organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Bromo-3-cyclo­pentyl­sulfinyl-2-methyl-1-benzo­furan

aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

(Received 3 May 2011; accepted 6 May 2011; online 11 May 2011)

In the title compound, C14H15BrO2S, the cyclo­pentyl ring adopts an envelope conformation. In the cyclo­pentyl ring, two adjacent C atoms are disordered over two sets of sites with site-occupancy factors of 0.618 (11) and 0.382 (11). In the crystal, mol­ecules are linked through weak inter­molecular C—H⋯O hydrogen bonds.

Related literature

For the biological activity of benzofuran compounds, see: Aslam et al. (2009[Aslam, S. N., Stevenson, P. C., Kokubun, T. & Hall, D. R. (2009). Microbiol. Res. 164, 191-195.]); Galal et al. (2009[Galal, S. A., Abd El-All, A. S., Abdallah, M. M. & El-Diwani, H. I. (2009). Bioorg. Med. Chem. Lett. 19, 2420-2428.]); Khan et al. (2005[Khan, M. W., Alam, M. J., Rashid, M. A. & Chowdhury, R. (2005). Bioorg. Med. Chem. 13, 4796-4805.]). For natural products with benzofuran rings, see: Akgul & Anil (2003[Akgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939-943.]); Soekamto et al. (2003[Soekamto, N. H., Achmad, S. A., Ghisalberti, E. L., Hakim, E. H. & Syah, Y. M. (2003). Phytochemistry, 64, 831-834.]). For structural studies of related 5-bromo-3-cyclo­hexyl­sulfinyl-2-methyl-1-benzofuran derivatives, see: Choi et al. (2011a[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2011a). Acta Cryst. E67, o527.],b[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2011b). Acta Cryst. E67, o1039.]).

[Scheme 1]

Experimental

Crystal data
  • C14H15BrO2S

  • Mr = 327.23

  • Monoclinic, P 21 /c

  • a = 9.4166 (6) Å

  • b = 9.5369 (7) Å

  • c = 15.1662 (11) Å

  • β = 100.033 (4)°

  • V = 1341.17 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.21 mm−1

  • T = 173 K

  • 0.31 × 0.24 × 0.13 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.531, Tmax = 0.746

  • 12376 measured reflections

  • 3098 independent reflections

  • 2567 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.094

  • S = 1.06

  • 3098 reflections

  • 182 parameters

  • 83 restraints

  • H-atom parameters constrained

  • Δρmax = 0.54 e Å−3

  • Δρmin = −0.64 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O2i 0.95 2.46 3.392 (3) 169
Symmetry code: (i) -x, -y+1, -z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Recently, many compounds having a benzofuran skeleton have attracted much attention due to their diverse pharmacological properties such as antibacterial and antifungal, antitumor and antiviral, and antimicrobial activities (Aslam et al., 2009, Galal et al., 2009, Khan et al., 2005). These benzofuran derivatives occur in a wide range of natural products (Akgul & Anil, 2003; Soekamto et al., 2003). As part of our ongoing program of the substituent effect on the solid state structures of 5-bromo-3-cyclohexylsulfinyl-2-methyl-1-benzofuran analogues (Choi et al., 2011a, b), we report herein the crystal structure of the title compound.

In the title molecule (Fig. 1), the benzofuran unit is essentially planar, with a mean deviation of 0.012 (2) Å from the least-squares plane defined by the nine constituent atoms. The cyclopentyl ring is in the envelope form. In the cyclopentyl ring, two C atoms (C12 & C13) are disordered over two positions with site-occupancy factors, from refinement of 0.62 (1) (part A) and 0.38 (1) (part B). The crystal packing is stabilized by weak intermolecular C—H···O hydrogen bonds; the first one between a benzene H atom and the O atom of the sulfinyl group (Table 1; C3—H3···O2i), and the second one between a cyclopentyl H atom and the furan O atom (Table 1; C11—H11C···O1ii).

Related literature top

For the biological activity of benzofuran compounds, see: Aslam et al. (2009); Galal et al. (2009); Khan et al. (2005). For natural products with benzofuran rings, see: Akgul & Anil (2003); Soekamto et al. (2003). For structural studies of related 5-bromo-3-cyclohexylsulfinyl-2-methyl-1-benzofuran derivatives , see: Choi et al. (2011a,b).

Experimental top

77% 3-chloroperoxybenzoic acid (269 mg, 1.2 mmol) was added in small portions to a stirred solution of 5-bromo-3-cyclopentylsulfanyl-2-methyl-1-benzofuran (373 mg, 1.2 mmol) in dichloromethane (30 mL) at 273 K. After being stirred at room temperature for 4h, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over anhydrous magnesium sulfate, filtered and concentrated at reduced pressure. The residue was purified by column chromatography (hexane–ethyl acetate, 1:1 v/v) to afford the title compound as a colorless solid [yield 71%, m.p. 405–406 K; Rf = 0.66 (hexane–ethyl acetate, 1:1 v/v)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in ethyl acetate at room temperature.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 Å for aryl, 1.00 Å for methine, 0.99 Å for methylene and 0.98 Å for methyl H atoms, respectively. Uiso(H) = 1.2Ueq(C) for aryl, methine, and methylene, and 1.5Ueq(C) for methyl H atoms. Two C atoms of the cyclopentyl ring are disordered over two positions with site-occupancy factors, from refinement of 0.62 (1) (part A) and 0.38 (1) (part B). The distance of equivalent C–C pairs was restrained to 0.001 Å using commd SADI and DELU, and displacement ellipsoids of C12 and C13 set were restrained to 0.01 using command ISOR.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as a small spheres of arbitrary radius.
5-Bromo-3-cyclopentylsulfinyl-2-methyl-1-benzofuran top
Crystal data top
C14H15BrO2SF(000) = 664
Mr = 327.23Dx = 1.621 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5053 reflections
a = 9.4166 (6) Åθ = 2.5–27.4°
b = 9.5369 (7) ŵ = 3.21 mm1
c = 15.1662 (11) ÅT = 173 K
β = 100.033 (4)°Block, colourless
V = 1341.17 (16) Å30.31 × 0.24 × 0.13 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD
diffractometer
3098 independent reflections
Radiation source: rotating anode2567 reflections with I > 2σ(I)
Graphite multilayer monochromatorRint = 0.035
Detector resolution: 10.0 pixels mm-1θmax = 27.6°, θmin = 2.2°
ϕ and ω scansh = 1212
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 1112
Tmin = 0.531, Tmax = 0.746l = 1918
12376 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: difference Fourier map
wR(F2) = 0.094H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0474P)2 + 0.9434P]
where P = (Fo2 + 2Fc2)/3
3098 reflections(Δ/σ)max < 0.001
182 parametersΔρmax = 0.54 e Å3
83 restraintsΔρmin = 0.64 e Å3
Crystal data top
C14H15BrO2SV = 1341.17 (16) Å3
Mr = 327.23Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.4166 (6) ŵ = 3.21 mm1
b = 9.5369 (7) ÅT = 173 K
c = 15.1662 (11) Å0.31 × 0.24 × 0.13 mm
β = 100.033 (4)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
3098 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2567 reflections with I > 2σ(I)
Tmin = 0.531, Tmax = 0.746Rint = 0.035
12376 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03583 restraints
wR(F2) = 0.094H-atom parameters constrained
S = 1.06Δρmax = 0.54 e Å3
3098 reflectionsΔρmin = 0.64 e Å3
182 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br10.23192 (3)0.05192 (3)0.013362 (19)0.03823 (12)
S10.16243 (6)0.69180 (7)0.10017 (4)0.02871 (16)
O10.56646 (18)0.5680 (2)0.13602 (12)0.0323 (4)
O20.0936 (2)0.6788 (3)0.00457 (13)0.0467 (6)
C10.3266 (2)0.5992 (3)0.11348 (16)0.0255 (5)
C20.3530 (2)0.4544 (3)0.09134 (15)0.0243 (5)
C30.2690 (3)0.3376 (3)0.06233 (15)0.0250 (5)
H30.16670.34240.05030.030*
C40.3415 (3)0.2147 (3)0.05198 (16)0.0290 (5)
C50.4922 (3)0.2047 (3)0.06733 (18)0.0340 (6)
H50.53720.11760.05930.041*
C60.5749 (3)0.3209 (3)0.09404 (18)0.0348 (6)
H60.67720.31720.10330.042*
C70.5034 (3)0.4422 (3)0.10677 (17)0.0283 (5)
C80.4561 (3)0.6612 (3)0.13951 (16)0.0292 (5)
C90.5022 (3)0.8028 (3)0.17033 (19)0.0376 (6)
H9A0.60780.80690.18330.056*
H9B0.46370.82500.22470.056*
H9C0.46590.87110.12350.056*
C100.0670 (3)0.5783 (3)0.16509 (16)0.0253 (5)
H100.06270.48070.14060.030*
C110.0865 (3)0.6359 (4)0.16324 (19)0.0395 (7)
H11A0.09230.73570.14510.047*0.618 (11)
H11B0.15780.58180.12090.047*0.618 (11)
H11C0.16010.56180.14720.047*0.382 (11)
H11D0.10740.71430.12020.047*0.382 (11)
C12A0.1140 (5)0.6192 (9)0.2584 (3)0.0431 (17)0.618 (11)
H12A0.13880.52130.27130.052*0.618 (11)
H12B0.19090.68290.27110.052*0.618 (11)
C13A0.0344 (5)0.6615 (8)0.3103 (4)0.0475 (18)0.618 (11)
H13A0.05020.76370.30600.057*0.618 (11)
H13B0.04460.63490.37420.057*0.618 (11)
C12B0.0817 (14)0.6861 (9)0.2588 (3)0.044 (3)0.382 (11)
H12C0.17950.68540.27440.053*0.382 (11)
H12D0.04260.78260.26630.053*0.382 (11)
C13B0.0173 (8)0.5832 (11)0.3181 (6)0.040 (2)0.382 (11)
H13C0.04950.62030.37930.049*0.382 (11)
H13D0.02830.49030.32130.049*0.382 (11)
C140.1399 (3)0.5790 (3)0.26381 (18)0.0381 (7)
H14A0.15300.48230.28770.046*0.618 (11)
H14B0.23510.62590.27150.046*0.618 (11)
H14C0.19940.49370.27840.046*0.382 (11)
H14D0.20260.66240.27680.046*0.382 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.04047 (18)0.03448 (17)0.04127 (18)0.00614 (12)0.01135 (13)0.00446 (12)
S10.0221 (3)0.0325 (3)0.0328 (3)0.0048 (2)0.0086 (2)0.0075 (3)
O10.0183 (8)0.0479 (12)0.0312 (10)0.0003 (8)0.0054 (7)0.0023 (8)
O20.0290 (10)0.0792 (16)0.0320 (10)0.0134 (10)0.0054 (8)0.0183 (11)
C10.0188 (11)0.0333 (13)0.0256 (12)0.0028 (10)0.0073 (9)0.0053 (10)
C20.0192 (11)0.0359 (13)0.0187 (11)0.0060 (9)0.0056 (9)0.0062 (9)
C30.0208 (11)0.0350 (13)0.0202 (11)0.0050 (10)0.0062 (9)0.0037 (10)
C40.0308 (13)0.0357 (14)0.0218 (12)0.0059 (11)0.0084 (10)0.0018 (10)
C50.0314 (13)0.0419 (15)0.0310 (13)0.0167 (12)0.0118 (11)0.0057 (12)
C60.0201 (11)0.0531 (17)0.0328 (14)0.0121 (11)0.0090 (10)0.0069 (13)
C70.0207 (11)0.0419 (15)0.0232 (12)0.0026 (10)0.0064 (9)0.0055 (11)
C80.0242 (12)0.0405 (14)0.0238 (12)0.0006 (11)0.0060 (10)0.0036 (11)
C90.0325 (14)0.0440 (16)0.0367 (15)0.0079 (12)0.0068 (12)0.0013 (13)
C100.0208 (11)0.0301 (13)0.0266 (12)0.0003 (9)0.0081 (9)0.0013 (10)
C110.0199 (12)0.068 (2)0.0320 (14)0.0022 (13)0.0071 (11)0.0020 (14)
C12A0.028 (2)0.071 (5)0.033 (3)0.011 (3)0.0120 (19)0.005 (3)
C13A0.037 (3)0.081 (5)0.025 (2)0.008 (3)0.006 (2)0.009 (3)
C12B0.054 (6)0.049 (5)0.035 (4)0.022 (4)0.027 (4)0.006 (3)
C13B0.044 (4)0.048 (5)0.034 (4)0.004 (4)0.019 (3)0.007 (4)
C140.0281 (13)0.0590 (19)0.0271 (13)0.0070 (13)0.0049 (11)0.0073 (13)
Geometric parameters (Å, º) top
Br1—C41.900 (3)C10—H101.0000
S1—O21.487 (2)C11—C12A1.519 (4)
S1—C11.761 (2)C11—C12B1.519 (4)
S1—C101.805 (2)C11—H11A0.9900
O1—C81.375 (3)C11—H11B0.9900
O1—C71.377 (3)C11—H11C0.9900
C1—C81.351 (4)C11—H11D0.9900
C1—C21.453 (4)C12A—C13A1.533 (6)
C2—C31.393 (4)C12A—H12A0.9900
C2—C71.399 (3)C12A—H12B0.9900
C3—C41.379 (3)C13A—C141.532 (4)
C3—H30.9500C13A—H13A0.9900
C4—C51.400 (4)C13A—H13B0.9900
C5—C61.374 (4)C12B—C13B1.533 (6)
C5—H50.9500C12B—H12C0.9900
C6—C71.369 (4)C12B—H12D0.9900
C6—H60.9500C13B—C141.531 (4)
C8—C91.471 (4)C13B—H13C0.9900
C9—H9A0.9800C13B—H13D0.9900
C9—H9B0.9800C14—H14A0.9900
C9—H9C0.9800C14—H14B0.9900
C10—C141.535 (4)C14—H14C0.9900
C10—C111.541 (3)C14—H14D0.9900
O2—S1—C1107.12 (12)C10—C11—H11C111.4
O2—S1—C10107.95 (12)H11A—C11—H11C128.0
C1—S1—C1098.47 (11)C12A—C11—H11D131.3
C8—O1—C7106.76 (19)C12B—C11—H11D111.1
C8—C1—C2107.5 (2)C10—C11—H11D111.0
C8—C1—S1122.9 (2)H11A—C11—H11D25.2
C2—C1—S1129.26 (19)H11B—C11—H11D86.0
C3—C2—C7119.3 (2)H11C—C11—H11D109.1
C3—C2—C1136.2 (2)C11—C12A—C13A99.7 (4)
C7—C2—C1104.5 (2)C11—C12A—H12A111.8
C4—C3—C2116.7 (2)C13A—C12A—H12A111.8
C4—C3—H3121.6C11—C12A—H12B111.8
C2—C3—H3121.6C13A—C12A—H12B111.8
C3—C4—C5123.1 (3)H12A—C12A—H12B109.6
C3—C4—Br1118.46 (19)C14—C13A—C12A103.6 (4)
C5—C4—Br1118.4 (2)C14—C13A—H13A111.0
C6—C5—C4120.0 (2)C12A—C13A—H13A111.0
C6—C5—H5120.0C14—C13A—H13B111.0
C4—C5—H5120.0C12A—C13A—H13B111.0
C7—C6—C5117.1 (2)H13A—C13A—H13B109.0
C7—C6—H6121.5C11—C12B—C13B105.8 (5)
C5—C6—H6121.5C11—C12B—H12C110.6
C6—C7—O1125.9 (2)C13B—C12B—H12C110.6
C6—C7—C2123.7 (3)C11—C12B—H12D110.6
O1—C7—C2110.4 (2)C13B—C12B—H12D110.6
C1—C8—O1110.9 (2)H12C—C12B—H12D108.7
C1—C8—C9134.2 (2)C14—C13B—C12B98.0 (5)
O1—C8—C9115.0 (2)C14—C13B—H13C112.2
C8—C9—H9A109.5C12B—C13B—H13C112.2
C8—C9—H9B109.5C14—C13B—H13D112.2
H9A—C9—H9B109.5C12B—C13B—H13D112.2
C8—C9—H9C109.5H13C—C13B—H13D109.8
H9A—C9—H9C109.5C13B—C14—C10105.9 (4)
H9B—C9—H9C109.5C13A—C14—C10103.6 (3)
C14—C10—C11106.0 (2)C13B—C14—H14A83.4
C14—C10—S1110.42 (18)C13A—C14—H14A111.0
C11—C10—S1109.34 (19)C10—C14—H14A111.0
C14—C10—H10110.3C13B—C14—H14B132.5
C11—C10—H10110.3C13A—C14—H14B111.0
S1—C10—H10110.3C10—C14—H14B111.0
C12A—C11—C10105.1 (3)H14A—C14—H14B109.0
C12B—C11—C10102.9 (5)C13B—C14—H14C110.6
C12A—C11—H11A110.7C13A—C14—H14C134.9
C12B—C11—H11A87.3C10—C14—H14C110.8
C10—C11—H11A110.7H14B—C14—H14C83.1
C12A—C11—H11B110.7C13B—C14—H14D110.5
C12B—C11—H11B133.5C13A—C14—H14D84.7
C10—C11—H11B110.7C10—C14—H14D110.4
H11A—C11—H11B108.8H14A—C14—H14D130.1
C12A—C11—H11C86.0H14C—C14—H14D108.7
C12B—C11—H11C111.2
O2—S1—C1—C8118.2 (2)S1—C1—C8—C96.3 (4)
C10—S1—C1—C8129.9 (2)C7—O1—C8—C10.2 (3)
O2—S1—C1—C254.7 (2)C7—O1—C8—C9179.5 (2)
C10—S1—C1—C257.2 (2)O2—S1—C10—C14175.88 (18)
C8—C1—C2—C3178.9 (3)C1—S1—C10—C1464.7 (2)
S1—C1—C2—C37.3 (4)O2—S1—C10—C1167.9 (2)
C8—C1—C2—C70.1 (3)C1—S1—C10—C11179.06 (19)
S1—C1—C2—C7173.68 (19)C14—C10—C11—C12A19.1 (4)
C7—C2—C3—C41.0 (3)S1—C10—C11—C12A138.2 (4)
C1—C2—C3—C4177.9 (3)C14—C10—C11—C12B8.5 (5)
C2—C3—C4—C51.4 (3)S1—C10—C11—C12B110.5 (5)
C2—C3—C4—Br1179.56 (17)C12B—C11—C12A—C13A48.7 (8)
C3—C4—C5—C60.0 (4)C10—C11—C12A—C13A40.2 (7)
Br1—C4—C5—C6179.0 (2)C11—C12A—C13A—C1446.9 (8)
C4—C5—C6—C71.7 (4)C12A—C11—C12B—C13B63.3 (8)
C5—C6—C7—O1177.8 (2)C10—C11—C12B—C13B34.7 (10)
C5—C6—C7—C22.2 (4)C11—C12B—C13B—C1446.2 (11)
C8—O1—C7—C6179.9 (2)C12B—C13B—C14—C13A49.8 (6)
C8—O1—C7—C20.1 (3)C12B—C13B—C14—C1039.8 (9)
C3—C2—C7—C60.8 (4)C12A—C13A—C14—C13B62.9 (8)
C1—C2—C7—C6180.0 (2)C12A—C13A—C14—C1035.4 (7)
C3—C2—C7—O1179.2 (2)C11—C10—C14—C13B20.3 (5)
C1—C2—C7—O10.0 (3)S1—C10—C14—C13B138.6 (5)
C2—C1—C8—O10.1 (3)C11—C10—C14—C13A10.0 (4)
S1—C1—C8—O1174.09 (16)S1—C10—C14—C13A108.3 (4)
C2—C1—C8—C9179.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O2i0.952.463.392 (3)169
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC14H15BrO2S
Mr327.23
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)9.4166 (6), 9.5369 (7), 15.1662 (11)
β (°) 100.033 (4)
V3)1341.17 (16)
Z4
Radiation typeMo Kα
µ (mm1)3.21
Crystal size (mm)0.31 × 0.24 × 0.13
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.531, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
12376, 3098, 2567
Rint0.035
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.094, 1.06
No. of reflections3098
No. of parameters182
No. of restraints83
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.54, 0.64

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O2i0.952.463.392 (3)169
Symmetry code: (i) x, y+1, z.
 

References

First citationAkgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939–943.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAslam, S. N., Stevenson, P. C., Kokubun, T. & Hall, D. R. (2009). Microbiol. Res. 164, 191–195.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2011a). Acta Cryst. E67, o527.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2011b). Acta Cryst. E67, o1039.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGalal, S. A., Abd El-All, A. S., Abdallah, M. M. & El-Diwani, H. I. (2009). Bioorg. Med. Chem. Lett. 19, 2420–2428.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKhan, M. W., Alam, M. J., Rashid, M. A. & Chowdhury, R. (2005). Bioorg. Med. Chem. 13, 4796–4805.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSoekamto, N. H., Achmad, S. A., Ghisalberti, E. L., Hakim, E. H. & Syah, Y. M. (2003). Phytochemistry, 64, 831–834.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds