organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Nitro­benzene-1,2-di­amine

aNelson Mandela Metropolitan University, Summerstrand Campus, Department of Chemistry, University Way, Summerstrand, PO Box 77000, Port Elizabeth 6031, South Africa
*Correspondence e-mail: richard.betz@webmail.co.za

(Received 28 April 2011; accepted 4 May 2011; online 7 May 2011)

The mol­ecule of the title compound, C6H7N3O2, a derivative of o-phenyl­enediamine, nearly shows non-crystallographic Cs symmetry. C—C—C angles span the range 116.25 (11)–122.35 (11)°. In the crystal, inter­molecular N—H⋯O and N—H⋯N hydrogen bonds connect mol­ecules into undulating sheets perpendicular to the crystallographic a axis. A weak intra­molecular N—H⋯O hydrogen bond is also observed. No π-stacking is observed in the crystal structure.

Related literature

For the crystal structure of 1,2-diamino­benzene, see: Stalhandske (1981[Stalhandske, C. (1981). Cryst. Struct. Commun. 10, 1081-1086.]); Czapik & Gdaniec (2010[Czapik, A. & Gdaniec, M. (2010). Acta Cryst. C66, o198-o201.]). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]); Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For the use of chelate ligands in coordination chemistry, see: Gade (1998[Gade, L. H. (1998). Koordinationschemie, 1. Auflage. Weinheim: Wiley-VCH.]). For the crystal structures of coordination compounds with rhenium in different oxidation states applying (mixed) oxygen-, nitro­gen- and/or sulfur-containing ligands, see: Chiozzone et al. (1999[Chiozzone, R., González, R., Kremer, C., De Munno, G., Cano, J., Lloret, F., Julve, M. & Faus, J. (1999). Inorg. Chem. 38, 4745—4752.]); Videira et al. (2009[Videira, M., Silva, F., Paulo, A., Santos, I. C. & Santos, I. (2009). Inorg. Chim. Acta, 362, 2807-2813.]); Edwards et al. (1998[Edwards, P. G., Jokela, J., Lehtonen, A. & Sillanpää, R. (1998). J. Chem. Soc. Dalton Trans. pp. 3287-3294.]); Marti et al. (2005[Marti, N., Spingler, B., Breher, F. & Schibli, R. (2005). Inorg. Chem. 44, 6082-6091.]); Babich et al. (2001[Babich, J. W., Graham, W., Femia, F. J., Dong, Q., Barzana, M., Ferrill, K., Fischman, A. J. & Zubieta, J. (2001). Inorg. Chim. Acta, 323, 23-36.]).

[Scheme 1]

Experimental

Crystal data
  • C6H7N3O2

  • Mr = 153.15

  • Monoclinic, P 21 /c

  • a = 13.2854 (5) Å

  • b = 3.7504 (1) Å

  • c = 16.3309 (6) Å

  • β = 126.208 (2)°

  • V = 656.55 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 200 K

  • 0.55 × 0.24 × 0.11 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • 6477 measured reflections

  • 1605 independent reflections

  • 1262 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.115

  • S = 1.05

  • 1605 reflections

  • 113 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H711⋯O1i 0.89 (1) 2.41 (2) 3.1257 (14) 138 (2)
N2—H721⋯N1ii 0.88 (1) 2.26 (1) 3.0800 (16) 156 (2)
N2—H722⋯O1 0.88 (1) 1.98 (1) 2.6084 (14) 127 (1)
N2—H722⋯O1iii 0.88 (1) 2.55 (2) 3.1416 (16) 126 (1)
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) -x, -y+1, -z.

Data collection: APEX2 (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Chelate ligands have found widespread use in coordination chemistry due to the enhanced thermodynamic stability of resultant coordination compounds in relation to coordination compounds exclusively applying comparable monodentate ligands (Gade 1998). Combining different sets of donor atoms in one chelate ligand molecule, a probe for testing and accomodating metal centers of different Lewis acidities is at hand. For the crystal structures of coordination compounds with rhenium in different oxidation states applying (mixed) oxygen-, nitrogen- and/or sulfur-containing ligands, see: Chiozzone et al. (1999); Videira et al. (2009); Edwards et al. (1998); Marti et al. (2005); Babich et al. (2001). The title compound, which offers two amino and one nitro group in close proximity to each other, seemed particularily interesting in this aspect. To enable comparative studies with the crystal structures of envisioned coordination compounds, the structure of the free ligand was determined. The crystal structure of 1,2-diaminobenzene is apparent in the literature (Stalhandske 1981, Czapik & Gdaniec 2010).

Intracyclic angles cover a range of 116–122 ° with the smallest angle present on the C-atom in between the C-atoms bearing the nitro as well as an amino group. The nitro group is nearly completely in plane with the aromatic system. The least-squares planes defined by their respective atoms intersect at an angle of only 3.93 (18) ° (Fig. 1).

Except for one of the H-atoms of the amino group in meta-position to the nitro group, all of the hydrogen atoms of the amino groups participate in hydrogen bonds in the crystal structure. While one of the O-atoms of the nitro group acts as twofold acceptor, the second one does not take part in this type of intermolecular contacts. In terms of graph-set analysis, (Etter et al. 1990, Bernstein et al. 1995), the descriptor for the hydrogen bonding system on the unitary level is C11(5)C11(7)R22(12). In total, the molecules are connected to waved sheets perpendicular to the crystallographic a-axis. π-stacking is not observed in the crystal structure of the title compound (Fig. 2).

The molecular packing is shown in Figure 3.

Related literature top

For the crystal structure of 1,2-diaminobenzene, see: Stalhandske (1981); Czapik & Gdaniec (2010). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990); Bernstein et al. (1995). For the use of chelate ligands in coordination chemistry, see: Gade (1998). For the crystal structures of coordination compounds with rhenium in different oxidation states applying (mixed) oxygen-, nitrogen- and/or sulfur-containing ligands, see: Chiozzone et al. (1999); Videira et al. (2009); Edwards et al. (1998); Marti et al. (2005); Babich et al. (2001).

Experimental top

The compound was obtained commercially (Aldrich). Crystals suitable for the X-ray diffraction study were obtained upon recrystallization from ethanol.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2Ueq(C). The H-atoms of the amine groups were located on a difference Fourier map, and their N—H distances as well as their H–N–H angles were refined using DFIX instructions with one common free variable, with their U(H) set to 1.5Ueq(N).

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and anisotropic displacement ellipsoids (drawn at 50% probability level).
[Figure 2] Fig. 2. Intermolecular contacts, viewed approximately along [010]. Symmetry operators: i x, -y + 3/2, z + 1/2; ii -x, y + 1/2, -z + 1/2; iii -x, y - 1/2, -z + 1/2; iv -x, -y + 1, -z; v x, -y + 3/2, z - 1/2.
[Figure 3] Fig. 3. Molecular packing of the title compound, viewed along [0 1 0] (anisotropic displacement ellipsoids drawn at 50% probability level).
3-Nitrobenzene-1,2-diamine top
Crystal data top
C6H7N3O2F(000) = 320
Mr = 153.15Dx = 1.549 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3115 reflections
a = 13.2854 (5) Åθ = 2.5–28.2°
b = 3.7504 (1) ŵ = 0.12 mm1
c = 16.3309 (6) ÅT = 200 K
β = 126.208 (2)°Rod, red
V = 656.55 (4) Å30.55 × 0.24 × 0.11 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
1262 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.043
Graphite monochromatorθmax = 28.3°, θmin = 3.1°
ϕ and ω scansh = 1717
6477 measured reflectionsk = 44
1605 independent reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.055P)2 + 0.1822P]
where P = (Fo2 + 2Fc2)/3
1605 reflections(Δ/σ)max < 0.001
113 parametersΔρmax = 0.30 e Å3
6 restraintsΔρmin = 0.17 e Å3
Crystal data top
C6H7N3O2V = 656.55 (4) Å3
Mr = 153.15Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.2854 (5) ŵ = 0.12 mm1
b = 3.7504 (1) ÅT = 200 K
c = 16.3309 (6) Å0.55 × 0.24 × 0.11 mm
β = 126.208 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
1262 reflections with I > 2σ(I)
6477 measured reflectionsRint = 0.043
1605 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0406 restraints
wR(F2) = 0.115H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.30 e Å3
1605 reflectionsΔρmin = 0.17 e Å3
113 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.13915 (10)0.7321 (4)0.03335 (7)0.0524 (3)
O20.30745 (12)1.0010 (4)0.07783 (10)0.0687 (4)
N10.13706 (12)0.8731 (4)0.34249 (9)0.0419 (3)
H7110.1778 (16)0.888 (5)0.4092 (10)0.063*
H7120.1066 (16)0.649 (4)0.3250 (14)0.063*
N20.07013 (10)0.7189 (3)0.15331 (8)0.0346 (3)
H7210.0209 (14)0.662 (5)0.1708 (12)0.052*
H7220.0458 (15)0.663 (5)0.0919 (10)0.052*
N30.23536 (11)0.9000 (3)0.09715 (8)0.0382 (3)
C10.22068 (11)0.9559 (3)0.31843 (9)0.0289 (3)
C20.18152 (10)0.8773 (3)0.21809 (8)0.0241 (3)
C30.26459 (10)0.9743 (3)0.19499 (8)0.0268 (3)
C40.37907 (11)1.1429 (3)0.26574 (11)0.0349 (3)
H40.43291.20600.24770.042*
C50.41227 (12)1.2152 (4)0.36057 (10)0.0397 (3)
H50.48951.32890.40910.048*
C60.33235 (12)1.1214 (4)0.38622 (9)0.0374 (3)
H60.35611.17390.45240.045*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0500 (6)0.0787 (8)0.0285 (5)0.0038 (6)0.0231 (5)0.0108 (5)
O20.0701 (8)0.1063 (11)0.0630 (7)0.0052 (7)0.0575 (7)0.0026 (7)
N10.0512 (7)0.0525 (8)0.0371 (6)0.0146 (6)0.0344 (6)0.0103 (6)
N20.0294 (5)0.0433 (7)0.0331 (5)0.0028 (4)0.0195 (5)0.0030 (5)
N30.0430 (6)0.0493 (7)0.0343 (6)0.0089 (5)0.0294 (5)0.0054 (5)
C10.0353 (6)0.0286 (6)0.0263 (5)0.0121 (5)0.0201 (5)0.0066 (5)
C20.0261 (5)0.0237 (5)0.0244 (5)0.0061 (4)0.0160 (4)0.0031 (4)
C30.0299 (6)0.0276 (6)0.0264 (5)0.0052 (4)0.0185 (5)0.0035 (4)
C40.0300 (6)0.0283 (6)0.0472 (7)0.0024 (5)0.0233 (6)0.0037 (5)
C50.0305 (6)0.0294 (7)0.0404 (7)0.0011 (5)0.0106 (5)0.0050 (5)
C60.0433 (7)0.0331 (7)0.0249 (6)0.0114 (5)0.0140 (5)0.0011 (5)
Geometric parameters (Å, º) top
O1—N31.2420 (16)C1—C61.3681 (18)
O2—N31.2318 (15)C1—C21.4268 (15)
N1—C11.4142 (16)C2—C31.4088 (15)
N1—H7110.887 (12)C3—C41.4041 (17)
N1—H7120.903 (12)C4—C51.364 (2)
N2—C21.3462 (15)C4—H40.9500
N2—H7210.880 (12)C5—C61.397 (2)
N2—H7220.878 (12)C5—H50.9500
N3—C31.4313 (15)C6—H60.9500
C1—N1—H711108.5 (12)C3—C2—C1116.25 (11)
C1—N1—H712113.3 (12)C4—C3—C2122.35 (11)
H711—N1—H712106.4 (15)C4—C3—N3117.01 (11)
C2—N2—H721122.3 (11)C2—C3—N3120.64 (11)
C2—N2—H722119.6 (11)C5—C4—C3119.38 (12)
H721—N2—H722118.0 (14)C5—C4—H4120.3
O2—N3—O1120.77 (12)C3—C4—H4120.3
O2—N3—C3119.13 (12)C4—C5—C6119.81 (12)
O1—N3—C3120.09 (10)C4—C5—H5120.1
C6—C1—N1121.95 (11)C6—C5—H5120.1
C6—C1—C2120.56 (11)C1—C6—C5121.65 (12)
N1—C1—C2117.41 (11)C1—C6—H6119.2
N2—C2—C3125.10 (10)C5—C6—H6119.2
N2—C2—C1118.65 (10)
C6—C1—C2—N2179.04 (11)O1—N3—C3—C4175.60 (12)
N1—C1—C2—N22.26 (17)O2—N3—C3—C2177.07 (12)
C6—C1—C2—C30.96 (17)O1—N3—C3—C23.77 (19)
N1—C1—C2—C3177.74 (10)C2—C3—C4—C50.29 (19)
N2—C2—C3—C4179.27 (11)N3—C3—C4—C5179.07 (11)
C1—C2—C3—C40.73 (17)C3—C4—C5—C60.04 (19)
N2—C2—C3—N31.39 (19)N1—C1—C6—C5177.40 (12)
C1—C2—C3—N3178.60 (10)C2—C1—C6—C50.78 (19)
O2—N3—C3—C43.56 (19)C4—C5—C6—C10.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H711···O1i0.89 (1)2.41 (2)3.1257 (14)138 (2)
N2—H721···N1ii0.88 (1)2.26 (1)3.0800 (16)156 (2)
N2—H722···O10.88 (1)1.98 (1)2.6084 (14)127 (1)
N2—H722···O1iii0.88 (1)2.55 (2)3.1416 (16)126 (1)
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x, y1/2, z+1/2; (iii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC6H7N3O2
Mr153.15
Crystal system, space groupMonoclinic, P21/c
Temperature (K)200
a, b, c (Å)13.2854 (5), 3.7504 (1), 16.3309 (6)
β (°) 126.208 (2)
V3)656.55 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.55 × 0.24 × 0.11
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
6477, 1605, 1262
Rint0.043
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.115, 1.05
No. of reflections1605
No. of parameters113
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.30, 0.17

Computer programs: APEX2 (Bruker, 2010), SAINT (Bruker, 2010), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H711···O1i0.887 (12)2.409 (16)3.1257 (14)138.0 (15)
N2—H721···N1ii0.880 (12)2.255 (13)3.0800 (16)155.9 (15)
N2—H722···O10.878 (12)1.980 (14)2.6084 (14)127.4 (14)
N2—H722···O1iii0.878 (12)2.546 (15)3.1416 (16)125.8 (13)
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x, y1/2, z+1/2; (iii) x, y+1, z.
 

Acknowledgements

The authors thank Mr Henk Schalekamp for helpful discussions.

References

First citationBabich, J. W., Graham, W., Femia, F. J., Dong, Q., Barzana, M., Ferrill, K., Fischman, A. J. & Zubieta, J. (2001). Inorg. Chim. Acta, 323, 23–36.  CrossRef CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChiozzone, R., González, R., Kremer, C., De Munno, G., Cano, J., Lloret, F., Julve, M. & Faus, J. (1999). Inorg. Chem. 38, 4745—4752.  CrossRef Google Scholar
First citationCzapik, A. & Gdaniec, M. (2010). Acta Cryst. C66, o198–o201.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationEdwards, P. G., Jokela, J., Lehtonen, A. & Sillanpää, R. (1998). J. Chem. Soc. Dalton Trans. pp. 3287–3294.  CrossRef Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGade, L. H. (1998). Koordinationschemie, 1. Auflage. Weinheim: Wiley–VCH.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMarti, N., Spingler, B., Breher, F. & Schibli, R. (2005). Inorg. Chem. 44, 6082–6091.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStalhandske, C. (1981). Cryst. Struct. Commun. 10, 1081–1086.  CAS Google Scholar
First citationVideira, M., Silva, F., Paulo, A., Santos, I. C. & Santos, I. (2009). Inorg. Chim. Acta, 362, 2807–2813.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds