organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Acetyl-3-(p-anis­yl)sydnone

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri, Mangalore 574 199, India
*Correspondence e-mail: hkfun@usm.my

(Received 5 May 2011; accepted 16 May 2011; online 25 May 2011)

The asymmetric unit of the title compound [systematic name: 4-acetyl-3-(4-meth­oxy­phen­yl)-1,2,3-oxadiazol-3-ium-5-olate], C11H10N2O4, contains four crystallographically independent mol­ecules. The 1,2,3-oxadiazole rings are almost planar [maximum deviations = 0.006 (3), 0.006 (3), 0.002 (3) and 0.009 (3) Å] and form dihedral angles of 55.03 (14), 61.02 (13), 58.36 (14) and 53.79 (15)° with their attached benzene rings. In the crystal, inter­molecular C—H⋯O and C—H⋯N hydrogen bonds link the mol­ecules, forming sheets parallel to (011).

Related literature

For background to sydnones, see: Rai et al. (2008[Rai, N. S., Kalluraya, B., Lingappa, B., Shenoy, S. & Puranic, V. G. (2008). Eur. J. Med. Chem. 43, 1715-1720.]); Hedge et al. (2008[Hedge, J. C., Girisha, K. S., Adhikari, A. & Kalluraya, B. (2008). Eur. J. Med. Chem. 43, 2831-2834.]). For a related structure, see: Fun et al. (2010[Fun, H.-K., Goh, J. H., Nithinchandra, & Kalluraya, B. (2010). Acta Cryst. E66, o3252.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C11H10N2O4

  • Mr = 234.21

  • Triclinic, [P \overline 1]

  • a = 9.6338 (8) Å

  • b = 10.0679 (7) Å

  • c = 22.4108 (18) Å

  • α = 86.938 (3)°

  • β = 78.049 (2)°

  • γ = 89.891 (2)°

  • V = 2123.4 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 100 K

  • 0.53 × 0.17 × 0.08 mm

Data collection
  • Bruker SMART APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.942, Tmax = 0.991

  • 36725 measured reflections

  • 9556 independent reflections

  • 7589 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.155

  • S = 1.04

  • 9556 reflections

  • 622 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5A—H5AA⋯O3Bi 0.93 2.49 3.282 (3) 144
C4B—H4BA⋯O3A 0.93 2.48 3.217 (3) 137
C8B—H8BA⋯N2Aii 0.93 2.47 3.369 (4) 164
C4C—H4CA⋯O3Diii 0.93 2.49 3.231 (3) 137
C11B—H11D⋯O2Dii 0.96 2.39 3.220 (4) 144
C11C—H11G⋯O2Biv 0.96 2.47 3.289 (4) 143
C8C—H8CA⋯N2Dv 0.93 2.47 3.386 (4) 169
C5D—H5DA⋯O3Cvi 0.93 2.56 3.311 (3) 138
Symmetry codes: (i) -x+1, -y, -z+1; (ii) x-1, y, z; (iii) -x+2, -y+1, -z+1; (iv) -x+1, -y, -z; (v) -x+1, -y+1, -z+1; (vi) x, y, z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Sydnones constitute a well defined class of mesoionic compounds that contain the 1,2,3-oxadiazole ring system. The introduction of the concept of mesoionic structure for certain heterocyclic compounds in the year 1949 has proved to be a fruitful development in heterocyclic chemistry. The study of sydnones still remains a field of interest because of their electronic structure and also because of the various types of biological activities displayed by some of them. Interest in sydnone derivatives has also been encouraged by the discovery that they exhibit various pharmacological activities (Hedge et al., 2008; Rai et al., 2008). The title 4-acetyl sydnone will be used for the preparation of a new series of α,β-unsaturated carbonyl compounds (namely chalcones) by condensation with appropriate ketones or aldehydes. These α,β-unsaturated carbonyl compounds will be utilized for the synthesis of a variety of novel heterocyclic compounds like pyrazolines, pyrazole etc, carrying sydnone moiety.

The asymmetric unit of the title compound (Fig. 1) consists of four crystallographically independent molecules (molecule A, B, C & D). The 1,2,3-oxadiazole (O1/N1/N2/C1/C2) rings are almost planar [maximum deviations of 0.006 (3) Å at atom N2A; 0.006 (3) Å at atom C1B; 0.002 (3) Å at atom C1C and 0.009 (3) Å at N2D] and form dihedral angles of 55.03 (14), 61.02 (13), 58.36 (14) and 53.79 (15)° with their attached benzene rings (C3–C8). The bond lengths (Allen et al., 1987) and angles are within the normal ranges and are comparable to those found in a related structure (Fun et al., 2010).

In the crystal packing (Fig. 2), intermolecular C5A—H5AA···O3B, C4B—H4BA···O3A, C8B—H8BA···N2A, C4C—H4CA···O3D, C11B—H11D···O2D, C11C—H11G···O2B, C8C—H8CA···N2D and C5D—H5DA···O3C hydrogen bonds (Table 1) link the molecules to form two-dimensional sheets parallel to the (011) plane.

Related literature top

For background to sydnones, see: Rai et al. (2008); Hedge et al. (2008). For a related structure, see: Fun et al. (2010). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

To a suspension of phosphorous pentoxide (0.1 mol) in benzene (100 ml) contained in a three-necked round-bottom flask fitted with a reflux condenser, 3-(p-anisyl)sydnone (0.05 mol) was added. The mixture was heated to reflux on a water bath. Glacial acetic acid (0.05 mol) was added dropwise through the dropping funnel over a ten minutes period. The reaction mixture heated for 4 h. After cooling to room temperature, the benzene was decanted and evaporated to dryness. The solid obtained was filtered, dried and recrystallized from ethanol. Single crystals suitable for X-ray analysis were obtained from a mixture of DMF and ethanol (1:2 v/v) by slow evaporation.

Refinement top

All H atoms were positioned geometrically and refined using a riding model with Uiso(H) = 1.2 or 1.5 Ueq(C) [C–H = 0.93 to 0.96 Å]. A rotating group model was applied to the methyl groups. The crystal is a twin with twin law 1 0 0, 0 - 1 0, 1 0 -1 and BASF = 0.198 (2). Nine outliners were omitted for the final refinement, 2 0 4, 5 1 4, 5 2 1, 5 -2 8, 3 0 5, 2 3 5, -6 -2 5, 5 -4 6 and 5 -3 12.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the a axis. H atoms not involved in the intermolecular interactions (dashed lines) are omitted for clarity.
4-Acetyl-3-(4-methoxyphenyl)-1,2,3-oxadiazol-3-ium-5-olate top
Crystal data top
C11H10N2O4Z = 8
Mr = 234.21F(000) = 976
Triclinic, P1Dx = 1.465 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.6338 (8) ÅCell parameters from 8454 reflections
b = 10.0679 (7) Åθ = 3.2–32.4°
c = 22.4108 (18) ŵ = 0.11 mm1
α = 86.938 (3)°T = 100 K
β = 78.049 (2)°Block, colourless
γ = 89.891 (2)°0.53 × 0.17 × 0.08 mm
V = 2123.4 (3) Å3
Data collection top
Bruker SMART APEXII DUO CCD area-detector
diffractometer
9556 independent reflections
Radiation source: fine-focus sealed tube7589 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
ϕ and ω scansθmax = 27.5°, θmin = 0.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1212
Tmin = 0.942, Tmax = 0.991k = 1313
36725 measured reflectionsl = 2929
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.155H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0694P)2 + 1.9792P]
where P = (Fo2 + 2Fc2)/3
9556 reflections(Δ/σ)max = 0.001
622 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C11H10N2O4γ = 89.891 (2)°
Mr = 234.21V = 2123.4 (3) Å3
Triclinic, P1Z = 8
a = 9.6338 (8) ÅMo Kα radiation
b = 10.0679 (7) ŵ = 0.11 mm1
c = 22.4108 (18) ÅT = 100 K
α = 86.938 (3)°0.53 × 0.17 × 0.08 mm
β = 78.049 (2)°
Data collection top
Bruker SMART APEXII DUO CCD area-detector
diffractometer
9556 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
7589 reflections with I > 2σ(I)
Tmin = 0.942, Tmax = 0.991Rint = 0.044
36725 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.155H-atom parameters constrained
S = 1.04Δρmax = 0.32 e Å3
9556 reflectionsΔρmin = 0.29 e Å3
622 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O1A1.0268 (2)0.15731 (17)0.25992 (8)0.0198 (4)
O2A0.9645 (2)0.02461 (18)0.21501 (8)0.0235 (4)
O3A0.6205 (2)0.01215 (17)0.37893 (8)0.0208 (4)
O4A0.6496 (2)0.30248 (18)0.57834 (8)0.0246 (4)
N1A0.8745 (2)0.15265 (19)0.34312 (9)0.0150 (4)
N2A0.9836 (2)0.2203 (2)0.31319 (9)0.0180 (4)
C1A0.9400 (3)0.0439 (2)0.25844 (11)0.0183 (5)
C2A0.8392 (3)0.0448 (2)0.31472 (11)0.0162 (5)
C3A0.8143 (3)0.1951 (2)0.40338 (10)0.0150 (5)
C8A0.7703 (3)0.3254 (2)0.41043 (11)0.0177 (5)
H8AA0.77650.38470.37670.021*
C7A0.7164 (3)0.3658 (2)0.46930 (11)0.0192 (5)
H7AA0.68820.45330.47520.023*
C6A0.7047 (3)0.2748 (2)0.51937 (11)0.0191 (5)
C5A0.7513 (3)0.1440 (2)0.51073 (11)0.0225 (6)
H5AA0.74480.08390.54420.027*
C4A0.8069 (3)0.1040 (2)0.45262 (11)0.0200 (5)
H4AA0.83870.01750.44670.024*
C9A0.7135 (3)0.0400 (2)0.33564 (11)0.0173 (5)
C10A0.7041 (3)0.1618 (3)0.30084 (12)0.0247 (6)
H10A0.61420.20530.31610.037*
H10B0.77920.22150.30590.037*
H10C0.71290.13660.25830.037*
C11A0.5980 (4)0.4332 (3)0.59009 (13)0.0317 (7)
H11A0.56180.43920.63310.048*
H11B0.52350.45210.56840.048*
H11C0.67390.49650.57670.048*
O1B0.5532 (2)0.17633 (18)0.26742 (8)0.0222 (4)
O2B0.4936 (2)0.0067 (2)0.21410 (8)0.0271 (4)
O3B0.1346 (2)0.00518 (17)0.37277 (8)0.0203 (4)
O4B0.1537 (2)0.31158 (19)0.58119 (8)0.0243 (4)
N1B0.3873 (2)0.16804 (19)0.34621 (9)0.0153 (4)
N2B0.5034 (2)0.2329 (2)0.32200 (9)0.0205 (5)
C1B0.4621 (3)0.0700 (3)0.25912 (11)0.0193 (5)
C2B0.3522 (3)0.0686 (2)0.31215 (10)0.0164 (5)
C3B0.3205 (3)0.2046 (2)0.40707 (10)0.0159 (5)
C4B0.4001 (3)0.1923 (2)0.45223 (11)0.0168 (5)
H4BA0.49200.15940.44350.020*
C5B0.3403 (3)0.2297 (2)0.51025 (11)0.0192 (5)
H5BA0.39200.22250.54100.023*
C6B0.2025 (3)0.2783 (2)0.52254 (11)0.0178 (5)
C7B0.1239 (3)0.2905 (2)0.47659 (11)0.0203 (5)
H7BA0.03180.32290.48520.024*
C8B0.1845 (3)0.2540 (2)0.41794 (11)0.0185 (5)
H8BA0.13420.26260.38670.022*
C9B0.2298 (3)0.0198 (2)0.32851 (11)0.0173 (5)
C10B0.2272 (3)0.1319 (3)0.28691 (13)0.0286 (6)
H10D0.13890.17980.29920.043*
H10E0.30430.19100.28940.043*
H10F0.23660.09640.24560.043*
C11B0.0120 (3)0.3620 (3)0.59641 (13)0.0314 (7)
H11D0.00970.38260.63860.047*
H11E0.05380.29610.58940.047*
H11F0.00470.44100.57140.047*
O1C0.8181 (2)0.34109 (18)0.22984 (8)0.0215 (4)
O2C0.6999 (2)0.50964 (18)0.28147 (8)0.0248 (4)
O3C0.4962 (2)0.50729 (17)0.12143 (8)0.0201 (4)
O4C0.7211 (2)0.17885 (18)0.08198 (8)0.0218 (4)
N1C0.7281 (2)0.34063 (19)0.15082 (9)0.0150 (4)
N2C0.8225 (2)0.2802 (2)0.17627 (9)0.0193 (4)
C1C0.7148 (3)0.4441 (2)0.23698 (11)0.0185 (5)
C2C0.6572 (3)0.4402 (2)0.18356 (11)0.0165 (5)
C3C0.7212 (3)0.2989 (2)0.09044 (10)0.0149 (5)
C4C0.8447 (3)0.3067 (2)0.04600 (11)0.0174 (5)
H4CA0.92840.33920.05450.021*
C5C0.8406 (3)0.2648 (2)0.01181 (11)0.0192 (5)
H5CA0.92230.26880.04240.023*
C6C0.7146 (3)0.2170 (2)0.02389 (11)0.0172 (5)
C7C0.5916 (3)0.2098 (2)0.02156 (11)0.0189 (5)
H7CA0.50740.17810.01320.023*
C8C0.5956 (3)0.2503 (2)0.07946 (11)0.0187 (5)
H8CA0.51460.24480.11040.022*
C9C0.5472 (3)0.5250 (2)0.16617 (11)0.0167 (5)
C10C0.4988 (3)0.6369 (3)0.20708 (12)0.0254 (6)
H10G0.41720.67800.19580.038*
H10H0.57380.70150.20280.038*
H10I0.47430.60250.24870.038*
C11C0.5948 (3)0.1238 (3)0.09556 (12)0.0279 (6)
H11G0.61420.09690.13690.042*
H11H0.52160.18960.09060.042*
H11I0.56400.04800.06820.042*
O1D0.7154 (2)0.66298 (18)0.76043 (8)0.0205 (4)
O2D0.8187 (2)0.47850 (19)0.71668 (8)0.0266 (4)
O3D1.0010 (2)0.48713 (17)0.88251 (8)0.0202 (4)
O4D0.7767 (2)0.80695 (17)1.08041 (8)0.0215 (4)
N1D0.7863 (2)0.65663 (19)0.84444 (9)0.0150 (4)
N2D0.7072 (2)0.7257 (2)0.81382 (9)0.0187 (4)
C1D0.8016 (3)0.5472 (2)0.75995 (11)0.0193 (5)
C2D0.8471 (3)0.5475 (2)0.81658 (11)0.0172 (5)
C3D0.7877 (3)0.6988 (2)0.90516 (10)0.0152 (5)
C4D0.7475 (3)0.6070 (2)0.95461 (11)0.0202 (5)
H4DA0.72220.52040.94860.024*
C5D0.7463 (3)0.6473 (2)1.01240 (11)0.0213 (5)
H5DA0.72120.58711.04580.026*
C6D0.7827 (3)0.7790 (2)1.02127 (11)0.0166 (5)
C7D0.8199 (3)0.8698 (2)0.97135 (11)0.0177 (5)
H7DA0.84230.95730.97720.021*
C8D0.8236 (3)0.8285 (2)0.91230 (11)0.0176 (5)
H8DA0.84970.88770.87850.021*
C9D0.9507 (3)0.4609 (2)0.83869 (11)0.0174 (5)
C10D0.9925 (3)0.3386 (3)0.80422 (13)0.0271 (6)
H10J1.06410.29200.82090.041*
H10M1.02920.36360.76200.041*
H10K0.91090.28180.80770.041*
C11D0.8095 (3)0.9402 (3)1.09304 (12)0.0275 (6)
H11M0.80060.94641.13630.041*
H11J0.74491.00081.07880.041*
H11K0.90490.96261.07250.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1A0.0245 (10)0.0194 (9)0.0140 (8)0.0008 (7)0.0003 (7)0.0030 (7)
O2A0.0316 (11)0.0234 (9)0.0149 (8)0.0050 (8)0.0019 (8)0.0060 (7)
O3A0.0244 (10)0.0190 (9)0.0181 (9)0.0013 (7)0.0022 (8)0.0020 (7)
O4A0.0376 (12)0.0220 (9)0.0122 (8)0.0036 (8)0.0005 (8)0.0043 (7)
N1A0.0193 (11)0.0133 (9)0.0122 (9)0.0000 (8)0.0027 (8)0.0003 (7)
N2A0.0219 (11)0.0196 (10)0.0120 (9)0.0000 (8)0.0024 (8)0.0025 (8)
C1A0.0221 (13)0.0172 (11)0.0158 (12)0.0025 (10)0.0044 (10)0.0006 (9)
C2A0.0230 (13)0.0122 (10)0.0136 (11)0.0029 (9)0.0037 (10)0.0033 (8)
C3A0.0183 (12)0.0136 (11)0.0131 (11)0.0023 (9)0.0030 (9)0.0024 (8)
C8A0.0235 (13)0.0144 (11)0.0150 (11)0.0015 (9)0.0038 (10)0.0003 (9)
C7A0.0250 (14)0.0143 (11)0.0181 (12)0.0022 (9)0.0041 (10)0.0019 (9)
C6A0.0249 (14)0.0200 (12)0.0120 (11)0.0059 (10)0.0028 (10)0.0023 (9)
C5A0.0354 (16)0.0170 (12)0.0152 (12)0.0043 (11)0.0056 (11)0.0016 (9)
C4A0.0303 (15)0.0144 (11)0.0158 (11)0.0011 (10)0.0059 (10)0.0017 (9)
C9A0.0236 (13)0.0149 (11)0.0146 (11)0.0022 (10)0.0067 (10)0.0001 (9)
C10A0.0328 (16)0.0188 (12)0.0240 (13)0.0026 (11)0.0076 (12)0.0076 (10)
C11A0.0448 (19)0.0238 (14)0.0227 (13)0.0002 (13)0.0039 (13)0.0090 (11)
O1B0.0245 (10)0.0272 (9)0.0129 (8)0.0004 (8)0.0016 (7)0.0025 (7)
O2B0.0320 (11)0.0350 (11)0.0139 (9)0.0091 (9)0.0017 (8)0.0089 (8)
O3B0.0222 (10)0.0190 (8)0.0195 (9)0.0008 (7)0.0035 (8)0.0019 (7)
O4B0.0283 (11)0.0299 (10)0.0127 (8)0.0008 (8)0.0020 (8)0.0064 (7)
N1B0.0203 (11)0.0146 (9)0.0106 (9)0.0015 (8)0.0023 (8)0.0011 (7)
N2B0.0209 (12)0.0243 (11)0.0139 (10)0.0032 (9)0.0016 (9)0.0008 (8)
C1B0.0233 (14)0.0218 (12)0.0132 (11)0.0046 (10)0.0044 (10)0.0016 (9)
C2B0.0234 (13)0.0154 (11)0.0112 (10)0.0028 (9)0.0043 (10)0.0034 (8)
C3B0.0229 (13)0.0128 (10)0.0112 (11)0.0026 (9)0.0013 (10)0.0022 (8)
C4B0.0202 (13)0.0146 (11)0.0152 (11)0.0011 (9)0.0028 (9)0.0012 (9)
C5B0.0279 (14)0.0176 (12)0.0126 (11)0.0036 (10)0.0057 (10)0.0001 (9)
C6B0.0246 (14)0.0152 (11)0.0120 (11)0.0045 (10)0.0009 (10)0.0048 (9)
C7B0.0210 (13)0.0184 (12)0.0208 (12)0.0006 (10)0.0021 (10)0.0039 (9)
C8B0.0246 (14)0.0158 (11)0.0164 (11)0.0015 (10)0.0064 (10)0.0025 (9)
C9B0.0230 (13)0.0145 (11)0.0157 (11)0.0033 (9)0.0068 (10)0.0015 (9)
C10B0.0368 (17)0.0208 (13)0.0290 (15)0.0020 (12)0.0065 (13)0.0106 (11)
C11B0.0322 (16)0.0357 (16)0.0217 (13)0.0002 (13)0.0070 (12)0.0093 (11)
O1C0.0273 (10)0.0246 (9)0.0131 (8)0.0010 (8)0.0052 (7)0.0017 (7)
O2C0.0361 (12)0.0242 (9)0.0142 (8)0.0034 (8)0.0041 (8)0.0043 (7)
O3C0.0232 (10)0.0193 (9)0.0181 (9)0.0028 (7)0.0043 (8)0.0023 (7)
O4C0.0273 (10)0.0258 (9)0.0121 (8)0.0026 (8)0.0032 (7)0.0042 (7)
N1C0.0173 (11)0.0132 (9)0.0134 (9)0.0002 (8)0.0001 (8)0.0007 (7)
N2C0.0231 (12)0.0202 (10)0.0149 (10)0.0016 (9)0.0042 (9)0.0018 (8)
C1C0.0217 (13)0.0173 (11)0.0149 (11)0.0035 (10)0.0004 (10)0.0004 (9)
C2C0.0202 (13)0.0146 (11)0.0132 (11)0.0004 (9)0.0005 (10)0.0020 (9)
C3C0.0211 (13)0.0131 (10)0.0098 (10)0.0030 (9)0.0010 (9)0.0020 (8)
C4C0.0209 (13)0.0135 (11)0.0171 (12)0.0020 (9)0.0022 (10)0.0004 (9)
C5C0.0233 (13)0.0170 (11)0.0142 (11)0.0035 (10)0.0035 (10)0.0010 (9)
C6C0.0243 (13)0.0129 (11)0.0131 (11)0.0041 (9)0.0014 (10)0.0002 (8)
C7C0.0222 (13)0.0180 (12)0.0160 (11)0.0019 (10)0.0023 (10)0.0019 (9)
C8C0.0197 (13)0.0181 (12)0.0163 (12)0.0012 (9)0.0011 (10)0.0018 (9)
C9C0.0176 (12)0.0134 (11)0.0159 (11)0.0008 (9)0.0036 (10)0.0007 (9)
C10C0.0324 (16)0.0219 (13)0.0210 (13)0.0061 (11)0.0022 (12)0.0072 (10)
C11C0.0368 (17)0.0314 (14)0.0172 (12)0.0004 (12)0.0088 (12)0.0038 (11)
O1D0.0256 (10)0.0235 (9)0.0125 (8)0.0018 (8)0.0037 (7)0.0028 (7)
O2D0.0313 (11)0.0303 (10)0.0173 (9)0.0020 (9)0.0011 (8)0.0096 (8)
O3D0.0230 (10)0.0174 (8)0.0203 (9)0.0024 (7)0.0042 (8)0.0027 (7)
O4D0.0321 (11)0.0193 (9)0.0132 (8)0.0038 (8)0.0039 (8)0.0038 (7)
N1D0.0158 (10)0.0147 (9)0.0127 (9)0.0005 (8)0.0009 (8)0.0015 (7)
N2D0.0232 (12)0.0193 (10)0.0122 (9)0.0027 (9)0.0005 (8)0.0017 (8)
C1D0.0195 (13)0.0204 (12)0.0160 (11)0.0013 (10)0.0015 (10)0.0033 (9)
C2D0.0196 (13)0.0163 (11)0.0138 (11)0.0004 (9)0.0019 (10)0.0045 (9)
C3D0.0186 (12)0.0144 (11)0.0116 (11)0.0036 (9)0.0002 (9)0.0031 (8)
C4D0.0271 (14)0.0130 (11)0.0184 (12)0.0010 (10)0.0007 (10)0.0025 (9)
C5D0.0314 (15)0.0163 (11)0.0128 (11)0.0041 (10)0.0024 (10)0.0024 (9)
C6D0.0183 (13)0.0182 (11)0.0125 (11)0.0051 (9)0.0007 (9)0.0029 (9)
C7D0.0208 (13)0.0134 (11)0.0184 (12)0.0027 (9)0.0023 (10)0.0040 (9)
C8D0.0219 (13)0.0155 (11)0.0137 (11)0.0040 (9)0.0002 (9)0.0002 (9)
C9D0.0176 (12)0.0152 (11)0.0173 (12)0.0010 (9)0.0017 (10)0.0028 (9)
C10D0.0309 (16)0.0214 (13)0.0281 (14)0.0056 (11)0.0022 (12)0.0105 (11)
C11D0.0400 (17)0.0229 (13)0.0208 (13)0.0026 (12)0.0079 (12)0.0062 (10)
Geometric parameters (Å, º) top
O1A—N2A1.369 (3)O1C—N2C1.370 (3)
O1A—C1A1.422 (3)O1C—C1C1.428 (3)
O2A—C1A1.206 (3)O2C—C1C1.208 (3)
O3A—C9A1.221 (3)O3C—C9C1.226 (3)
O4A—C6A1.362 (3)O4C—C6C1.366 (3)
O4A—C11A1.424 (3)O4C—C11C1.433 (4)
N1A—N2A1.297 (3)N1C—N2C1.303 (3)
N1A—C2A1.365 (3)N1C—C2C1.370 (3)
N1A—C3A1.442 (3)N1C—C3C1.452 (3)
C1A—C2A1.424 (3)C1C—C2C1.422 (3)
C2A—C9A1.463 (4)C2C—C9C1.461 (3)
C3A—C8A1.385 (3)C3C—C8C1.379 (4)
C3A—C4A1.387 (3)C3C—C4C1.384 (3)
C8A—C7A1.396 (3)C4C—C5C1.392 (3)
C8A—H8AA0.9300C4C—H4CA0.9300
C7A—C6A1.396 (3)C5C—C6C1.390 (4)
C7A—H7AA0.9300C5C—H5CA0.9300
C6A—C5A1.401 (4)C6C—C7C1.392 (4)
C5A—C4A1.382 (3)C7C—C8C1.389 (3)
C5A—H5AA0.9300C7C—H7CA0.9300
C4A—H4AA0.9300C8C—H8CA0.9300
C9A—C10A1.501 (3)C9C—C10C1.503 (3)
C10A—H10A0.9600C10C—H10G0.9600
C10A—H10B0.9600C10C—H10H0.9600
C10A—H10C0.9600C10C—H10I0.9600
C11A—H11A0.9600C11C—H11G0.9600
C11A—H11B0.9600C11C—H11H0.9600
C11A—H11C0.9600C11C—H11I0.9600
O1B—N2B1.372 (3)O1D—N2D1.370 (3)
O1B—C1B1.430 (3)O1D—C1D1.429 (3)
O2B—C1B1.207 (3)O2D—C1D1.205 (3)
O3B—C9B1.219 (3)O3D—C9D1.222 (3)
O4B—C6B1.361 (3)O4D—C6D1.359 (3)
O4B—C11B1.436 (4)O4D—C11D1.435 (3)
N1B—N2B1.298 (3)N1D—N2D1.303 (3)
N1B—C2B1.375 (3)N1D—C2D1.364 (3)
N1B—C3B1.449 (3)N1D—C3D1.450 (3)
C1B—C2B1.418 (4)C1D—C2D1.426 (3)
C2B—C9B1.451 (4)C2D—C9D1.469 (4)
C3B—C8B1.379 (4)C3D—C8D1.378 (3)
C3B—C4B1.391 (3)C3D—C4D1.395 (3)
C4B—C5B1.381 (3)C4D—C5D1.376 (3)
C4B—H4BA0.9300C4D—H4DA0.9300
C5B—C6B1.392 (4)C5D—C6D1.406 (3)
C5B—H5BA0.9300C5D—H5DA0.9300
C6B—C7B1.399 (4)C6D—C7D1.394 (3)
C7B—C8B1.392 (3)C7D—C8D1.402 (3)
C7B—H7BA0.9300C7D—H7DA0.9300
C8B—H8BA0.9300C8D—H8DA0.9300
C9B—C10B1.505 (3)C9D—C10D1.498 (3)
C10B—H10D0.9600C10D—H10J0.9600
C10B—H10E0.9600C10D—H10M0.9600
C10B—H10F0.9600C10D—H10K0.9600
C11B—H11D0.9600C11D—H11M0.9600
C11B—H11E0.9600C11D—H11J0.9600
C11B—H11F0.9600C11D—H11K0.9600
N2A—O1A—C1A110.86 (18)N2C—O1C—C1C110.72 (18)
C6A—O4A—C11A117.9 (2)C6C—O4C—C11C117.4 (2)
N2A—N1A—C2A115.0 (2)N2C—N1C—C2C114.7 (2)
N2A—N1A—C3A115.87 (19)N2C—N1C—C3C115.31 (19)
C2A—N1A—C3A128.9 (2)C2C—N1C—C3C129.8 (2)
N1A—N2A—O1A105.26 (18)N1C—N2C—O1C105.44 (19)
O2A—C1A—O1A119.8 (2)O2C—C1C—C2C137.3 (3)
O2A—C1A—C2A136.7 (3)O2C—C1C—O1C119.0 (2)
O1A—C1A—C2A103.54 (19)C2C—C1C—O1C103.7 (2)
N1A—C2A—C1A105.3 (2)N1C—C2C—C1C105.5 (2)
N1A—C2A—C9A125.9 (2)N1C—C2C—C9C126.7 (2)
C1A—C2A—C9A128.4 (2)C1C—C2C—C9C127.8 (2)
C8A—C3A—C4A122.3 (2)C8C—C3C—C4C122.3 (2)
C8A—C3A—N1A119.3 (2)C8C—C3C—N1C120.1 (2)
C4A—C3A—N1A118.3 (2)C4C—C3C—N1C117.6 (2)
C3A—C8A—C7A118.5 (2)C3C—C4C—C5C118.4 (2)
C3A—C8A—H8AA120.7C3C—C4C—H4CA120.8
C7A—C8A—H8AA120.7C5C—C4C—H4CA120.8
C8A—C7A—C6A120.1 (2)C6C—C5C—C4C120.1 (2)
C8A—C7A—H7AA120.0C6C—C5C—H5CA119.9
C6A—C7A—H7AA120.0C4C—C5C—H5CA119.9
O4A—C6A—C7A124.8 (2)O4C—C6C—C5C115.7 (2)
O4A—C6A—C5A115.2 (2)O4C—C6C—C7C123.7 (2)
C7A—C6A—C5A120.0 (2)C5C—C6C—C7C120.6 (2)
C4A—C5A—C6A120.2 (2)C8C—C7C—C6C119.5 (2)
C4A—C5A—H5AA119.9C8C—C7C—H7CA120.2
C6A—C5A—H5AA119.9C6C—C7C—H7CA120.2
C5A—C4A—C3A118.9 (2)C3C—C8C—C7C119.1 (2)
C5A—C4A—H4AA120.6C3C—C8C—H8CA120.4
C3A—C4A—H4AA120.6C7C—C8C—H8CA120.4
O3A—C9A—C2A121.5 (2)O3C—C9C—C2C123.0 (2)
O3A—C9A—C10A121.8 (2)O3C—C9C—C10C121.3 (2)
C2A—C9A—C10A116.7 (2)C2C—C9C—C10C115.7 (2)
C9A—C10A—H10A109.5C9C—C10C—H10G109.5
C9A—C10A—H10B109.5C9C—C10C—H10H109.5
H10A—C10A—H10B109.5H10G—C10C—H10H109.5
C9A—C10A—H10C109.5C9C—C10C—H10I109.5
H10A—C10A—H10C109.5H10G—C10C—H10I109.5
H10B—C10A—H10C109.5H10H—C10C—H10I109.5
O4A—C11A—H11A109.5O4C—C11C—H11G109.5
O4A—C11A—H11B109.5O4C—C11C—H11H109.5
H11A—C11A—H11B109.5H11G—C11C—H11H109.5
O4A—C11A—H11C109.5O4C—C11C—H11I109.5
H11A—C11A—H11C109.5H11G—C11C—H11I109.5
H11B—C11A—H11C109.5H11H—C11C—H11I109.5
N2B—O1B—C1B110.80 (18)N2D—O1D—C1D110.37 (18)
C6B—O4B—C11B117.3 (2)C6D—O4D—C11D118.05 (19)
N2B—N1B—C2B115.1 (2)N2D—N1D—C2D114.9 (2)
N2B—N1B—C3B115.0 (2)N2D—N1D—C3D116.12 (19)
C2B—N1B—C3B129.7 (2)C2D—N1D—C3D128.8 (2)
N1B—N2B—O1B105.10 (19)N1D—N2D—O1D105.58 (18)
O2B—C1B—C2B137.1 (3)O2D—C1D—C2D136.8 (3)
O2B—C1B—O1B119.1 (2)O2D—C1D—O1D119.4 (2)
C2B—C1B—O1B103.8 (2)C2D—C1D—O1D103.76 (19)
N1B—C2B—C1B105.2 (2)N1D—C2D—C1D105.4 (2)
N1B—C2B—C9B126.6 (2)N1D—C2D—C9D125.4 (2)
C1B—C2B—C9B128.1 (2)C1D—C2D—C9D128.8 (2)
C8B—C3B—C4B122.5 (2)C8D—C3D—C4D122.4 (2)
C8B—C3B—N1B119.9 (2)C8D—C3D—N1D119.2 (2)
C4B—C3B—N1B117.6 (2)C4D—C3D—N1D118.4 (2)
C5B—C4B—C3B118.8 (2)C5D—C4D—C3D118.6 (2)
C5B—C4B—H4BA120.6C5D—C4D—H4DA120.7
C3B—C4B—H4BA120.6C3D—C4D—H4DA120.7
C4B—C5B—C6B119.8 (2)C4D—C5D—C6D120.5 (2)
C4B—C5B—H5BA120.1C4D—C5D—H5DA119.8
C6B—C5B—H5BA120.1C6D—C5D—H5DA119.8
O4B—C6B—C5B115.0 (2)O4D—C6D—C7D125.0 (2)
O4B—C6B—C7B124.3 (2)O4D—C6D—C5D115.0 (2)
C5B—C6B—C7B120.8 (2)C7D—C6D—C5D120.0 (2)
C8B—C7B—C6B119.5 (2)C6D—C7D—C8D119.7 (2)
C8B—C7B—H7BA120.2C6D—C7D—H7DA120.2
C6B—C7B—H7BA120.2C8D—C7D—H7DA120.2
C3B—C8B—C7B118.6 (2)C3D—C8D—C7D118.9 (2)
C3B—C8B—H8BA120.7C3D—C8D—H8DA120.6
C7B—C8B—H8BA120.7C7D—C8D—H8DA120.6
O3B—C9B—C2B122.8 (2)O3D—C9D—C2D122.1 (2)
O3B—C9B—C10B121.6 (2)O3D—C9D—C10D121.7 (2)
C2B—C9B—C10B115.6 (2)C2D—C9D—C10D116.3 (2)
C9B—C10B—H10D109.5C9D—C10D—H10J109.5
C9B—C10B—H10E109.5C9D—C10D—H10M109.5
H10D—C10B—H10E109.5H10J—C10D—H10M109.5
C9B—C10B—H10F109.5C9D—C10D—H10K109.5
H10D—C10B—H10F109.5H10J—C10D—H10K109.5
H10E—C10B—H10F109.5H10M—C10D—H10K109.5
O4B—C11B—H11D109.5O4D—C11D—H11M109.5
O4B—C11B—H11E109.5O4D—C11D—H11J109.5
H11D—C11B—H11E109.5H11M—C11D—H11J109.5
O4B—C11B—H11F109.5O4D—C11D—H11K109.5
H11D—C11B—H11F109.5H11M—C11D—H11K109.5
H11E—C11B—H11F109.5H11J—C11D—H11K109.5
C2A—N1A—N2A—O1A0.9 (3)C2C—N1C—N2C—O1C0.2 (3)
C3A—N1A—N2A—O1A176.26 (19)C3C—N1C—N2C—O1C175.58 (19)
C1A—O1A—N2A—N1A1.2 (2)C1C—O1C—N2C—N1C0.0 (3)
N2A—O1A—C1A—O2A179.0 (2)N2C—O1C—C1C—O2C178.4 (2)
N2A—O1A—C1A—C2A1.0 (3)N2C—O1C—C1C—C2C0.2 (3)
N2A—N1A—C2A—C1A0.3 (3)N2C—N1C—C2C—C1C0.4 (3)
C3A—N1A—C2A—C1A174.9 (2)C3C—N1C—C2C—C1C174.7 (2)
N2A—N1A—C2A—C9A173.7 (2)N2C—N1C—C2C—C9C179.5 (2)
C3A—N1A—C2A—C9A11.7 (4)C3C—N1C—C2C—C9C4.4 (4)
O2A—C1A—C2A—N1A179.5 (3)O2C—C1C—C2C—N1C177.9 (3)
O1A—C1A—C2A—N1A0.4 (2)O1C—C1C—C2C—N1C0.3 (3)
O2A—C1A—C2A—C9A7.3 (5)O2C—C1C—C2C—C9C1.2 (5)
O1A—C1A—C2A—C9A172.7 (2)O1C—C1C—C2C—C9C179.4 (2)
N2A—N1A—C3A—C8A56.4 (3)N2C—N1C—C3C—C8C122.4 (2)
C2A—N1A—C3A—C8A129.0 (3)C2C—N1C—C3C—C8C62.5 (3)
N2A—N1A—C3A—C4A121.6 (3)N2C—N1C—C3C—C4C55.9 (3)
C2A—N1A—C3A—C4A53.0 (4)C2C—N1C—C3C—C4C119.1 (3)
C4A—C3A—C8A—C7A0.1 (4)C8C—C3C—C4C—C5C0.5 (4)
N1A—C3A—C8A—C7A178.0 (2)N1C—C3C—C4C—C5C178.8 (2)
C3A—C8A—C7A—C6A1.5 (4)C3C—C4C—C5C—C6C0.2 (3)
C11A—O4A—C6A—C7A0.9 (4)C11C—O4C—C6C—C5C177.5 (2)
C11A—O4A—C6A—C5A179.0 (3)C11C—O4C—C6C—C7C2.5 (3)
C8A—C7A—C6A—O4A177.8 (2)C4C—C5C—C6C—O4C179.7 (2)
C8A—C7A—C6A—C5A2.0 (4)C4C—C5C—C6C—C7C0.3 (4)
O4A—C6A—C5A—C4A178.9 (2)O4C—C6C—C7C—C8C179.7 (2)
C7A—C6A—C5A—C4A1.0 (4)C5C—C6C—C7C—C8C0.3 (4)
C6A—C5A—C4A—C3A0.6 (4)C4C—C3C—C8C—C7C1.1 (4)
C8A—C3A—C4A—C5A1.1 (4)N1C—C3C—C8C—C7C179.4 (2)
N1A—C3A—C4A—C5A179.1 (2)C6C—C7C—C8C—C3C1.0 (4)
N1A—C2A—C9A—O3A7.0 (4)N1C—C2C—C9C—O3C7.1 (4)
C1A—C2A—C9A—O3A164.9 (2)C1C—C2C—C9C—O3C174.0 (2)
N1A—C2A—C9A—C10A173.7 (2)N1C—C2C—C9C—C10C173.2 (2)
C1A—C2A—C9A—C10A14.5 (4)C1C—C2C—C9C—C10C5.7 (4)
C2B—N1B—N2B—O1B0.2 (3)C2D—N1D—N2D—O1D1.4 (3)
C3B—N1B—N2B—O1B175.62 (19)C3D—N1D—N2D—O1D176.18 (19)
C1B—O1B—N2B—N1B0.9 (3)C1D—O1D—N2D—N1D1.7 (3)
N2B—O1B—C1B—O2B177.6 (2)N2D—O1D—C1D—O2D178.9 (2)
N2B—O1B—C1B—C2B1.2 (3)N2D—O1D—C1D—C2D1.4 (3)
N2B—N1B—C2B—C1B0.5 (3)N2D—N1D—C2D—C1D0.6 (3)
C3B—N1B—C2B—C1B174.0 (2)C3D—N1D—C2D—C1D174.5 (2)
N2B—N1B—C2B—C9B179.3 (2)N2D—N1D—C2D—C9D174.0 (2)
C3B—N1B—C2B—C9B4.7 (4)C3D—N1D—C2D—C9D12.1 (4)
O2B—C1B—C2B—N1B177.4 (3)O2D—C1D—C2D—N1D179.8 (3)
O1B—C1B—C2B—N1B1.0 (2)O1D—C1D—C2D—N1D0.5 (3)
O2B—C1B—C2B—C9B1.3 (5)O2D—C1D—C2D—C9D7.1 (5)
O1B—C1B—C2B—C9B179.7 (2)O1D—C1D—C2D—C9D172.6 (2)
N2B—N1B—C3B—C8B119.8 (3)N2D—N1D—C3D—C8D55.2 (3)
C2B—N1B—C3B—C8B65.6 (3)C2D—N1D—C3D—C8D130.9 (3)
N2B—N1B—C3B—C4B58.0 (3)N2D—N1D—C3D—C4D122.5 (3)
C2B—N1B—C3B—C4B116.6 (3)C2D—N1D—C3D—C4D51.4 (4)
C8B—C3B—C4B—C5B0.6 (4)C8D—C3D—C4D—C5D1.2 (4)
N1B—C3B—C4B—C5B178.3 (2)N1D—C3D—C4D—C5D178.8 (2)
C3B—C4B—C5B—C6B0.2 (4)C3D—C4D—C5D—C6D1.0 (4)
C11B—O4B—C6B—C5B179.9 (2)C11D—O4D—C6D—C7D0.7 (4)
C11B—O4B—C6B—C7B0.2 (4)C11D—O4D—C6D—C5D178.7 (2)
C4B—C5B—C6B—O4B179.7 (2)C4D—C5D—C6D—O4D179.6 (2)
C4B—C5B—C6B—C7B0.4 (4)C4D—C5D—C6D—C7D0.2 (4)
O4B—C6B—C7B—C8B179.7 (2)O4D—C6D—C7D—C8D179.4 (2)
C5B—C6B—C7B—C8B0.1 (4)C5D—C6D—C7D—C8D1.2 (4)
C4B—C3B—C8B—C7B1.2 (4)C4D—C3D—C8D—C7D0.2 (4)
N1B—C3B—C8B—C7B178.9 (2)N1D—C3D—C8D—C7D177.8 (2)
C6B—C7B—C8B—C3B0.9 (4)C6D—C7D—C8D—C3D1.0 (4)
N1B—C2B—C9B—O3B8.2 (4)N1D—C2D—C9D—O3D6.4 (4)
C1B—C2B—C9B—O3B173.4 (2)C1D—C2D—C9D—O3D165.4 (3)
N1B—C2B—C9B—C10B172.0 (2)N1D—C2D—C9D—C10D174.0 (2)
C1B—C2B—C9B—C10B6.4 (4)C1D—C2D—C9D—C10D14.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5A—H5AA···O3Bi0.932.493.282 (3)144
C4B—H4BA···O3A0.932.483.217 (3)137
C8B—H8BA···N2Aii0.932.473.369 (4)164
C4C—H4CA···O3Diii0.932.493.231 (3)137
C11B—H11D···O2Dii0.962.393.220 (4)144
C11C—H11G···O2Biv0.962.473.289 (4)143
C8C—H8CA···N2Dv0.932.473.386 (4)169
C5D—H5DA···O3Cvi0.932.563.311 (3)138
Symmetry codes: (i) x+1, y, z+1; (ii) x1, y, z; (iii) x+2, y+1, z+1; (iv) x+1, y, z; (v) x+1, y+1, z+1; (vi) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC11H10N2O4
Mr234.21
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)9.6338 (8), 10.0679 (7), 22.4108 (18)
α, β, γ (°)86.938 (3), 78.049 (2), 89.891 (2)
V3)2123.4 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.53 × 0.17 × 0.08
Data collection
DiffractometerBruker SMART APEXII DUO CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.942, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
36725, 9556, 7589
Rint0.044
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.155, 1.04
No. of reflections9556
No. of parameters622
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.29

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5A—H5AA···O3Bi0.932.493.282 (3)144
C4B—H4BA···O3A0.932.483.217 (3)137
C8B—H8BA···N2Aii0.932.473.369 (4)164
C4C—H4CA···O3Diii0.932.493.231 (3)137
C11B—H11D···O2Dii0.962.393.220 (4)144
C11C—H11G···O2Biv0.962.473.289 (4)143
C8C—H8CA···N2Dv0.932.473.386 (4)169
C5D—H5DA···O3Cvi0.932.563.311 (3)138
Symmetry codes: (i) x+1, y, z+1; (ii) x1, y, z; (iii) x+2, y+1, z+1; (iv) x+1, y, z; (v) x+1, y+1, z+1; (vi) x, y, z+1.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Thomson Reuters ResearcherID: C-7581-2009.

Acknowledgements

The authors thank Universiti Sains Malaysia (USM) for the Research University Grant (1001/PFIZIK/811160). WSL also thanks the Malaysian Government and USM for the award of a research fellowship.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFun, H.-K., Goh, J. H., Nithinchandra, & Kalluraya, B. (2010). Acta Cryst. E66, o3252.  Google Scholar
First citationHedge, J. C., Girisha, K. S., Adhikari, A. & Kalluraya, B. (2008). Eur. J. Med. Chem. 43, 2831–2834.  Web of Science PubMed Google Scholar
First citationRai, N. S., Kalluraya, B., Lingappa, B., Shenoy, S. & Puranic, V. G. (2008). Eur. J. Med. Chem. 43, 1715–1720.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds