Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2-[(E)-(2,4-Dihydroxybenzylidene)azaniumyl]-3-phenylpropanoate

Hadariah Bahron,^a‡Fatimatuzzahraa Mohd Fadzel,^a Karimah Kassim,^a Madhukar Hemamalini^b and Hoong-Kun Fun^b*§

^aFaculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia, and ^bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia Correspondence e-mail: hkfun@usm.my

Received 26 April 2011; accepted 3 May 2011

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.001 Å; R factor = 0.043; wR factor = 0.125; data-to-parameter ratio = 29.7.

The title compound, $C_{16}H_{15}NO_4$, exists as a zwitterion in the solid state, with the carboxylic acid group being deprotonated and the imine N atom being protonated. The molecule adopts an *E* configuration about the C=N double bond. The dihedral angle between the benzene rings is $46.34 (4)^{\circ}$. An intramolecular N-H···O hydrogen bond generates an S(6) ring motif. In the crystal, adjacent molecules are connected by intermolecular $O-H\cdots O$ and $C-H\cdots O$ hydrogen bonds, forming supramolecular ribbons along the *a* axis.

Related literature

For details of Schiff bases and their applications, see: Dolaz et al. (2009); Kumar et al. (2010); Qiao et al. (2011); Sauri et al. (2009); Tamami & Ghasemi (2011). For related structures, see: Bahron et al. (2010); Hemamalini & Fun (2011). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986). For graph-set notation, see: Bernstein et al. (1995).

22479 measured reflections

 $R_{\rm int} = 0.025$

refinement $\Delta \rho_{\text{max}} = 0.56 \text{ e} \text{ Å}^{-3}$

 $\Delta \rho_{\rm min} = -0.24 \text{ e} \text{ Å}^{-3}$

6007 independent reflections

4783 reflections with $I > 2\sigma(I)$

H atoms treated by a mixture of

independent and constrained

Experimental

Crystal data

C ₁₆ H ₁₅ NO ₄	V = 1341.49 (3) Å ³
$M_r = 285.29$	Z = 4
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation
a = 9.3943 (1) Å	$\mu = 0.10 \text{ mm}^{-1}$
b = 6.8946 (1) Å	$T = 100 { m K}$
c = 20.7251 (3) Å	$0.34 \times 0.27 \times 0.17 \text{ mm}$
$\beta = 92.065 \ (1)^{\circ}$	

Data collection

Bruker SMART APEXII CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2009) $T_{\min} = 0.966, \ T_{\max} = 0.982$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.043$ $wR(F^2) = 0.125$ S = 1.036007 reflections 202 parameters

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$01 - H1O1 \cdots O4^{i}$ $N1 - H1N1 \cdots O1$ $O2 - H1O2 \cdots O3^{ii}$	$0.863 (15) \\ 0.864 (14) \\ 1.03 (2)$	1.790 (14) 2.051 (15) 1.51 (2)	2.6302 (9) 2.6810 (9) 2.5310 (10)	163.9 (15) 129.1 (12) 179 (2)
$C5-H5A\cdotsO2^{iii}$ $C12-H12A\cdotsO2^{iv}$	0.95 0.95	2.56 2.46	3.3155 (10) 3.1781 (10)	137 132

Symmetry codes: (i) -x + 1, -y + 2, -z; (ii) x + 1, y - 1, z; (iii) x - 1, y, z; (iv) -x + 2, -y + 1, -z.

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

HB, FMF and KK wish to thank both Universiti Teknologi MARA (UiTM) and Universiti Sains Malaysia (USM) for research facilities, and the Malaysian Ministry of Higher Education for the research grant FRGS UiTM 5/3/FST/(12/ 2008). HKF and MH thank the Malaysian Government and Universiti Sains Malaysia for the Research University grant No. 1001/PFIZIK/811160. MH also thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2592).

References

- Bahron, H., Bakar, S. N. A., Kassim, K., Yeap, C. S. & Fun, H.-K. (2010). Acta Cryst. E66, 0883.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
- Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.

[‡] Additional correspondence author, e-mail: hadariah@salam.uitm.edu.my. § Thomson Reuters ResearcherID: A-3561-2009.

Dolaz, M., McKee, V., Golcu, A. & Tumer, M. (2009). Spectrochim. Acta Part A, **71**, 1648–1654.

- Hemamalini, M. & Fun, H.-K. (2011). Acta Cryst. E67, 0435-0436.
- Kumar, G., Kumar, D., Devi, S., Johari, R. & Singh, C. P. (2010). Eur. J. Med. Chem. 45, 3056–3062.
- Qiao, X., Ma, Z.-Y., Xie, C.-Z., Xue, F., Zhang, Y.-W., Xu, J.-Y., Qiang, Z.-Y., Lou, J.-S., Chen, G.-J. & Yan, S.-P. (2011). J. Inorg. Biochem. 105, 728–737.
- Sauri, A. S. M., Kassim, K., Bahron, H., Yahya, M. Z. A. & Harun, M. K. (2009). *Mat. Res. Innovat.* **13**, 305–309.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148–155.
- Tamami, B. & Ghasemi, S. (2011). Appl. Catal. A, 393, 242-250.

supporting information

Acta Cryst. (2011). E67, o1331-o1332 [doi:10.1107/S1600536811016655]

2-[(E)-(2,4-Dihydroxybenzylidene)azaniumyl]-3-phenylpropanoate

Hadariah Bahron, Fatimatuzzahraa Mohd Fadzel, Karimah Kassim, Madhukar Hemamalini and Hoong-Kun Fun

S1. Comment

Schiff bases have received considerable attention and remain important in the field of coordination chemistry vastly due to their simple synthesis and versatility. They are widely reported to have extensive potential applications in various biological and pharmaceutical fields (Dolaz *et al.*, 2009) as antimicrobial (Kumar *et al.*, 2010) and antitumor (Qiao *et al.*, 2011) agents. They also display potential applications as corrosion inhibitors (Sauri *et al.*, 2009) and catalysts (Tamami & Ghasemi, 2011). The title molecule, (I), is a Schiff base derived from DL-phenylalanine and 2,4-dihydroxybenzaldehyde using the procedure reported by Bahron *et al.* (2010). It crystallizes as a zwitterion in which the imine N is protonated. A similar zwitterionic structure was reported by Hemamalini & Fun (2011).

The asymmetric unit of the title compound is shown in Fig. 1. The molecule is a zwitterion in the crystal, with the carboxylic acid group deprotonated and the imine N atom protonated. It adopts an *E* configuration about the central C9=N1 double bond [1.3045 (3) Å] with the torsion angle C10-C9-N1-C8 = -175.36 (7)°. The dihedral angle between the benzene (C10-C15) and phenyl (C1-C6) rings is 46.34 (4)°.

In the crystal structure (Fig. 2), an intramolecular N1—H1N1···O1 hydrogen bond (Table 1) generates an *S*(6) ring motif (Bernstein *et al.*, 1995). Furthermore, adjacent molecules are connected by intermolecular O1—H1O1···O4, O2—H1O2···O3, C5—H5A···O2 and C12—H12A···O2 (Table 1) hydrogen bonds forming supramolecular ribbons along the *a* axis.

S2. Experimental

DL-phenylalanine (2 mmol, 0.330 g) was dissolved in absolute ethanol (20 mL), into which 2,4-dihydroxybenzaldehyde (2 mmol, 0.276 g) was added, followed by refluxing for two hours. The solution was left to slowly cool to room temperature upon which pale orange crystals were produced. These were filtered off, washed with ice-cold ethanol and air dried (yield 68%). Melting point: 540–543 K. Analytical calculated for $C_{16}H_{15}NO_4$ (%): C, 67.36; H, 5.30; N, 4.91. Found (%): C, 67.13; H, 5.49; N, 4.89. IR (cm⁻¹): ν (C=N) 1642.9 (m), ν (C–OH) 1243.7 (w), ν (C=O) 1880.6 (w).

S3. Refinement

Atoms H1O1, H1N1 and H1O2 were located from a difference Fourier map and refined freely [N-H = 0.864 (16) Å; O-H = 0.863 (15)-1.025 (19) Å]. The remaining H atoms were positioned geometrically [C-H = 0.95-1.0 Å] and were refined using a riding model, with $U_{iso}(H) = 1.2 U_{eq}(C)$.

Figure 1

The asymmetric unit of the title compound, showing 50% probability displacement ellipsoids. The intramolecular hydrogen bond is shown as a dashed line.

Figure 2

The crystal packing of the title compound with hydrogen bonds shown as dashed lines. H atoms not involved in the intermolecular interactions have been omitted for clarity.

2-[(E)-(2,4-Dihydroxybenzylidene)azaniumyl]-3-phenylpropanoate

Crystal data	
C ₁₆ H ₁₅ NO ₄	V = 1341.49 (3) Å ³
$M_r = 285.29$	Z = 4
Monoclinic, $P2_1/c$	F(000) = 600
Hall symbol: -P 2ybc	$D_{\rm x} = 1.413 {\rm ~Mg} {\rm ~m}^{-3}$
a = 9.3943 (1) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
b = 6.8946 (1) Å	Cell parameters from 9091 reflections
c = 20.7251 (3) Å	$\theta = 3.0 - 35.3^{\circ}$
$\beta = 92.065 \ (1)^{\circ}$	$\mu=0.10~\mathrm{mm^{-1}}$

Fourier

T = 100 KBlock, orange

Data collection

Bruker SMART APEXII CCD area-detector diffractometer	22479 measured reflections 6007 independent reflections
Radiation source: fine-focus sealed tube	4783 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.025$
φ and ω scans	$\theta_{\rm max} = 35.3^\circ, \ \theta_{\rm min} = 2.0^\circ$
Absorption correction: multi-scan	$h = -15 \rightarrow 13$
(SADABS; Bruker, 2009)	$k = -8 \rightarrow 11$
$T_{\min} = 0.966, \ T_{\max} = 0.982$	<i>l</i> = −33→32
Refinement	
Refinement on F^2	Secondary atom site location: difference Fou
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.043$	Hydrogen site location: inferred from
$wR(F^2) = 0.125$	neighbouring sites
<i>S</i> = 1.03	H atoms treated by a mixture of independent

6007 reflections and constrained refinement $w = 1/[\sigma^2(F_0^2) + (0.0674P)^2 + 0.2835P]$ 202 parameters where $P = (F_o^2 + 2F_c^2)/3$ 0 restraints $(\Delta/\sigma)_{\rm max} < 0.001$ Primary atom site location: structure-invariant $\Delta \rho_{\rm max} = 0.56 \text{ e } \text{\AA}^{-3}$ direct methods $\Delta \rho_{\rm min} = -0.24 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

 $0.34 \times 0.27 \times 0.17 \text{ mm}$

Refinement. Refinement of F² against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F², conventional R-factors R are based on F, with F set to zero for negative F². The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

)
)
)
)
)
)
)
)
)

C5	0.11937 (9)	0.40174 (13)	0.20089 (4)	0.01695 (15)
H5A	0.0386	0.4150	0.1723	0.020*
C6	0.21269 (9)	0.55797 (12)	0.20999 (4)	0.01422 (14)
C7	0.18457 (9)	0.74664 (12)	0.17511 (4)	0.01563 (15)
H7A	0.2505	0.8462	0.1933	0.019*
H7B	0.0863	0.7891	0.1836	0.019*
C8	0.20180 (8)	0.73766 (12)	0.10126 (4)	0.01250 (13)
H8A	0.1359	0.6381	0.0817	0.015*
C9	0.40809 (8)	0.52254 (11)	0.09102 (4)	0.01214 (13)
H9A	0.3492	0.4173	0.1029	0.015*
C10	0.55370 (8)	0.48144 (11)	0.08037 (4)	0.01121 (13)
C11	0.65246 (8)	0.61982 (11)	0.05775 (4)	0.01132 (13)
C12	0.79342 (8)	0.56952 (12)	0.04987 (4)	0.01286 (14)
H12A	0.8591	0.6634	0.0354	0.015*
C13	0.83916 (8)	0.37933 (12)	0.06334 (4)	0.01261 (14)
C14	0.74286 (8)	0.23932 (12)	0.08580 (4)	0.01396 (14)
H14A	0.7742	0.1113	0.0955	0.017*
C15	0.60318 (8)	0.29109 (12)	0.09343 (4)	0.01367 (14)
H15A	0.5381	0.1965	0.1079	0.016*
C16	0.16518 (8)	0.93989 (12)	0.07349 (4)	0.01381 (14)
H1O1	0.6599 (16)	0.855 (2)	0.0171 (7)	0.030 (4)*
H1N1	0.3969 (16)	0.791 (2)	0.0723 (7)	0.033 (4)*
H1O2	0.999 (2)	0.196 (3)	0.0635 (8)	0.052 (5)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0131 (2)	0.0096 (2)	0.0195 (3)	0.00209 (19)	0.0036 (2)	0.0038 (2)
O2	0.0113 (2)	0.0159 (3)	0.0236 (3)	0.0048 (2)	0.0034 (2)	0.0040 (2)
O3	0.0129 (3)	0.0170 (3)	0.0299 (3)	0.0054 (2)	0.0033 (2)	0.0064 (2)
O4	0.0165 (3)	0.0150 (3)	0.0223 (3)	0.0018 (2)	0.0054 (2)	0.0063 (2)
N1	0.0109 (3)	0.0108 (3)	0.0150 (3)	0.0021 (2)	0.0019 (2)	0.0017 (2)
C1	0.0211 (4)	0.0189 (4)	0.0182 (4)	0.0017 (3)	-0.0009 (3)	0.0003 (3)
C2	0.0292 (5)	0.0244 (4)	0.0191 (4)	0.0075 (4)	-0.0044 (3)	0.0027 (3)
C3	0.0371 (5)	0.0170 (4)	0.0186 (4)	0.0083 (4)	0.0039 (4)	0.0047 (3)
C4	0.0267 (4)	0.0136 (3)	0.0207 (4)	0.0006 (3)	0.0076 (3)	0.0013 (3)
C5	0.0179 (4)	0.0155 (3)	0.0176 (4)	0.0011 (3)	0.0031 (3)	0.0011 (3)
C6	0.0165 (3)	0.0127 (3)	0.0137 (3)	0.0024 (3)	0.0043 (3)	0.0011 (3)
C7	0.0192 (4)	0.0125 (3)	0.0156 (3)	0.0028 (3)	0.0048 (3)	0.0018 (3)
C8	0.0104 (3)	0.0113 (3)	0.0160 (3)	0.0027 (2)	0.0022 (2)	0.0023 (2)
C9	0.0118 (3)	0.0110 (3)	0.0137 (3)	0.0016 (2)	0.0013 (2)	0.0010 (2)
C10	0.0102 (3)	0.0100 (3)	0.0135 (3)	0.0013 (2)	0.0013 (2)	0.0009 (2)
C11	0.0118 (3)	0.0098 (3)	0.0123 (3)	0.0016 (2)	0.0009 (2)	0.0002 (2)
C12	0.0108 (3)	0.0117 (3)	0.0162 (3)	0.0016 (2)	0.0015 (2)	0.0011 (3)
C13	0.0114 (3)	0.0129 (3)	0.0136 (3)	0.0029 (2)	0.0003 (2)	0.0007 (2)
C14	0.0129 (3)	0.0108 (3)	0.0182 (3)	0.0027 (2)	0.0014 (3)	0.0020 (3)
C15	0.0125 (3)	0.0107 (3)	0.0179 (3)	0.0013 (2)	0.0021 (2)	0.0022 (3)
C16	0.0136 (3)	0.0122 (3)	0.0157 (3)	0.0028 (2)	0.0017 (3)	0.0029 (3)

Geometric parameters (Å, °)

01—C11	1.3572 (9)	C5—H5A	0.9500
01—H101	0.863 (15)	C6—C7	1.5068 (12)
O2—C13	1.3293 (10)	С7—С8	1.5461 (12)
O2—H1O2	1.025 (19)	C7—H7A	0.9900
O3—C16	1.2527 (10)	С7—Н7В	0.9900
O4—C16	1.2577 (10)	C8—C16	1.5425 (11)
N1—C9	1.3045 (10)	C8—H8A	1.0000
N1-C8	1.4617 (10)	C9—C10	1.4220 (11)
N1—H1N1	0.864 (16)	С9—Н9А	0.9500
C1—C2	1.3952 (13)	C10—C15	1.4152 (11)
C1—C6	1.3965 (12)	C10—C11	1.4220 (11)
C1—H1A	0.9500	C11—C12	1.3842 (11)
С2—С3	1.3863 (16)	C12—C13	1.4048 (11)
C2—H2A	0.9500	C12—H12A	0.9500
C3—C4	1.3921 (15)	C13—C14	1.4133 (11)
С3—НЗА	0.9500	C14—C15	1.3745 (11)
C4—C5	1.3903 (13)	C14—H14A	0.9500
C4—H4A	0.9500	C15—H15A	0.9500
C5—C6	1.3973 (12)		
C11—O1—H1O1	108.9 (10)	N1—C8—C7	111.03 (6)
С13—02—Н1О2	112.1 (10)	C16—C8—C7	107.65 (6)
C9—N1—C8	125.08 (7)	N1—C8—H8A	110.1
C9—N1—H1N1	120.3 (10)	C16—C8—H8A	110.1
C8—N1—H1N1	114.6 (10)	C7—C8—H8A	110.1
C2—C1—C6	120.37 (9)	N1—C9—C10	125.23 (7)
C2C1H1A	119.8	N1—C9—H9A	117.4
C6—C1—H1A	119.8	С10—С9—Н9А	117.4
C3—C2—C1	120.51 (9)	C15—C10—C9	117.79 (7)
С3—С2—Н2А	119.7	C15-C10-C11	118.13 (7)
C1—C2—H2A	119.7	C9—C10—C11	124.07 (7)
C2—C3—C4	119.53 (9)	O1—C11—C12	121.51 (7)
С2—С3—НЗА	120.2	O1—C11—C10	117.88 (7)
С4—С3—НЗА	120.2	C12—C11—C10	120.60 (7)
C5—C4—C3	120.06 (9)	C11—C12—C13	119.84 (7)
C5—C4—H4A	120.0	C11—C12—H12A	120.1
С3—С4—Н4А	120.0	C13—C12—H12A	120.1
C4—C5—C6	120.90 (8)	O2—C13—C12	117.22 (7)
С4—С5—Н5А	119.6	O2—C13—C14	122.24 (7)
С6—С5—Н5А	119.6	C12—C13—C14	120.54 (7)
C1—C6—C5	118.64 (8)	C15—C14—C13	119.06 (7)
C1—C6—C7	121.20 (8)	C15—C14—H14A	120.5
C5—C6—C7	120.17 (8)	C13—C14—H14A	120.5
С6—С7—С8	114.68 (7)	C14—C15—C10	121.81 (7)
С6—С7—Н7А	108.6	C14—C15—H15A	119.1
С8—С7—Н7А	108.6	C10—C15—H15A	119.1

C6—C7—H7B C8—C7—H7B H7A—C7—H7B N1—C8—C16	108.6 108.6 107.6 107.91 (6)	O3—C16—O4 O3—C16—C8 O4—C16—C8	127.87 (8) 114.59 (7) 117.43 (7)
$C6-C1-C2-C3 \\ C1-C2-C3-C4 \\ C2-C3-C4-C5 \\ C3-C4-C5-C6 \\ C2-C1-C6-C5 \\ C2-C1-C6-C7 \\ C4-C5-C6-C1 \\ C4-C5-C6-C7 \\ C1-C6-C7-C8 \\ C5-C6-C7-C8 \\ C9-N1-C8-C16 \\ C9-N1-C8-C16 \\ C9-N1-C8-N1 \\ C6-C7-C8-N1 \\ C6-C7-C8-N1 \\ C6-C7-C8-C16 \\ C8-N1-C9-C10 \\ N1-C9-C10-C15 \\ C1-C1-C1-C1 \\ C1-C1-C1 \\ C1-C1-C1-C1 \\ C1-C1-C1-C1 \\ C1-C1-C1-C1 \\ C1-C1-C1-C1 \\ C1-C1-C1-C1-C1 \\ C1-C1-C1-C1-C1 \\ C1-C1-C1-C1-C1 \\ C1-C1-C1-C1-C1 \\ C1-C1-C1-C1-C1-C1 \\ C1-C1-C1-C1-C1-C1 \\ C1-C1-C1-C1-C1-C1-C1 \\ C1-C1-C1-C1-C1-C1-C1-C1 \\ C1-C1-C1-C1-C1-C1-C1-C1-C1-C1-C1 \\ C1-C1-C1-C1-C1-C1-C1-C1-C1-C1-C1-C1-C1-C$	$\begin{array}{l} 0.53 \ (15) \\ -0.27 \ (15) \\ -0.22 \ (15) \\ 0.45 \ (14) \\ -0.29 \ (13) \\ 179.02 \ (8) \\ -0.19 \ (13) \\ -179.51 \ (8) \\ 112.09 \ (9) \\ -68.61 \ (10) \\ -166.85 \ (7) \\ 75.39 \ (10) \\ -63.66 \ (9) \\ 178.43 \ (7) \\ -175.36 \ (7) \\ 174.78 \ (8) \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 178.38\ (7)\\ -1.95\ (12)\\ -1.04\ (11)\\ 178.63\ (8)\\ -178.40\ (7)\\ 1.00\ (12)\\ 179.06\ (7)\\ -0.93\ (12)\\ -179.07\ (8)\\ 0.92\ (12)\\ -0.99\ (13)\\ -178.64\ (8)\\ 1.05\ (12)\\ 172.58\ (7)\\ -67.51\ (9)\\ -10.87\ (10) \end{array}$
NI-C9-CI0-CII	-4.90 (13)	$C/-C_{0}-C_{10}-O_{4}$	109.04 (8)

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	D—H	Н…А	D····A	<i>D</i> —H··· <i>A</i>
01—H1 <i>0</i> 1····O4 ⁱ	0.863 (15)	1.790 (14)	2.6302 (9)	163.9 (15)
N1—H1 <i>N</i> 1…O1	0.864 (14)	2.051 (15)	2.6810 (9)	129.1 (12)
O2—H1 <i>O</i> 2···O3 ⁱⁱ	1.03 (2)	1.51 (2)	2.5310 (10)	179 (2)
C5—H5A···O2 ⁱⁱⁱ	0.95	2.56	3.3155 (10)	137
C12—H12 A ···O2 ^{iv}	0.95	2.46	3.1781 (10)	132

Symmetry codes: (i) -*x*+1, -*y*+2, -*z*; (ii) *x*+1, *y*-1, *z*; (iii) *x*-1, *y*, *z*; (iv) -*x*+2, -*y*+1, -*z*.