(10)$ $0.0092(9)$ $0.0121(9)$ $0.0000(8)$ $-0.0028(8)$ $0.0015(7)$ C2 $0.0167(10)$ $0.0088(9)$ $0.0116(9)$ $0.0016(7)$ $-0.0011(8)$ $0.0006(7)$ C3 $0.0201(11)$ $0.0130(10)$ $0.0126(10)$ $0.0001(8)$ $-0.0023(8)$ $0.0004(8)$ C4 $0.0133(10)$ $0.0222(11)$ $0.0180(10)$ $-0.0011(8)$ $-0.0038(8)$ $0.0028(8)$ C5 $0.0157(10)$ $0.0189(10)$ $0.0161(10)$ $-0.0010(8)$ $-0.0040(8)$ $-0.0005(6)$ C6 $0.0195(11)$ $0.0144(10)$ $0.0120(10)$ $0.0010(8)$ $-0.0025(8)$ $0.00022(8)$	6)
N2 $0.0182 (9)$ $0.0166 (9)$ $0.0150 (9)$ $0.0021 (7)$ $-0.0011 (7)$ $0.0008 (7)$ N3 $0.0151 (9)$ $0.0164 (9)$ $0.0103 (8)$ $-0.0020 (7)$ $0.0002 (7)$ $-0.0004 (7)$ C1 $0.0183 (10)$ $0.0092 (9)$ $0.0121 (9)$ $0.0000 (8)$ $-0.0028 (8)$ $0.0015 (7)$ C2 $0.0167 (10)$ $0.0088 (9)$ $0.0116 (9)$ $0.0016 (7)$ $-0.0011 (8)$ $0.0006 (7)$ C3 $0.0201 (11)$ $0.0130 (10)$ $0.0126 (10)$ $0.0001 (8)$ $-0.0023 (8)$ $0.0004 (8)$ C4 $0.0133 (10)$ $0.0222 (11)$ $0.0180 (10)$ $-0.0011 (8)$ $-0.0038 (8)$ $0.0028 (8)$ C5 $0.0157 (10)$ $0.0189 (10)$ $0.0161 (10)$ $-0.0010 (8)$ $-0.0040 (8)$ $-0.0005 (7)$	6)
N3 $0.0151(9)$ $0.0164(9)$ $0.0103(8)$ $-0.0020(7)$ $0.0002(7)$ $-0.0004(7)$ C1 $0.0183(10)$ $0.0092(9)$ $0.0121(9)$ $0.0000(8)$ $-0.0028(8)$ $0.0015(7)$ C2 $0.0167(10)$ $0.0088(9)$ $0.0116(9)$ $0.0016(7)$ $-0.0011(8)$ $0.0006(7)$ C3 $0.0201(11)$ $0.0130(10)$ $0.0126(10)$ $0.0001(8)$ $-0.0023(8)$ $0.0004(8)$ C4 $0.0133(10)$ $0.0222(11)$ $0.0180(10)$ $-0.0011(8)$ $-0.0038(8)$ $0.0028(8)$ C5 $0.0157(10)$ $0.0189(10)$ $0.0161(10)$ $-0.0010(8)$ $-0.0040(8)$ $-0.0005(6)$ C6 $0.0195(11)$ $0.0144(10)$ $0.0120(10)$ $0.0010(8)$ $-0.0025(8)$ $0.00022(8)$)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$)
C3 $0.0201 (11)$ $0.0130 (10)$ $0.0126 (10)$ $0.0001 (8)$ $-0.0023 (8)$ $0.0004 (8)$ C4 $0.0133 (10)$ $0.0222 (11)$ $0.0180 (10)$ $-0.0011 (8)$ $-0.0038 (8)$ $0.0028 (8)$ C5 $0.0157 (10)$ $0.0189 (10)$ $0.0161 (10)$ $-0.0010 (8)$ $-0.0040 (8)$ $-0.0005 (8)$ C6 $0.0195 (11)$ $0.0144 (10)$ $0.0120 (10)$ $0.0010 (8)$ $-0.0025 (8)$ $0.0002 (8)$)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$)
C5 $0.0157(10)$ $0.0189(10)$ $0.0161(10)$ $-0.0010(8)$ $-0.0040(8)$ $-0.0005(8)$)
$C_{6} = 0.0105(11) = 0.0144(10) = 0.0120(10) = 0.0010(8) = -0.0025(8) = 0.0002(8)$	8)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$)
C7 0.0199 (11) 0.0211 (11) 0.0190 (10) 0.0015 (9) -0.0046 (9) -0.0012 (9)
C8 0.0140 (10) 0.0213 (11) 0.0164 (10) -0.0028 (8) -0.0017 (8) 0.0005 (8))
C9 0.0199 (11) 0.0191 (11) 0.0283 (12) -0.0030 (9) -0.0062 (10) -0.0019 (10)	9)
C10 0.0207 (11) 0.0135 (10) 0.0158 (10) -0.0022 (8) -0.0022 (9) 0.0009 (8))
C11 0.0215 (11) 0.0176 (11) 0.0169 (10) 0.0008 (9) -0.0018 (9) -0.0031 (8)

Geometric parameters (Å, °)

Sn1—O1	2.0911 (13)	C4—H4A	0.9500	_
Sn1—N1	2.2558 (16)	C5—H5A	0.9500	
Sn1—Cl2	2.3707 (5)	C6—C7	1.507 (3)	
Sn1—Cl1	2.3742 (5)	C6—H6A	0.9900	
Sn1—Cl3	2.3879 (5)	C6—H6B	0.9900	
Sn1—Cl4	2.4150 (5)	С7—Н7А	0.9800	
01—C1	1.299 (2)	С7—Н7В	0.9800	
O2—C1	1.217 (2)	C7—H7C	0.9800	
N1C5	1.337 (3)	C8—C9	1.517 (3)	
N1—C2	1.340 (2)	C8—H8A	0.9900	
N2—C3	1.334 (3)	C8—H8B	0.9900	

supporting information

N2—C4	1.334 (3)	С9—Н9А	0.9800
N3—C6	1.508 (3)	С9—Н9В	0.9800
N3—C8	1.509 (3)	С9—Н9С	0.9800
N3—C10	1.510 (3)	C10—C11	1.513 (3)
N3—H1	0.91 (3)	С10—Н10А	0.9900
C1—C2	1.508 (3)	C10—H10B	0.9900
$C^2 - C^3$	1 385 (3)	C11—H11A	0.9800
C3—H3A	0.9500	C11—H11B	0.9800
C4-C5	1 389 (3)		0.9800
04-05	1.567 (5)	en-inte	0.9800
O1—Sn1—N1	75.62 (6)	N1—C5—H5A	120.1
O1— $Sn1$ — $Cl2$	91.17 (4)	C4—C5—H5A	120.1
N1— $Sn1$ — $C12$	166 13 (4)	C7-C6-N3	113.48(17)
$\Omega_1 = Sn_1 = C_{11}$	168 99 (4)	C7 - C6 - H6A	108.9
N1 Sn1 Cl1	03 47 (4)	$N_3 C_6 H_{6A}$	108.9
$C_{12} = S_{n1} = C_{11}$	99.47(4)	C7 C6 H6P	108.9
C12— $S111$ — $C11$	99.013 (10) 96.56 (A)	C = C = H G	108.9
OI = SIII = CI3	80.30 (4)		108.9
N1 - Sn1 - Cl3	88.14 (4)	H6A—C6—H6B	107.7
	95.397 (18)		109.5
CII—SnI—CI3	91.748 (18)	С6—С/—Н/В	109.5
Ol—Snl—Cl4	87.08 (4)	Н7А—С7—Н7В	109.5
N1—Sn1—Cl4	82.96 (4)	С6—С7—Н7С	109.5
Cl2—Sn1—Cl4	92.285 (18)	H7A—C7—H7C	109.5
Cl1—Sn1—Cl4	93.058 (19)	H7B—C7—H7C	109.5
Cl3—Sn1—Cl4	170.120 (17)	N3—C8—C9	111.95 (17)
C1—O1—Sn1	119.66 (12)	N3—C8—H8A	109.2
C5—N1—C2	118.45 (17)	С9—С8—Н8А	109.2
C5—N1—Sn1	129.40 (13)	N3—C8—H8B	109.2
C2—N1—Sn1	111.85 (13)	С9—С8—Н8В	109.2
C3—N2—C4	116.56 (18)	H8A—C8—H8B	107.9
C6—N3—C8	110.51 (15)	С8—С9—Н9А	109.5
C6—N3—C10	114.20 (15)	С8—С9—Н9В	109.5
C8—N3—C10	111.59 (16)	H9A—C9—H9B	109.5
C6—N3—H1	108.5 (15)	С8—С9—Н9С	109.5
C8—N3—H1	108.8 (15)	H9A—C9—H9C	109.5
C10-N3-H1	102.8 (15)	H9B-C9-H9C	109.5
$0^{2}-0^{1}-0^{1}$	124 81 (19)	N3-C10-C11	113 47 (16)
02 - C1 - C2	119.63(17)	N3_C10_H10A	108.9
01 - C1 - C2	115.56 (16)	C_{11} C_{10} H_{10A}	108.9
N1 C2 C3	120 55 (18)	$N_3 C_{10} H_{10}B$	108.9
N1 = C2 = C1	120.55(18) 116.58(17)	$C_{11} C_{10} H_{10P}$	108.9
N1 = C2 = C1	110.36(17) 122.97(17)		108.9
$C_3 = C_2 = C_1$	122.07(17)		107.7
1N2 - C2 - U2A	121.97 (18)		109.5
N2 - U3 - H3A	119.0		109.5
U2	119.0	HIIA—CII—HIIB	109.5
N2-C4-C5	122.67 (19)	C10—C11—H11C	109.5
N2—C4—H4A	118.7	HIIA—C11—H11C	109.5
C5—C4—H4A	118.7	H11B—C11—H11C	109.5

N1—C5—C4	119.72 (18)		
NI—SnI—OI—CI	-6.70 (13)	C5-N1-C2-C1	178.09 (16)
Cl2—Sn1—O1—C1	169.01 (13)	Sn1-N1-C2-C1	-7.6 (2)
Cl1—Sn1—O1—C1	-14.2 (3)	O2—C1—C2—N1	-176.95 (18)
Cl3—Sn1—O1—C1	-95.65 (13)	01—C1—C2—N1	2.4 (3)
Cl4—Sn1—O1—C1	76.78 (13)	O2—C1—C2—C3	2.6 (3)
O1—Sn1—N1—C5	-178.97 (18)	O1—C1—C2—C3	-178.07 (18)
Cl2—Sn1—N1—C5	162.83 (14)	C4—N2—C3—C2	2.5 (3)
Cl1—Sn1—N1—C5	-0.41 (17)	N1-C2-C3-N2	-1.1 (3)
Cl3—Sn1—N1—C5	-92.05 (17)	C1—C2—C3—N2	179.39 (18)
Cl4—Sn1—N1—C5	92.25 (17)	C3—N2—C4—C5	-1.5 (3)
O1—Sn1—N1—C2	7.47 (12)	C2—N1—C5—C4	2.4 (3)
Cl2—Sn1—N1—C2	-10.7 (3)	Sn1—N1—C5—C4	-170.79 (14)
Cl1—Sn1—N1—C2	-173.97 (12)	N2-C4-C5-N1	-1.0 (3)
Cl3—Sn1—N1—C2	94.39 (13)	C8—N3—C6—C7	-174.78 (16)
Cl4—Sn1—N1—C2	-81.31 (12)	C10—N3—C6—C7	58.4 (2)
Sn1—O1—C1—O2	-175.82 (15)	C6—N3—C8—C9	79.8 (2)
Sn1—O1—C1—C2	4.8 (2)	C10—N3—C8—C9	-151.96 (17)
C5—N1—C2—C3	-1.4 (3)	C6—N3—C10—C11	56.1 (2)
Sn1—N1—C2—C3	172.92 (15)	C8—N3—C10—C11	-70.1 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D···A	<i>D</i> —H··· <i>A</i>
N3—H1…N2	0.91 (3)	2.10 (3)	2.999 (2)	167 (2)