organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 6| June 2011| Pages o1517-o1518

Methyl 4′-benzyl-2,2′-di­methyl-1,3-dioxo-2,3-di­hydro-1H,4′H-spiro­[iso­quinoline-4,5′-oxazole]-4′-carboxyl­ate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bSchool of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, People's Republic of China
*Correspondence e-mail: hkfun@usm.my

(Received 10 May 2011; accepted 19 May 2011; online 25 May 2011)

In the isoquinoline ring system of the title mol­ecule, C22H20N2O5, the N-heterocyclic ring is in a half-boat conformation. The least-squares plane of the dioxa-2-aza­spiro ring [maximum deviation = 0.076 (1) Å] and forms a dihedral angle of 14.54 (4)° with the phenyl ring. In the crystal, mol­ecules are linked via inter­molecular C—H⋯O hydrogen bonds into layers parallel to (100).

Related literature

For general background to and the potential biological activity of the title compound, see: Du et al. (2008[Du, J.-Q., Wu, J., Zhang, H.-J., Zhang, Y.-H., Qiu, B.-Y., Wu, F., Chen, Y.-H., Li, J.-Y., Nan, F.-J., Ding, J.-P. & Li, J. (2008). Biol. Chem. 283, 30205-30215.]); Chen et al. (2006[Chen, Y.-H., Zhang, Y.-H., Zhang, H.-J., Liu, D.-Z., Gu, M., Li, J.-Y., Wu, F., Zhu, X.-Z., Li, J. & Nan, F.-J. (2006). J. Med. Chem. 49, 1613-1623.]); Mitchell et al. (1995[Mitchell, G., Clarke, E. D., Ridley, S. M., Greenhow, D. T., Gillen, K. J., Vohra, S. K. & Wardman, P. (1995). Pestic. Sci. 44, 49-58.], 2000[Mitchell, G., Clarke, E. D., Ridley, S. M., Bartlett, D. W., Gillen, K. J., Vohra, S. K., Greenhow, D. T., Ormrod, J. C. & Wardman, P. (2000). Pest. Manag. Sci. 56, 120-126.]); Galliford & Scheidt (2007[Galliford, C. V. & Scheidt, K. A. (2007). Angew. Chem. Int. Ed. 46, 8748-8758.]); Badillo et al. (2010[Badillo, J. J., Hanhan, N. V. & Franz, A. K. (2010). Curr. Opin. Drug Discovery Dev. 13, 758-766.]); Wang et al. (2010[Wang, L., Huang, Y. C., Liu, Y., Fun, H.-K., Zhang, Y. & Xu, J. H. (2010). J. Org. Chem. 75, 7757-7768.]); Nair et al. (2002[Nair, V., Sethumadhavan, D., Nair, S. M., Viji, S. & Rath, P. (2002). Tetrahedron, 58, 3003-3007.]); Huang et al. (2011[Huang, C., Yu, H., Miao, Z., Zhou, J., Wang, S., Fun, H.-K., Xu, J. & Zhang, Y. (2011). J. Org. Chem. 9, 3629-3631.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]). For standard bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For related structures, see: Fun et al. (2011a[Fun, H.-K., Quah, C. K., Huang, C. & Yu, H. (2011a). Acta Cryst. E67, o1271-o1272.],b[Fun, H.-K., Quah, C. K., Huang, C. & Yu, H. (2011b). Acta Cryst. E67, o1273-o1274.],c[Fun, H.-K., Quah, C. K., Huang, C. & Yu, H. (2011c). Acta Cryst. E67, o1311-o1312.],d[Fun, H.-K., Quah, C. K., Huang, C. & Yu, H. (2011d). Acta Cryst. E67, o1340-o1341.]).

[Scheme 1]

Experimental

Crystal data
  • C22H20N2O5

  • Mr = 392.40

  • Triclinic, [P \overline 1]

  • a = 8.6834 (7) Å

  • b = 11.1683 (9) Å

  • c = 11.3085 (9) Å

  • α = 100.638 (2)°

  • β = 106.347 (2)°

  • γ = 109.383 (2)°

  • V = 944.72 (13) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 K

  • 0.57 × 0.32 × 0.24 mm

Data collection
  • Bruker SMART APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.937, Tmax = 0.977

  • 32434 measured reflections

  • 8179 independent reflections

  • 7354 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.109

  • S = 1.04

  • 8179 reflections

  • 265 parameters

  • H-atom parameters constrained

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15A⋯O5i 0.93 2.50 3.4311 (11) 179
C19—H19B⋯O5ii 0.96 2.43 3.2594 (11) 145
C22—H22A⋯O3iii 0.96 2.53 3.2479 (8) 132
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) -x+1, -y+1, -z+1; (iii) -x+1, -y+2, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Isoquinoline-1,3,4-trione derivatives were reported to be a kind of small molecular inhibitor against caspase-3 which can promote apoptosis of the cells (Du et al., 2008; Chen et al., 2006). They can also attenuate apoptosis of neuronal cells induced by β-amyloid and have been reported to be redox mediators of photosystems I (Mitchell et al., 2000; 1995). Spirocyclic oxindoles have emerged as attractive synthetic targets because of their prevalence in numerous natural products and their important biological activity (Galliford & Scheidt, 2007). Among them, the synthesis of spirooxindole oxazoles is of greatest interest (Badillo et al., 2011; Wang et al.; 2010; Nair et al., 2002). As a kind of analog of spiroindole oxazolines, spiroisoquinolineoxazolines have rarely been researched. Since a lot of bioactive natural products contain isoquinoline or oxazole rings, it is necessary to develop a methodology to construct such moieties. The title compound, which was derived from isoquinoline-1,3,4-trione and oxazoles (Huang et al., 2011), may has a potential use in biochemical and pharmaceutical fields. Due to the importance of the isoquinoline-1,3,4-trione derivatives, we report in this paper the crystal structure of the title compound.

In the title racemic compound, Fig. 1, the isoquinoline ring system (N1/C1-C9) is not completely planar, the N-heterocyclic ring (N1/C1-C3/C8/C9) being distorted towards a half-boat conformation with atom C9 deviating by 0.216 (1) Å from the mean plane through the remaining atoms, puckering parameters (Cremer & Pople, 1975) Q = 0.3259 (7) Å, Θ = 112.68 (12)° and ϕ = 284.58 (13)°. The dioxa-2-azaspiro ring (N2/O3/C9/C10/C18) [maximum deviation of 0.076 (1) Å for atom C9] is inclined at a dihedral angle of 14.54 (4)° with the phenyl ring (C12-C17). Bond lengths (Allen et al., 1987) and angles are within normal ranges and comparable to those found in related structures (Fun et al., 2011a,b,c, d).

In the crystal structure (Fig. 2), molecules are linked via intermolecular C15–H15A···O5, C19–H19B···O5 and C22–H22A···O3 hydrogen bonds (Table 1) into two-dimensional layers parallel to (100).

Related literature top

For general background to and the potential biological activity of the title compound, see: Du et al. (2008); Chen et al. (2006); Mitchell et al. (1995, 2000); Galliford & Scheidt (2007); Badillo et al. (2010); Wang et al. (2010); Nair et al. (2002); Huang et al. (2011). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986). For standard bond-length data, see: Allen et al. (1987). For ring conformations, see: Cremer & Pople (1975). For related structures, see: Fun et al. (2011a,b,c,d).

Experimental top

The title compound was the main product from the acid-catalyzed transformation of the photocycloadduct of isoquinoline-1,3,4-trione and 4-benzyl-5-methoxy-2-methyloxazole. The compound was purified by flash column chromatography with ethyl acetate/petroleum ether (1:4 v/v) as eluents. X-ray quality crystals of the title compound were obtained from slow evaporation of an acetone and petroleum ether solution (1:5 v/v). M.p. 451-453 K.

Refinement top

All H atoms were positioned geometrically and refined using a riding model with C–H = 0.93 - 0.97 Å and Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating-group model was applied for the methyl groups. The highest residual electron density peak and the deepest hole are located at 0.62 and 0.59 Å from C16, respectively.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 50% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The crystal structure of the title compound, viewed along the a axis. H atoms not involved in hydrogen bonds (dashed lines) have been omitted for clarity.
Methyl 4'-benzyl-2,2'-dimethyl-1,3-dioxo-2,3-dihydro-1H,4'H- spiro[isoquinoline-4,5'-oxazole]-4'-carboxylate top
Crystal data top
C22H20N2O5Z = 2
Mr = 392.40F(000) = 412
Triclinic, P1Dx = 1.379 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.6834 (7) ÅCell parameters from 9462 reflections
b = 11.1683 (9) Åθ = 2.4–37.5°
c = 11.3085 (9) ŵ = 0.10 mm1
α = 100.638 (2)°T = 100 K
β = 106.347 (2)°Block, colourless
γ = 109.383 (2)°0.57 × 0.32 × 0.24 mm
V = 944.72 (13) Å3
Data collection top
Bruker SMART APEXII DUO CCD area-detector
diffractometer
8179 independent reflections
Radiation source: fine-focus sealed tube7354 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ϕ and ω scansθmax = 35.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1414
Tmin = 0.937, Tmax = 0.977k = 1517
32434 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0618P)2 + 0.1885P]
where P = (Fo2 + 2Fc2)/3
8179 reflections(Δ/σ)max = 0.001
265 parametersΔρmax = 0.52 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C22H20N2O5γ = 109.383 (2)°
Mr = 392.40V = 944.72 (13) Å3
Triclinic, P1Z = 2
a = 8.6834 (7) ÅMo Kα radiation
b = 11.1683 (9) ŵ = 0.10 mm1
c = 11.3085 (9) ÅT = 100 K
α = 100.638 (2)°0.57 × 0.32 × 0.24 mm
β = 106.347 (2)°
Data collection top
Bruker SMART APEXII DUO CCD area-detector
diffractometer
8179 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
7354 reflections with I > 2σ(I)
Tmin = 0.937, Tmax = 0.977Rint = 0.021
32434 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.109H-atom parameters constrained
S = 1.04Δρmax = 0.52 e Å3
8179 reflectionsΔρmin = 0.28 e Å3
265 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.42744 (6)0.99506 (5)0.62495 (5)0.01754 (9)
O21.02131 (7)1.14156 (6)0.79359 (6)0.02414 (11)
O30.38562 (6)0.75687 (5)0.48448 (4)0.01382 (8)
O40.79722 (6)0.82611 (5)0.84267 (5)0.01722 (9)
O50.66059 (8)0.60673 (6)0.73207 (5)0.02126 (10)
N10.72403 (7)1.06714 (5)0.71929 (5)0.01359 (9)
N20.34962 (7)0.62897 (5)0.61741 (5)0.01486 (9)
C10.55724 (8)0.97088 (6)0.64348 (6)0.01269 (10)
C20.87944 (8)1.05358 (6)0.72190 (6)0.01481 (10)
C30.86167 (8)0.93183 (6)0.63044 (6)0.01287 (10)
C41.01135 (8)0.92673 (7)0.61052 (6)0.01605 (11)
H4A1.12050.99720.65680.019*
C50.99607 (9)0.81563 (7)0.52111 (7)0.01776 (11)
H5A1.09500.81170.50700.021*
C60.83222 (9)0.71001 (7)0.45264 (7)0.01777 (11)
H6A0.82210.63650.39180.021*
C70.68345 (8)0.71352 (6)0.47458 (6)0.01523 (10)
H7A0.57500.64190.42990.018*
C80.69821 (7)0.82499 (6)0.56378 (5)0.01185 (9)
C90.54340 (7)0.82960 (6)0.59671 (5)0.01139 (9)
C100.50493 (7)0.75045 (6)0.69900 (5)0.01179 (9)
C110.46381 (8)0.82409 (6)0.80912 (6)0.01338 (10)
H11A0.56040.91060.85610.016*
H11B0.35890.83850.77150.016*
C120.43613 (8)0.74497 (6)0.90251 (6)0.01339 (10)
C130.27481 (9)0.64000 (7)0.87237 (7)0.02070 (13)
H13A0.18120.62220.79710.025*
C140.25276 (12)0.56155 (8)0.95414 (8)0.02710 (16)
H14A0.14480.49160.93280.033*
C150.39115 (13)0.58721 (8)1.06747 (8)0.02569 (15)
H15A0.37680.53371.12100.031*
C160.55074 (11)0.69343 (9)1.09983 (7)0.02314 (14)
H16A0.64320.71241.17620.028*
C170.57309 (9)0.77188 (7)1.01826 (6)0.01805 (11)
H17A0.68050.84311.04110.022*
C180.29331 (8)0.64261 (6)0.50621 (6)0.01369 (10)
C190.13538 (8)0.54771 (7)0.39220 (6)0.01767 (11)
H19A0.07030.47490.41650.027*
H19B0.17090.51420.32470.027*
H19C0.06270.59270.36160.027*
C200.65977 (8)0.71589 (6)0.75831 (6)0.01428 (10)
C210.95690 (10)0.80855 (10)0.89813 (8)0.02757 (16)
H21A1.04760.89230.95660.041*
H21B0.99320.77710.83020.041*
H21C0.93600.74460.94430.041*
C220.73534 (9)1.19379 (7)0.79492 (6)0.01796 (11)
H22A0.65941.22400.74070.027*
H22B0.85421.25930.82720.027*
H22C0.69981.18090.86630.027*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.01526 (19)0.0181 (2)0.0226 (2)0.00961 (17)0.00716 (17)0.00806 (17)
O20.0138 (2)0.0238 (3)0.0220 (2)0.00140 (18)0.00273 (17)0.00360 (19)
O30.01078 (17)0.01457 (19)0.01226 (17)0.00306 (14)0.00146 (14)0.00387 (14)
O40.01345 (19)0.0230 (2)0.01511 (19)0.00824 (17)0.00345 (15)0.00683 (17)
O50.0283 (3)0.0210 (2)0.0243 (2)0.0163 (2)0.0132 (2)0.01167 (19)
N10.0134 (2)0.0122 (2)0.0139 (2)0.00491 (16)0.00435 (16)0.00305 (16)
N20.0148 (2)0.0125 (2)0.0140 (2)0.00247 (17)0.00536 (17)0.00256 (16)
C10.0130 (2)0.0130 (2)0.0130 (2)0.00544 (18)0.00502 (18)0.00536 (18)
C20.0130 (2)0.0161 (2)0.0131 (2)0.00428 (19)0.00430 (18)0.00351 (19)
C30.0115 (2)0.0142 (2)0.0129 (2)0.00490 (18)0.00465 (17)0.00471 (18)
C40.0124 (2)0.0181 (3)0.0190 (3)0.0061 (2)0.00679 (19)0.0073 (2)
C50.0166 (2)0.0195 (3)0.0229 (3)0.0097 (2)0.0110 (2)0.0091 (2)
C60.0194 (3)0.0168 (3)0.0215 (3)0.0092 (2)0.0113 (2)0.0063 (2)
C70.0154 (2)0.0143 (2)0.0167 (2)0.00607 (19)0.00724 (19)0.00404 (19)
C80.0115 (2)0.0131 (2)0.0121 (2)0.00527 (18)0.00493 (17)0.00502 (17)
C90.0099 (2)0.0121 (2)0.0110 (2)0.00388 (17)0.00275 (16)0.00363 (17)
C100.0120 (2)0.0119 (2)0.0116 (2)0.00449 (17)0.00453 (17)0.00413 (17)
C110.0149 (2)0.0137 (2)0.0129 (2)0.00626 (19)0.00623 (18)0.00452 (18)
C120.0143 (2)0.0141 (2)0.0123 (2)0.00542 (19)0.00596 (18)0.00399 (18)
C130.0189 (3)0.0198 (3)0.0159 (3)0.0000 (2)0.0070 (2)0.0030 (2)
C140.0346 (4)0.0170 (3)0.0238 (3)0.0000 (3)0.0162 (3)0.0046 (2)
C150.0435 (4)0.0207 (3)0.0256 (3)0.0168 (3)0.0223 (3)0.0135 (3)
C160.0285 (3)0.0333 (4)0.0191 (3)0.0195 (3)0.0126 (3)0.0145 (3)
C170.0164 (2)0.0244 (3)0.0145 (2)0.0084 (2)0.0062 (2)0.0075 (2)
C180.0115 (2)0.0130 (2)0.0147 (2)0.00366 (18)0.00504 (18)0.00219 (18)
C190.0126 (2)0.0172 (3)0.0165 (2)0.0031 (2)0.00291 (19)0.0004 (2)
C200.0162 (2)0.0179 (3)0.0131 (2)0.0089 (2)0.00716 (19)0.00792 (19)
C210.0180 (3)0.0424 (5)0.0250 (3)0.0168 (3)0.0040 (2)0.0140 (3)
C220.0221 (3)0.0137 (2)0.0161 (2)0.0076 (2)0.0056 (2)0.0022 (2)
Geometric parameters (Å, º) top
O1—C11.2153 (7)C10—C201.5294 (8)
O2—C21.2168 (8)C10—C111.5562 (8)
O3—C181.3707 (8)C11—C121.5167 (9)
O3—C91.4316 (7)C11—H11A0.9700
O4—C201.3417 (8)C11—H11B0.9700
O4—C211.4459 (9)C12—C131.3952 (9)
O5—C201.2033 (8)C12—C171.3998 (9)
N1—C11.3841 (8)C13—C141.3954 (11)
N1—C21.3999 (8)C13—H13A0.9300
N1—C221.4682 (8)C14—C151.3920 (13)
N2—C181.2719 (8)C14—H14A0.9300
N2—C101.4607 (8)C15—C161.3873 (12)
C1—C91.5212 (8)C15—H15A0.9300
C2—C31.4813 (9)C16—C171.3937 (10)
C3—C81.3958 (8)C16—H16A0.9300
C3—C41.3972 (9)C17—H17A0.9300
C4—C51.3899 (10)C18—C191.4839 (9)
C4—H4A0.9300C19—H19A0.9600
C5—C61.3943 (10)C19—H19B0.9600
C5—H5A0.9300C19—H19C0.9600
C6—C71.3936 (9)C21—H21A0.9600
C6—H6A0.9300C21—H21B0.9600
C7—C81.3934 (9)C21—H21C0.9600
C7—H7A0.9300C22—H22A0.9600
C8—C91.5064 (8)C22—H22B0.9600
C9—C101.6217 (8)C22—H22C0.9600
C18—O3—C9106.97 (5)C12—C11—H11B109.3
C20—O4—C21115.40 (6)C10—C11—H11B109.3
C1—N1—C2124.19 (5)H11A—C11—H11B108.0
C1—N1—C22116.77 (5)C13—C12—C17118.43 (6)
C2—N1—C22118.93 (5)C13—C12—C11120.52 (6)
C18—N2—C10107.79 (5)C17—C12—C11121.01 (6)
O1—C1—N1122.07 (6)C12—C13—C14120.55 (7)
O1—C1—C9121.60 (5)C12—C13—H13A119.7
N1—C1—C9116.00 (5)C14—C13—H13A119.7
O2—C2—N1120.27 (6)C15—C14—C13120.51 (7)
O2—C2—C3122.69 (6)C15—C14—H14A119.7
N1—C2—C3116.99 (5)C13—C14—H14A119.7
C8—C3—C4120.54 (6)C16—C15—C14119.32 (7)
C8—C3—C2120.73 (5)C16—C15—H15A120.3
C4—C3—C2118.72 (5)C14—C15—H15A120.3
C5—C4—C3119.56 (6)C15—C16—C17120.25 (7)
C5—C4—H4A120.2C15—C16—H16A119.9
C3—C4—H4A120.2C17—C16—H16A119.9
C4—C5—C6119.90 (6)C16—C17—C12120.90 (7)
C4—C5—H5A120.0C16—C17—H17A119.6
C6—C5—H5A120.0C12—C17—H17A119.6
C7—C6—C5120.63 (6)N2—C18—O3118.47 (5)
C7—C6—H6A119.7N2—C18—C19127.74 (6)
C5—C6—H6A119.7O3—C18—C19113.79 (5)
C8—C7—C6119.60 (6)C18—C19—H19A109.5
C8—C7—H7A120.2C18—C19—H19B109.5
C6—C7—H7A120.2H19A—C19—H19B109.5
C7—C8—C3119.75 (5)C18—C19—H19C109.5
C7—C8—C9121.41 (5)H19A—C19—H19C109.5
C3—C8—C9118.72 (5)H19B—C19—H19C109.5
O3—C9—C8109.49 (5)O5—C20—O4124.54 (6)
O3—C9—C1107.97 (5)O5—C20—C10125.43 (6)
C8—C9—C1112.93 (5)O4—C20—C10110.02 (5)
O3—C9—C10102.22 (4)O4—C21—H21A109.5
C8—C9—C10113.35 (5)O4—C21—H21B109.5
C1—C9—C10110.23 (4)H21A—C21—H21B109.5
N2—C10—C20110.16 (5)O4—C21—H21C109.5
N2—C10—C11109.10 (5)H21A—C21—H21C109.5
C20—C10—C11109.43 (5)H21B—C21—H21C109.5
N2—C10—C9102.88 (4)N1—C22—H22A109.5
C20—C10—C9109.71 (4)N1—C22—H22B109.5
C11—C10—C9115.34 (5)H22A—C22—H22B109.5
C12—C11—C10111.59 (5)N1—C22—H22C109.5
C12—C11—H11A109.3H22A—C22—H22C109.5
C10—C11—H11A109.3H22B—C22—H22C109.5
C2—N1—C1—O1165.85 (6)C18—N2—C10—C20126.15 (5)
C22—N1—C1—O110.31 (9)C18—N2—C10—C11113.70 (6)
C2—N1—C1—C920.58 (8)C18—N2—C10—C99.25 (6)
C22—N1—C1—C9163.26 (5)O3—C9—C10—N212.51 (5)
C1—N1—C2—O2178.23 (6)C8—C9—C10—N2105.22 (5)
C22—N1—C2—O25.68 (9)C1—C9—C10—N2127.10 (5)
C1—N1—C2—C34.38 (9)O3—C9—C10—C20129.73 (5)
C22—N1—C2—C3171.70 (5)C8—C9—C10—C2012.00 (6)
O2—C2—C3—C8170.61 (6)C1—C9—C10—C20115.68 (5)
N1—C2—C3—C812.07 (9)O3—C9—C10—C11106.16 (5)
O2—C2—C3—C410.41 (10)C8—C9—C10—C11136.11 (5)
N1—C2—C3—C4166.91 (6)C1—C9—C10—C118.43 (7)
C8—C3—C4—C51.63 (9)N2—C10—C11—C1266.89 (6)
C2—C3—C4—C5177.35 (6)C20—C10—C11—C1253.70 (6)
C3—C4—C5—C60.36 (10)C9—C10—C11—C12177.96 (5)
C4—C5—C6—C71.16 (10)C10—C11—C12—C1380.98 (7)
C5—C6—C7—C81.40 (10)C10—C11—C12—C1796.54 (7)
C6—C7—C8—C30.13 (9)C17—C12—C13—C141.85 (10)
C6—C7—C8—C9176.13 (6)C11—C12—C13—C14175.73 (6)
C4—C3—C8—C71.38 (9)C12—C13—C14—C150.33 (12)
C2—C3—C8—C7177.58 (6)C13—C14—C15—C161.25 (12)
C4—C3—C8—C9174.72 (5)C14—C15—C16—C171.28 (11)
C2—C3—C8—C96.31 (8)C15—C16—C17—C120.26 (11)
C18—O3—C9—C8109.09 (5)C13—C12—C17—C161.82 (10)
C18—O3—C9—C1127.60 (5)C11—C12—C17—C16175.74 (6)
C18—O3—C9—C1011.36 (5)C10—N2—C18—O32.44 (7)
C7—C8—C9—O333.67 (7)C10—N2—C18—C19177.79 (6)
C3—C8—C9—O3150.29 (5)C9—O3—C18—N26.70 (7)
C7—C8—C9—C1154.01 (6)C9—O3—C18—C19173.11 (5)
C3—C8—C9—C129.96 (7)C21—O4—C20—O53.34 (9)
C7—C8—C9—C1079.73 (7)C21—O4—C20—C10175.41 (5)
C3—C8—C9—C1096.30 (6)N2—C10—C20—O57.11 (8)
O1—C1—C9—O328.45 (8)C11—C10—C20—O5127.05 (6)
N1—C1—C9—O3157.94 (5)C9—C10—C20—O5105.46 (7)
O1—C1—C9—C8149.65 (6)N2—C10—C20—O4174.16 (5)
N1—C1—C9—C836.74 (7)C11—C10—C20—O454.21 (6)
O1—C1—C9—C1082.44 (7)C9—C10—C20—O473.27 (6)
N1—C1—C9—C1091.17 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15A···O5i0.932.503.4311 (11)179
C19—H19B···O5ii0.962.433.2594 (11)145
C22—H22A···O3iii0.962.533.2479 (8)132
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+1, y+1, z+1; (iii) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC22H20N2O5
Mr392.40
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)8.6834 (7), 11.1683 (9), 11.3085 (9)
α, β, γ (°)100.638 (2), 106.347 (2), 109.383 (2)
V3)944.72 (13)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.57 × 0.32 × 0.24
Data collection
DiffractometerBruker SMART APEXII DUO CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.937, 0.977
No. of measured, independent and
observed [I > 2σ(I)] reflections
32434, 8179, 7354
Rint0.021
(sin θ/λ)max1)0.807
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.109, 1.04
No. of reflections8179
No. of parameters265
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.52, 0.28

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15A···O5i0.932.503.4311 (11)179
C19—H19B···O5ii0.962.433.2594 (11)145
C22—H22A···O3iii0.962.533.2479 (8)132
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+1, y+1, z+1; (iii) x+1, y+2, z+1.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Thomson Reuters ResearcherID: A-5525-2009.

Acknowledgements

HKF and CKQ thank Universiti Sains Malaysia for the Research University Grant (No. 1001/PFIZIK/811160). Financial support from the Program for New Century Excellent Talents in University (NCET-08-0271) of China is also acknowledged.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBadillo, J. J., Hanhan, N. V. & Franz, A. K. (2010). Curr. Opin. Drug Discovery Dev. 13, 758–766.  CAS Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, Y.-H., Zhang, Y.-H., Zhang, H.-J., Liu, D.-Z., Gu, M., Li, J.-Y., Wu, F., Zhu, X.-Z., Li, J. & Nan, F.-J. (2006). J. Med. Chem. 49, 1613–1623.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDu, J.-Q., Wu, J., Zhang, H.-J., Zhang, Y.-H., Qiu, B.-Y., Wu, F., Chen, Y.-H., Li, J.-Y., Nan, F.-J., Ding, J.-P. & Li, J. (2008). Biol. Chem. 283, 30205–30215.  CrossRef CAS Google Scholar
First citationFun, H.-K., Quah, C. K., Huang, C. & Yu, H. (2011a). Acta Cryst. E67, o1271–o1272.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFun, H.-K., Quah, C. K., Huang, C. & Yu, H. (2011b). Acta Cryst. E67, o1273–o1274.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFun, H.-K., Quah, C. K., Huang, C. & Yu, H. (2011c). Acta Cryst. E67, o1311–o1312.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Quah, C. K., Huang, C. & Yu, H. (2011d). Acta Cryst. E67, o1340–o1341.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGalliford, C. V. & Scheidt, K. A. (2007). Angew. Chem. Int. Ed. 46, 8748–8758.  Web of Science CrossRef CAS Google Scholar
First citationHuang, C., Yu, H., Miao, Z., Zhou, J., Wang, S., Fun, H.-K., Xu, J. & Zhang, Y. (2011). J. Org. Chem. 9, 3629–3631.  CAS Google Scholar
First citationMitchell, G., Clarke, E. D., Ridley, S. M., Bartlett, D. W., Gillen, K. J., Vohra, S. K., Greenhow, D. T., Ormrod, J. C. & Wardman, P. (2000). Pest. Manag. Sci. 56, 120–126.  CrossRef CAS Google Scholar
First citationMitchell, G., Clarke, E. D., Ridley, S. M., Greenhow, D. T., Gillen, K. J., Vohra, S. K. & Wardman, P. (1995). Pestic. Sci. 44, 49–58.  CrossRef CAS Web of Science Google Scholar
First citationNair, V., Sethumadhavan, D., Nair, S. M., Viji, S. & Rath, P. (2002). Tetrahedron, 58, 3003–3007.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, L., Huang, Y. C., Liu, Y., Fun, H.-K., Zhang, Y. & Xu, J. H. (2010). J. Org. Chem. 75, 7757–7768.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 6| June 2011| Pages o1517-o1518
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds