Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Poly[*µ*-aqua-aqua(*µ*-benzene-1,2,4,5tetracarboxylato)gadolinate(III)potassium(I)]

Xue Yun Gong* and Lei Zhang

Department of Physics and Chemistry, Henan Polytechnic University, Jiaozuo, Henan 454000, People's Republic of China Correspondence e-mail: gxy@hpu.edu.cn

Received 11 April 2011; accepted 29 April 2011

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.005 Å; R factor = 0.024; wR factor = 0.051; data-to-parameter ratio = 15.1.

In the title compound, $[KGd(C_{10}H_2O_8)(H_2O)_2]_n$, the Gd^{3+} ion is nine-coordinated by eight O atoms from five individual benzene-1,2,4,5-tetracarboxylate (btec) ligands and one water molecule, and the K⁺ ion is eight-coordinated by six O atoms from five individual btec ligands and two water molecules. In the crystal, the btec half-molecules are completed by crystallographic inversion symmetry. GdO₉ and KO₈ polyhedra are connected, forming layers in the *ab* plane, which are further interconnected by μ_{8} - or μ_{12} -bridging btec ligands, forming a three-dimensional structure.

Related literature

For structures based on H_4 blec ligand, see: Huang *et al.* (2009); Lu et al. (2005); Wu et al. (2001); Zhang et al. (2005). For the isotypic neodymium(III) compound, see: Dai et al. (2008).

Experimental

Crystal data

[KGd(C₁₀H₂O₈)(H₂O)₂] $M_r = 482.50$ Monoclinic, $P2_1/c$ a = 8.9003 (1) Å b = 7.7816(1) Å c = 17.5150 (3) Å $\beta = 91.857 (1)^{\circ}$

Data collection

Bruker SMART APEXII CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\rm min}=0.386,\;T_{\rm max}=0.591$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.024$	199 parameters
$wR(F^2) = 0.051$	H-atom parameters constrained
S = 1.04	$\Delta \rho_{\rm max} = 0.91 \ {\rm e} \ {\rm \AA}^{-3}$
3002 reflections	$\Delta \rho_{\rm min} = -1.29 \text{ e } \text{\AA}^{-3}$

V = 1212.43 (3) Å³

Mo $K\alpha$ radiation

 $0.20 \times 0.10 \times 0.10 \; \mathrm{mm}$

14043 measured reflections

3002 independent reflections

2588 reflections with $I > 2\sigma(I)$

 $\mu = 5.87 \text{ mm}^-$

T = 296 K

 $R_{\rm int} = 0.037$

Z = 4

able 1			
Selected	bond	lengths	(Å).

Gd1-O6 ⁱ	2.337 (3)	K1-O2	2.714 (3)
Gd1-O7 ⁱⁱ	2.376 (2)	K1-O6	2.783 (3)
Gd1-O8	2.433 (2)	K1-O8	2.795 (3)
Gd1-O3	2.441 (2)	K1-O10	2.842 (3)
Gd1-O1	2.447 (3)	K1-O1 ^{iv}	2.860 (3)
Gd1-O5 ⁱⁱⁱ	2.451 (2)	$K1 - O4^{iv}$	2.875 (3)
Gd1-O4 ⁱⁱⁱ	2.503 (2)	$K1 - O7^{i}$	2.891 (3)
Gd1-O9	2.520 (3)	K1-O9 ^v	2.893 (3)
Gd1-O2	2.604 (2)		
a	1	4 (***)	1 1 . 3 (1)

Symmetry codes: (i) $-x, y = \frac{1}{2}, -z = \frac{3}{2}$; (ii) x, y = 1, z; (iii) $-x = 1, y = \frac{1}{2}, -z = \frac{3}{2}$; (iv) $-x + 1, y + \frac{1}{2}, -z + \frac{3}{2}; (v) - x, y + \frac{1}{2}, -z + \frac{3}{2};$

Data collection: APEX2 (Bruker, 2008): cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SI2351).

References

- Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Dai, Y. M., Tang, E., Wang, X. Q., Huang, J. F., Wang, L. H. & Huang, X. D. (2008). Chin. J. Struct. Chem. 27, 1031-1034.
- Huang, R. Y., Xu, H. M., Zhu, K., Liu, G. X. & Ren, X. M. (2009). Chin. J. Struct. Chem. 28, 1661-1665.
- Lu, K. L., Chen, Y. F., Liu, Y. H., Cheng, Y. W., Liao, R. T. & Wen, Y. S. (2005). Cryst. Growth Des. 5, 403-407.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Wu, C. D., Lu, C. Z., Wu, D. M., Zhuang, H. H. & Huang, J. S. (2001). Inorg. Chem. Commun. 4, 561-564.
- Zhang, L. J., Yu, J. H., Xu, J. Q., Lu, J., Bie, H. Y. & Zhang, X. (2005). Inorg. Chem. Commun. 8, 638-642.

supporting information

Acta Cryst. (2011). E67, m736 [doi:10.1107/S1600536811016254]

Poly[*µ*-aqua-aqua(*µ*-benzene-1,2,4,5-tetracarboxylato)gadolinate(III)potassium(I)]

Xue Yun Gong and Lei Zhang

S1. Comment

The btec ligand is a remarkably versatile building block for the construction of supramolecular architectures due to its four rigid carboxyl groups and various coordination modes in the self-assembly reaction (Huang *et al.*, 2009; Lu *et al.*, 2005; Wu *et al.*, 2001; Zhang *et al.*, 2005). Furthermore, they can provide directional conformation of network structures *via* noncovalent contacts like hydrogen bonding and aromatic stacking. In this paper, we report the preparation and crystal structure of a new potassium(I)-gadolinium(III) complex, [KGd(btec)(H₂O)₂]_n, where btec = benzene-1,2,4,5-tetracarboxylate. The crystal structures of a Ndⁱⁱⁱanalogue has been reported recently (Dai *et al.*, 2008).

As shown in Fig. 1, the asymmetric building unit of title compound comprises one Gd^{III} atom, one K^{I} atom, two coordinated water molecules and two btec ligands. The two crystallographic distinct btec ligands occupy inversion symmetry in the structure. One of them acts as a μ_{12} -bridge linking six Gd^{III} and six K^{I} atoms, while the other one acts as a μ_{8} -bridge linking four Gd^{III} and four K^{I} atoms. Considering the linking environment of the gadolinium(III) and potassium(I) atoms, Gd^{III} is nine-coordinated by eight O atoms from five individual btec ligands and one water molecule, while the K^{I} atom is eight-coordinated by six O atoms from five individual btec ligands and two water molecules, as listed in Tab. 1. As shown in Fig. 2, when C and H atoms are omitted, a two-dimensional Gd—K—O framework is emerged in the *ab* plane. Furthermore, these two-dimensional layers are integrated by C atoms of btec ligands into a three-dimensional framework.

S2. Experimental

A mixture of 1,2,4,5-benzenetetracarboxylic (0.05 g), Gd_2O_3 (0.05 g), KOH(0.05 g) and H_2O (15 ml) was heated at 448 K for 7 d in a sealed 25 ml Teflon-lined stainless steel vessel under autogenous pressure. After cooling to room temperature at a rate of 5 C h⁻¹, colorless prismatic crystals were obtained in low yield.

S3. Refinement

The H atoms of C atoms were positioned geometrically and refined with a riding model, with C—H = 0.93 Å and $U_{iso}(H)$ = 1.2Ueq(C). The water H atoms were located in difference fourier maps, and then refined with a riding model, with O—H = 0.85 and 0.87 Å, and $U_{iso}(H)$ = 1.2Ueq(O).

Figure 1

The Gd^{III} and K^I coordination environment of the title compound indicating the inversion symmetry of the btec ligands by symmetry codes vii and viii. Displacement ellipsoids are drawn at the 50% probability level for non-H atoms. [Symmetry codes: (i) -*x*, *y* - 1/2, -*z* + 3/2; (ii) *x*, *y* - 1, *z*; (iii) -*x* + 1, *y* - 1/2, -*z* + 3/2; (iv) -*x* + 1, *y* + 1/2, -*z* + 3/2; (v) -*x*, *y* + 1/2, -*z* + 3/2; (vii) -*x* + 1, -*y* + 1, -*z* + 2; (viii) -*x*, -*y* + 2, -*z* + 1].

Figure 2

View of the three-dimensional network for the title compound.

Poly[µ-aqua-aqua(µ-benzene-1,2,4,5- tetracarboxylato)gadolinate(III)potassium(I)]

F(000) = 916

 $\theta = 2.3 - 25.1^{\circ}$ $\mu = 5.87 \text{ mm}^{-1}$

Prism. colourless

 $0.20 \times 0.10 \times 0.10$ mm

T = 296 K

 $D_{\rm x} = 2.643 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 2537 reflections

Crystal data

[KGd(C₁₀H₂O₈)(H₂O)₂] $M_r = 482.50$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 8.9003 (1) Å b = 7.7816 (1) Å c = 17.5150 (3) Å $\beta = 91.857$ (1)° V = 1212.43 (3) Å³ Z = 4

Data collection

Bruker SMART APFXII CCD area-detector	14043 measured reflections
diffractometer	3002 independent reflections
Radiation source: fine-focus sealed tube	2588 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.037$
Detector resolution: 83.33 pixels mm ⁻¹	$\theta_{\text{max}} = 28.3^{\circ}, \ \theta_{\text{min}} = 2.3^{\circ}$
ω scans	$h = -11 \rightarrow 11$
Absorption correction: multi-scan	$k = -10 \rightarrow 9$
(SADABS; Sheldrick, 1996)	$l = -23 \rightarrow 23$
$T_{\min} = 0.386, T_{\max} = 0.591$	
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.024$	Hydrogen site location: inferred from
$wR(F^2) = 0.051$	neighbouring sites
S = 1.04	H-atom parameters constrained
3002 reflections	$w = 1/[\sigma^2(F_0^2) + (0.0208P)^2 + 1.8584P]$

199 parameterswhere $P = (F_o^2 + 2F_c^2)/3$ 0 restraints $(\Delta/\sigma)_{max} = 0.002$ Primary atom site location: structure-invariant
direct methods $\Delta\rho_{max} = 0.91$ e Å⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Gd1	0.21753 (2)	0.47536 (2)	0.699264 (9)	0.00997 (6)	
K1	0.22962 (11)	0.97212 (11)	0.78942 (5)	0.02529 (19)	
01	0.4699 (3)	0.5723 (3)	0.66830 (15)	0.0226 (6)	
H1A	0.5081	0.6065	0.7107	0.027*	

H1B	0.4533	0.6604	0.6406	0.027*
C1	0.3791 (4)	0.5106 (4)	0.8437 (2)	0.0147 (7)
O2	0.3319 (3)	0.6478 (3)	0.81457 (14)	0.0183 (6)
C2	0.4485 (4)	0.5076 (4)	0.92329 (19)	0.0128 (7)
O3	0.3601 (3)	0.3676 (3)	0.81063 (14)	0.0210 (6)
C3	0.3828 (4)	0.3974 (4)	0.97488 (18)	0.0142 (7)
H3	0.3041	0.3270	0.9581	0.017*
O4	0.6594 (3)	0.6935 (3)	0.82750 (13)	0.0180 (6)
C4	0.5683 (4)	0.6106 (4)	0.94877 (18)	0.0128 (7)
O5	0.7106 (3)	0.8636 (3)	0.92519 (13)	0.0173 (6)
C5	0.6512 (4)	0.7290 (4)	0.89702 (19)	0.0139 (7)
O6	-0.0404 (3)	1.0020 (3)	0.70586 (14)	0.0163 (5)
C6	0.0794 (4)	0.7479 (4)	0.61673 (19)	0.0129 (7)
O7	0.0284 (3)	1.2656 (3)	0.67405 (14)	0.0168 (5)
C7	0.0324 (4)	0.8804 (4)	0.55820 (18)	0.0105 (7)
08	0.1973 (3)	0.7726 (3)	0.65718 (14)	0.0189 (6)
C8	0.0245 (4)	0.8287 (4)	0.48207 (18)	0.0118 (7)
H8	0.0403	0.7138	0.4700	0.014*
09	0.0079 (3)	0.6102 (3)	0.61982 (15)	0.0236 (6)
C9	0.0067 (4)	1.0533 (4)	0.57629 (19)	0.0121 (7)
C10	-0.0015 (4)	1.1124 (4)	0.65777 (18)	0.0107 (7)
H10A	0.3331	1.0155	0.9851	0.013*
H10B	0.4337	0.9339	0.9384	0.013*
O10	0.3392 (4)	0.9561 (4)	0.94345 (18)	0.0398 (8)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Gd1	0.01314 (10)	0.00955 (8)	0.00718 (8)	0.00160 (7)	-0.00007 (6)	-0.00017 (6)
K1	0.0245 (5)	0.0240 (4)	0.0270 (5)	-0.0026 (4)	-0.0061 (4)	0.0027 (3)
O1	0.0190 (15)	0.0213 (13)	0.0278 (15)	-0.0025 (11)	0.0022 (12)	-0.0034 (11)
C1	0.0161 (19)	0.0175 (17)	0.0104 (16)	0.0008 (14)	0.0006 (14)	0.0011 (13)
O2	0.0226 (15)	0.0168 (13)	0.0153 (13)	-0.0012 (11)	-0.0046 (11)	0.0045 (10)
C2	0.0161 (19)	0.0125 (16)	0.0096 (16)	0.0008 (13)	-0.0010 (13)	0.0008 (12)
O3	0.0335 (17)	0.0156 (12)	0.0133 (13)	0.0060 (11)	-0.0071 (12)	-0.0033 (10)
C3	0.0158 (19)	0.0157 (17)	0.0111 (16)	-0.0033 (14)	-0.0003 (14)	0.0000 (13)
O4	0.0225 (15)	0.0206 (13)	0.0109 (12)	-0.0066 (11)	0.0026 (11)	0.0019 (10)
C4	0.0151 (19)	0.0140 (17)	0.0092 (16)	0.0013 (14)	0.0001 (14)	0.0018 (13)
O5	0.0225 (15)	0.0175 (12)	0.0121 (12)	-0.0048 (11)	0.0011 (11)	0.0015 (10)
C5	0.0122 (18)	0.0161 (17)	0.0134 (17)	0.0005 (14)	0.0003 (14)	0.0050 (13)
O6	0.0220 (14)	0.0159 (13)	0.0111 (12)	0.0023 (10)	0.0044 (10)	0.0046 (9)
C6	0.020 (2)	0.0116 (16)	0.0075 (15)	0.0030 (14)	0.0051 (14)	-0.0011 (12)
O7	0.0199 (15)	0.0144 (12)	0.0161 (13)	-0.0036 (10)	0.0023 (11)	-0.0040 (10)
C7	0.0137 (18)	0.0095 (15)	0.0083 (15)	-0.0020 (13)	0.0009 (13)	0.0015 (12)
08	0.0193 (15)	0.0172 (13)	0.0199 (14)	0.0003 (11)	-0.0055 (11)	0.0045 (10)
C8	0.0151 (19)	0.0109 (16)	0.0096 (16)	0.0013 (13)	0.0026 (13)	-0.0005 (12)
09	0.0280 (17)	0.0165 (13)	0.0255 (15)	-0.0050 (11)	-0.0090 (12)	0.0082 (11)
C9	0.0133 (18)	0.0117 (16)	0.0112 (16)	-0.0010 (13)	-0.0001 (13)	0.0004 (12)

supporting information

C10	0.0106 (18)	0.0124 (16)	0 0090 (15)	0 0034 (13)	0 0008 (13)	0.0010(12)
O10	0.045 (2)	0.046 (2)	0.0290 (17)	-0.0029(16)	0.0128 (15)	-0.0107(12)

Geometric parameters (Å, °)

Geometric purumeters (A,)			
Gd1—O6 ⁱ	2.337 (3)	C2—C4	1.396 (5)
Gd1—O7 ⁱⁱ	2.376 (2)	O3—K1 ⁱⁱ	3.306 (3)
Gd1O8	2.433 (2)	C3—C4 ^{vii}	1.394 (4)
Gd1—O3	2.441 (2)	С3—Н3	0.9300
Gd1—O1	2.447 (3)	O4—C5	1.253 (4)
Gd1—O5 ⁱⁱⁱ	2.451 (2)	O4—Gd1 ^{iv}	2.503 (2)
Gd1—O4 ⁱⁱⁱ	2.503 (2)	O4—K1 ⁱⁱⁱ	2.875 (3)
Gd1—O9	2.520 (3)	C4—C3 ^{vii}	1.394 (4)
Gd1—O2	2.604 (2)	C4—C5	1.502 (5)
Gd1—C6	2.825 (3)	O5—C5	1.266 (4)
Gd1—C5 ⁱⁱⁱ	2.831 (3)	O5—Gd1 ^{iv}	2.451 (2)
Gd1—C1	2.882 (3)	C5—Gd1 ^{iv}	2.831 (3)
K1—O2	2.714 (3)	O6—C10	1.259 (4)
K1—O6	2.783 (3)	O6—Gd1 ^v	2.337 (3)
K1—O8	2.795 (3)	C6—O9	1.249 (4)
K1—O10	2.842 (3)	C6—O8	1.261 (4)
K1—O1 ^{iv}	2.860 (3)	C6—C7	1.504 (4)
K1—O4 ^{iv}	2.875 (3)	O7—C10	1.253 (4)
K1—O7 ⁱ	2.891 (3)	O7—Gd1 ^{vi}	2.376 (2)
K1—O9 ^v	2.893 (3)	O7—K1 ^v	2.891 (3)
K1—C10	3.230 (3)	C7—C8	1.392 (4)
K1—O3 ^{vi}	3.306 (3)	С7—С9	1.402 (5)
K1—Gd1 ^v	3.9912 (10)	C8—C9 ^{viii}	1.396 (4)
O1—K1 ⁱⁱⁱ	2.860 (3)	C8—H8	0.9300
O1—H1A	0.8501	O9—K1 ⁱ	2.893 (3)
O1—H1B	0.8500	C9—C8 ^{viii}	1.396 (4)
C1—O2	1.250 (4)	C9—C10	1.503 (4)
C1—O3	1.263 (4)	O10—H10A	0.8671
C1—C2	1.506 (4)	O10—H10B	0.8656
C2—C3	1.388 (5)		
	70 70 (0)		105.00 (7)
$G_{}G_{-$	72.72 (8)	$06-K1-03^{v1}$	105.99 (7)
O6 - Gd1 - O8	94.93 (9)	$08-KI-03^{vi}$	129.52 (7)
$O/^{\mu}$ —Gdl—O8	123.50 (8)	$010-K1-03^{vi}$	79.96 (8)
O6 - Gal - O3	/8.90 (9)	01^{iv} K1 03^{vi}	52.77(7)
0/"	105.04 (9)	04^{iv} —K1— 03^{vi}	52.76 (7)
08—Gdl—O3	126.89 (8)	$O'/1 - K1 - O3^{v_1}$	140.46 (8)
$O6^{i}$ — $Gd1$ — $O1$	140.86 (9)	09 ^v —K1—O3 ^{v1}	81.54 (7)
$O/^{\mu}$ —Gdl—Ol	145.14 (9)	$C10$ — $K1$ — $O3^{v_1}$	88.80 (7)
O8—Gd1—O1	72.49 (9)	$O2-K1-Gd1^{v}$	109.12 (6)
O3—Gd1—O1	79.97 (9)	$O6-K1-Gd1^{v}$	34.92 (5)
$O6^1$ — $Gd1$ — $O5^{m}$	149.95 (9)	O8—K1—Gd1 ^v	88.21 (6)
O7 ⁿ —Gd1—O5 ⁱⁱⁱ	78.16 (8)	O10—K1—Gd1 ^v	105.38 (8)

O8—Gd1—O5 ⁱⁱⁱ	94.98 (8)	$O1^{iv}$ —K1—Gd1 ^v	155.64 (6)
O3—Gd1—O5 ⁱⁱⁱ	116.41 (8)	$O4^{iv}$ —K1—Gd1 ^v	113.43 (6)
O1—Gd1—O5 ⁱⁱⁱ	69.16 (9)	$O7^{i}$ —K1—Gd1 ^v	36.12 (5)
O6 ⁱ —Gd1—O4 ⁱⁱⁱ	121.37 (8)	$O9^{v}$ —K1—Gd1 ^v	38.99 (5)
O7 ⁱⁱ —Gd1—O4 ⁱⁱⁱ	71.02 (8)	C10—K1—Gd1 ^v	54.57 (6)
O8—Gd1—O4 ⁱⁱⁱ	143.63 (9)	$O3^{vi}$ —K1—Gd1 ^v	109.62 (5)
O3—Gd1—O4 ⁱⁱⁱ	68.24 (8)	O2—K1—Gd1	37.34 (5)
$O1-Gd1-O4^{iii}$	79.53 (9)	O6—K1—Gd1	82.38 (5)
05^{iii} —Gd1—O4 ⁱⁱⁱ	52.70 (8)	08—K1—Gd1	34.09 (5)
$O6^{i}$ —Gd1—O9	81.44 (9)	O10-K1-Gd1	108.80 (7)
07^{ii} —Gd1—O9	71.09(8)	$O1^{iv}$ K1—Gd1	111 26 (6)
08—Gd1—09	52,45 (8)	$O4^{iv}$ —K1—Gd1	106 89 (5)
03-Gd1-09	160 19 (9)	$O7^{i}$ K1 Gd1	63 78 (5)
01-Gd1-09	114 70 (9)	O^{y} K1—Gd1	122 78 (6)
05^{iii} -Gd1-09	82 34 (9)	C10-K1-Gd1	92.00 (6)
0.04^{iii} -Gd1-09	125.60(8)	O_3^{vi} K1 Gd1	155 35 (6)
$O_{i}^{i} = G_{i}^{i} = O_{i}^{i}$	70.03 (8)	Gd1v K1 Gd1	155.55(0)
00 - 001 - 02	130.01 (8)	$G_{d1} = 01 K_1^{111}$	90.038(18) 135 72(11)
$0^{7} - 0^{1} - 0^{2}$	76 60 (8)	Gd1 = O1 = H1A	104.3
03 - 041 - 02	70.00 (8) 51.40 (8)		61.0
03 - 041 - 02	51.49 (8) 71.01 (0)	KI = 0I = HIR	102.4
01 - 01 - 02	(1.01(9))		103.4
$03^{}001^{}02$	139.97 (9)		120.7
$04^{}02$	115.70 (8)		107.7
09-Gd1-02	118.52 (8)	02 - C1 - 03	121.8 (3)
$O6^{4}$ $Gd1$ $C6$	90.28 (9)	02-C1-C2	120.9 (3)
$O/^{\mu}$ —Gdl—C6	97.28 (10)	03-01-02	117.1 (3)
08—Gd1—C6	26.43 (9)	O2—C1—Gd1	64.62 (18)
O3—Gd1—C6	150.81 (9)	O3—C1—Gd1	57.19 (17)
O1—Gd1—C6	92.43 (10)	C2-C1-Gd1	171.3 (2)
O5 ^m —Gd1—C6	86.17 (9)	C1—O2—Gd1	89.7 (2)
O4 ⁱⁱⁱ —Gd1—C6	138.40 (8)	C1—O2—K1	165.2 (2)
O9—Gd1—C6	26.23 (9)	Gd1—O2—K1	103.46 (8)
O2—Gd1—C6	99.35 (8)	C3—C2—C4	118.7 (3)
O6 ⁱ —Gd1—C5 ⁱⁱⁱ	141.71 (9)	C3—C2—C1	116.3 (3)
O7 ⁱⁱ —Gd1—C5 ⁱⁱⁱ	74.19 (9)	C4—C2—C1	125.0 (3)
O8—Gd1—C5 ⁱⁱⁱ	119.44 (10)	C1—O3—Gd1	97.0 (2)
O3—Gd1—C5 ⁱⁱⁱ	91.69 (9)	C1—O3—K1 ⁱⁱ	155.9 (2)
O1—Gd1—C5 ⁱⁱⁱ	71.17 (9)	Gd1—O3—K1 ⁱⁱ	93.34 (8)
O5 ⁱⁱⁱ —Gd1—C5 ⁱⁱⁱ	26.51 (9)	C2—C3—C4 ^{vii}	121.8 (3)
O4 ⁱⁱⁱ —Gd1—C5 ⁱⁱⁱ	26.26 (9)	С2—С3—Н3	119.1
O9—Gd1—C5 ⁱⁱⁱ	105.40 (9)	С4 ^{vii} —С3—Н3	119.1
O2—Gd1—C5 ⁱⁱⁱ	130.73 (9)	C5—O4—Gd1 iv	91.6 (2)
C6—Gd1—C5 ⁱⁱⁱ	112.63 (10)	C5—O4—K1 ⁱⁱⁱ	148.9 (2)
O6 ⁱ —Gd1—C1	72.32 (10)	$Gd1^{iv}$ —O4—K 1^{iii}	103.25 (9)
O7 ⁱⁱ —Gd1—C1	123.98 (9)	C3 ^{vii} —C4—C2	119.5 (3)
O8—Gd1—C1	101.85 (9)	C3 ^{vii} —C4—C5	117.5 (3)
O3—Gd1—C1	25.79 (9)	C2—C4—C5	123.0 (3)
O1—Gd1—C1	74.32 (10)	C5—O5—Gd1 ^{iv}	93.7 (2)

O ^{5ⁱⁱⁱ} Gd1 C1	132 62 (10)	04 C5 05	1216(3)
$O4^{iii}$ —Gd1—C1	92.23 (9)	04	119.8 (3)
09—Gd1—C1	141.67 (9)	05	118.6 (3)
O2-Gd1-C1	25.71 (8)	04—C5—Gd1 ^{iv}	62.10 (18)
C6-Gd1-C1	125.03(10)	$05-05-0d1^{iv}$	59 77 (18)
$C5^{ii}$ —Gd1—C1	1125.05(10)	$C4-C5-Gd1^{iv}$	174.2(2)
02 K1 06	112.33 (10)	C_10 C_6 C_{41v}	174.2(2) 138.0(2)
02 K1 08	60 00 (7)	$C_{10} = 06 = 001$	130.0(2)
02-K1-08	63.05(8)	$C_{10} = 00 = K_1$	33.1(2)
00-K1-08	03.03(8)	$\begin{array}{c} 00 \\ 00 \\ 00 \\ 00 \\ 00 \\ 00 \\ 00 \\ 00$	102.10(9)
02-K1-010	12.07(9)	09 - 00 - 08	121.3(3)
06-K1-010	140.08(10)	09-06-07	119.1 (3)
	141.74 (9)	08-06-07	119.1(3)
O2—K1—O1 ^w	84.58 (8)	O9—C6—Gdl	63.11 (18)
06—K1—O1 ¹	153.86 (8)	08—C6—Gd1	59.14 (17)
08—K1—O1 ^{IV}	115.86 (9)	C7—C6—Gd1	166.0 (2)
$O10$ — $K1$ — $O1^{iv}$	58.46 (9)	C10—O7—Gd1 ^{vi}	147.2 (2)
$O2-K1-O4^{iv}$	123.48 (8)	C10—O7—K1 ^v	114.5 (2)
O6—K1—O4 ^{iv}	83.45 (7)	$Gd1^{vi}$ —O7—K1 ^v	98.05 (8)
08—K1—O4 ^{iv}	76.77 (7)	C8—C7—C9	119.4 (3)
O10—K1—O4 ^{iv}	125.96 (9)	C8—C7—C6	117.3 (3)
01 ^{iv} —K1—O4 ^{iv}	71.42 (8)	C9—C7—C6	123.2 (3)
O2-K1-O7 ⁱ	73.25 (8)	C6—O8—Gd1	94.4 (2)
O6-K1-O7 ⁱ	58.96 (7)	C6—O8—K1	127.7 (2)
08—K1—O7 ⁱ	79.25 (8)	Gd1O8K1	105.81 (9)
O10—K1—O7 ⁱ	90.92 (9)	C7—C8—C9 ^{viii}	120.9 (3)
$O1^{iv}$ —K1— $O7^{i}$	146.80 (8)	С7—С8—Н8	119.5
$O4^{iv}$ —K1— $O7^{i}$	141.64 (7)	C9 ^{viii} —C8—H8	119.5
O2—K1—O9 ^v	120.23 (8)	C6—O9—Gd1	90.7 (2)
O6—K1—O9 ^v	67.91 (7)	C6	136.5 (2)
O8—K1—O9 ^v	127.17 (8)	Gd1O9K1 ⁱ	94.77 (8)
O10—K1—O9 ^v	74.28 (9)	C8 ^{viii} —C9—C7	119.7 (3)
O1 ^{iv} —K1—O9 ^v	116.76 (8)	C8 ^{viii} —C9—C10	118.6 (3)
O4 ^{iv} —K1—O9 ^v	116.29 (8)	C7—C9—C10	121.4 (3)
O7 ⁱ —K1—O9 ^v	59.01 (7)	O7—C10—O6	123.9 (3)
O2—K1—C10	129.24 (8)	O7—C10—C9	119.4 (3)
O6—K1—C10	22.64 (8)	O6—C10—C9	116.7 (3)
O8—K1—C10	63.26 (8)	O7—C10—K1	91.9 (2)
O10—K1—C10	152.09 (10)	O6—C10—K1	58.30 (18)
O1 ^{iv} —K1—C10	131.40 (9)	С9—С10—К1	121.7 (2)
O4 ^{iv} —K1—C10	60.96 (8)	K1—O10—H10A	138.3
O7 ⁱ —K1—C10	81.59 (8)	K1-010-H10B	102.5
O9 ^v —K1—C10	78.87 (8)	H10A—O10—H10B	106.3
O2—K1—O3 ^{vi}	137.10 (8)	-	

Symmetry codes: (i) -*x*, *y*-1/2, -*z*+3/2; (ii) *x*, *y*-1, *z*; (iii) -*x*+1, *y*-1/2, -*z*+3/2; (iv) -*x*+1, *y*+1/2, -*z*+3/2; (v) -*x*, *y*+1/2, -*z*+3/2; (vi) *x*, *y*+1, *z*; (vii) -*x*+1, -*y*+1, -*z*+2; (viii) -*x*, -*y*+2, -*z*+1.