organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 6| June 2011| Pages o1407-o1408

2,6-Bis(2-chloro­phen­yl)-4-oxo-3,5-di­phenyl­heptane-1,1,7,7-tetra­carbo­nitrile

aDepartment of Science and Humanities, National College of Engineering, Maruthakulam, Tirunelveli 627 151, India, bDepartment of Physics, University College of Engineering Nagercoil, Anna University of Technology Tirunelveli, Nagercoil 629 004, India, cDepartment of Physics, Kalasalingam University, Anand Nagar, Krishnan Koil 626 190, India, and dDepartment of Organic Chemistry, Madurai Kamaraj University, Madurai 625 021, India
*Correspondence e-mail: s_a_bahadur@yahoo.co.in

(Received 30 April 2011; accepted 7 May 2011; online 14 May 2011)

In the title compound, C35H24Cl2N4O, the phenyl rings are oriented almost parallel to each other, making a dihedral angle of 0.6 (2)°, whereas the chloro­phenyl rings are oriented at a dihedral angle of 28.3 (1)°. The crystal structure is stabilized through an extensive series of C—H⋯N, C—H⋯O and C—H⋯Cl inter­actions. One of the C—H⋯N inter­actions generates an R22(12) ring motif around a crystallographic inversion centre. C(5), C(10) and C(12) chain motifs are observed in the unit cell through C—H⋯N and C—H⋯Cl inter­actions. During the structure analysis, it was observed that the unit cell contains large accessible voids, which host disordered solvent mol­ecules. This affects the diffraction pattern, mostly at low scattering angles and was corrected with the SQUEEZE program [Spek, A. L. (2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]). Acta Cryst. D65, 148–155].

Related literature

For our investigations into regio/stereoselectivity in adduct reactions and weak hydrogen bonding, see: Ali et al. (2010[Ali, A. J., Athimoolam, S., Bahadur, S. A. & Raja, V. P. A. (2010). Acta Cryst. E66, o2593.]). For weak hydrogen-bonding inter­actions, see: Desiraju & Steiner (1999[Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology, pp. 246-253. IUCr Monographs on Crystallography. Oxford University Press.]). For ring and chain motifs, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]).

[Scheme 1]

Experimental

Crystal data
  • C35H24Cl2N4O

  • Mr = 587.48

  • Monoclinic, P 21 /c

  • a = 17.7226 (6) Å

  • b = 10.6169 (3) Å

  • c = 20.8491 (7) Å

  • β = 113.724 (2)°

  • V = 3591.4 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 293 K

  • 0.28 × 0.26 × 0.22 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • 32501 measured reflections

  • 6324 independent reflections

  • 3647 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.061

  • wR(F2) = 0.211

  • S = 1.07

  • 6324 reflections

  • 379 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯N11i 0.98 2.33 3.186 (4) 145
C23—H23⋯N11ii 0.93 2.65 3.409 (5) 139
C34—H34⋯N72iii 0.93 2.52 3.443 (8) 176
C52—H52⋯N12iv 0.93 2.64 3.489 (5) 152
C36—H36⋯N12iv 0.93 2.96 3.805 (7) 152
C54—H54⋯N71v 0.93 2.91 3.564 (6) 128
C53—H53⋯N71v 0.93 2.96 3.583 (5) 126
C64—H64⋯Cl2vi 0.93 2.97 3.663 (5) 133
C64—H64⋯O1vi 0.93 2.88 3.673 (5) 144
C65—H65⋯Cl1vi 0.93 2.80 3.728 (4) 174
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) -x+2, -y+1, -z+2; (iii) [x, -y-{\script{1\over 2}}, z+{\script{1\over 2}}]; (iv) -x+2, -y, -z+2; (v) [-x+2, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (vi) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL/PC (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL/PC; molecular graphics: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL/PC.

Supporting information


Comment top

In continuation of our investigations into regio/stereoselectivity in adduct reactions and weak hydrogen bonding (Ali et al., 2010), the title compound was synthesized and crystallized and the structural features are disucussed here.

The molecular structure of the title compound is shown in Fig. 1. The two phenyl rings are oriented almost parallel to each other with the dihedral angle of 0.6 (2)°, whereas the two chlorophenyl rings are oriented with an angle of 28.3 (1)°. This large variation may be due to the strong and moderate C—H···Cl interactions observed in the lattice. Also, due to these C—H···Cl interactions in the crystal packing (Fig. 2, Table 1), the chlorine atoms in the chlorophenyl rings lie away from the benzene ring planes with the distances of 0.01 (1)Å (for Cl1 atom in C21/C26/Cl1 ring) and 0.08 (1)Å (for Cl2 atom in C61/C66/Cl2 ring).

The packing diagram of the title compound is shown in Fig. 2. The crystal packing is stabilized through an extensive series of C—H···N, C—H···O and C—H···Cl interactions (Desiraju & Steiner, 1999). One C—H···O, two C—H···Cl and seven C—H···N interactions are observed in the lattice (Table 1). The two C—H···Cl interactions are involved in making chain motifs, viz., a zigzag C(12) chain motif [through C65—H65···Cl1 (-x + 1, y - 1/2,-z + 3/2)] and a linear C(5) chain motif [through C64—H64···Cl2 (-x + 1, y - 1/2, -z + 3/2)] (Etter et al., 1990). These chain motifs are speckled on the ab-plane of the unit cell as shown in Fig. 3. A C(10) chain motif is observed through C7—H7···N11 (x, -y + 1/2, 2–1/2) interactions which connect the molecules in a head-to-tail fashion along the c axis. Another C—H···N interaction makes a zigzag C(12) chain motif extending along c (Fig. 4). A centrosymmetric R22(16) ring motif is observed around a crystallographic inversion centre through C—H···N interactions (Fig. 5).

Related literature top

For our investigations into regio/stereoselectivity in adduct reactions and weak hydrogen bonding, see: Ali et al. (2010). For weak hydrogen-bonding interactions, see: Desiraju & Steiner (1999). For ring and chain motifs, see: Etter et al. (1990).

Experimental top

A mixture of 1,3-diphenylacetone 5 (1 mmol), 2-[(2-chlorophenyl)methylene]malononitrile 6 (2 mmol), and sodium ethoxide (2 mmol) was ground well in a mortar and pestle at ambient temperature for about 15–30 sec. Then water (50–70 ml) was added to the mixture and the product was filtered and washed with water, dried in vacuo and subjected to flash chromatographic purification employing flash silica gel (230–400 mesh) with petroleum ether-ethyl acetate mixture (1:2 v/v) as eluent. The products were further recrystallized from ethanol-ethyl acetate mixture (1:2 v/v).

Refinement top

All the H atoms were positioned geometrically and refined by the riding model approximation with d(C—H) = 0.93 - 0.98 Å and i>Uiso(H)= 1.2Ueq(C). During the structure analysis, it was observed that the unit cell contains large accessible voids in the crystal structure which tend to host unpredictable disordered solvent molecules. This affects the diffraction pattern, mostly at low scattering angles and was corrected with the SQUEEZE program (Spek, 2009).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXTL/PC (Sheldrick, 2008); program(s) used to refine structure: SHELXTL/PC (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL/PC (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The title molecule with the atom numbering scheme. The displacement ellipsoids are shown at the 30% probability level.
[Figure 2] Fig. 2. Packing diagram of the title structure viewed down the a axis. (Cl is shown in green, N in blue, O in red, C in black and H as a circles)
[Figure 3] Fig. 3. Linear chain C(5) and zigzag chain C(12) motifs speckled along ab-plane of the crystal through C—H···Cl interactions. (Cl is shown in green, N in blue, O in red, C in black and H as a circles)
[Figure 4] Fig. 4. Zigzag chain C(12) motif extending along c axis of the unit cell. (Cl is shown in green, N in blue, O in red, C in black and H as a circles)
[Figure 5] Fig. 5. Ring R22(12) motif formed through C—H···N interactions. (Cl is shown in green, N in blue, O in red, C in black and H as a circles)
2,6-Bis(2-chlorophenyl)-4-oxo-3,5-diphenylheptane-1,1,7,7-tetracarbonitrile top
Crystal data top
C35H24Cl2N4OF(000) = 1216
Mr = 587.48Dx = 1.087 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4531 reflections
a = 17.7226 (6) Åθ = 2.8–24.8°
b = 10.6169 (3) ŵ = 0.21 mm1
c = 20.8491 (7) ÅT = 293 K
β = 113.724 (2)°Bulk, colourless
V = 3591.4 (2) Å30.28 × 0.26 × 0.22 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3647 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.042
Graphite monochromatorθmax = 25.0°, θmin = 1.3°
ω scansh = 2121
32501 measured reflectionsk = 1212
6324 independent reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.211H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.114P)2 + 0.3187P]
where P = (Fo2 + 2Fc2)/3
6324 reflections(Δ/σ)max < 0.001
379 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C35H24Cl2N4OV = 3591.4 (2) Å3
Mr = 587.48Z = 4
Monoclinic, P21/cMo Kα radiation
a = 17.7226 (6) ŵ = 0.21 mm1
b = 10.6169 (3) ÅT = 293 K
c = 20.8491 (7) Å0.28 × 0.26 × 0.22 mm
β = 113.724 (2)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3647 reflections with I > 2σ(I)
32501 measured reflectionsRint = 0.042
6324 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0610 restraints
wR(F2) = 0.211H-atom parameters constrained
S = 1.07Δρmax = 0.31 e Å3
6324 reflectionsΔρmin = 0.27 e Å3
379 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8486 (2)0.2323 (3)1.03039 (17)0.0623 (9)
H10.81310.17521.04280.075*
C20.80856 (18)0.2513 (2)0.95012 (16)0.0511 (7)
H20.75130.27680.93790.061*
C30.80630 (17)0.1253 (2)0.91167 (15)0.0471 (7)
H30.86280.10410.91850.057*
C40.75542 (17)0.1395 (2)0.83391 (14)0.0432 (7)
C50.78235 (17)0.0628 (2)0.78571 (14)0.0469 (7)
H50.80660.01590.80970.056*
C60.70861 (17)0.0294 (2)0.71749 (15)0.0478 (7)
H60.68380.10910.69530.057*
C70.73918 (19)0.0388 (3)0.66625 (17)0.0574 (8)
H70.77740.01820.65740.069*
C110.8527 (2)0.3532 (4)1.06706 (19)0.0695 (9)
C120.9297 (3)0.1773 (3)1.05569 (18)0.0682 (9)
C210.84917 (19)0.3550 (3)0.92648 (16)0.0544 (8)
C220.9254 (2)0.3393 (3)0.92435 (18)0.0649 (9)
H220.95220.26250.93860.078*
C230.9631 (3)0.4317 (4)0.9022 (2)0.0888 (12)
H231.01510.41800.90250.107*
C240.9248 (4)0.5425 (5)0.8801 (2)0.1061 (16)
H240.94990.60490.86410.127*
C250.8508 (3)0.5635 (4)0.8809 (3)0.1058 (15)
H250.82480.64050.86540.127*
C260.8118 (2)0.4710 (3)0.9049 (2)0.0785 (11)
C310.7717 (3)0.0166 (3)0.93763 (18)0.0689 (10)
C320.6897 (3)0.0163 (4)0.9284 (2)0.0900 (13)
H320.65550.08320.90590.108*
C330.6594 (5)0.0833 (6)0.9528 (4)0.148 (3)
H330.60470.08340.94730.178*
C340.7084 (9)0.1801 (8)0.9843 (5)0.189 (5)
H340.68740.24561.00180.227*
C350.7875 (7)0.1860 (6)0.9916 (4)0.167 (3)
H350.81960.25651.01120.200*
C360.8197 (4)0.0850 (3)0.9692 (2)0.1048 (15)
H360.87470.08610.97560.126*
C510.84908 (17)0.1359 (2)0.77357 (15)0.0483 (7)
C520.9270 (2)0.0907 (3)0.79355 (18)0.0672 (9)
H520.94020.01230.81500.081*
C530.9874 (2)0.1595 (4)0.7825 (2)0.0877 (12)
H531.04070.12820.79710.105*
C540.9676 (3)0.2725 (4)0.7502 (2)0.0889 (12)
H541.00740.31840.74180.107*
C550.8901 (3)0.3199 (4)0.7298 (2)0.0827 (11)
H550.87750.39780.70760.099*
C560.8309 (2)0.2548 (3)0.74135 (19)0.0692 (9)
H560.77840.28880.72800.083*
C610.64183 (18)0.0448 (2)0.72805 (15)0.0498 (7)
C620.6602 (2)0.1490 (3)0.77301 (18)0.0629 (9)
H620.71490.17130.79840.076*
C630.5993 (3)0.2186 (3)0.7803 (2)0.0818 (11)
H630.61320.28690.81080.098*
C640.5187 (3)0.1890 (5)0.7436 (3)0.0953 (13)
H640.47760.23790.74820.114*
C650.4985 (2)0.0889 (4)0.7005 (2)0.0857 (12)
H650.44330.06760.67640.103*
C660.5586 (2)0.0174 (3)0.69163 (17)0.0598 (8)
C710.7844 (2)0.1558 (4)0.6959 (2)0.0728 (10)
C720.6731 (2)0.0659 (3)0.5998 (2)0.0707 (9)
Cl10.71848 (7)0.50340 (9)0.90878 (9)0.1247 (6)
Cl20.52710 (6)0.10805 (10)0.63456 (5)0.0895 (4)
N110.8558 (2)0.4487 (4)1.09207 (19)0.0953 (11)
N120.9931 (3)0.1336 (4)1.0738 (2)0.1026 (11)
N710.8197 (2)0.2441 (4)0.7193 (2)0.1078 (12)
N720.6215 (2)0.0886 (4)0.5485 (2)0.1075 (12)
O10.69628 (13)0.20891 (19)0.81126 (12)0.0644 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.073 (2)0.0613 (17)0.060 (2)0.0149 (17)0.0352 (19)0.0043 (15)
C20.0488 (17)0.0524 (15)0.0531 (19)0.0042 (13)0.0216 (15)0.0043 (13)
C30.0486 (17)0.0468 (14)0.0483 (18)0.0044 (12)0.0220 (15)0.0012 (12)
C40.0418 (16)0.0410 (13)0.0476 (18)0.0076 (13)0.0189 (14)0.0009 (12)
C50.0474 (17)0.0470 (14)0.0462 (17)0.0011 (12)0.0189 (14)0.0046 (12)
C60.0509 (17)0.0503 (15)0.0453 (17)0.0023 (13)0.0228 (15)0.0008 (12)
C70.0534 (19)0.0652 (17)0.064 (2)0.0067 (15)0.0342 (18)0.0031 (15)
C110.065 (2)0.087 (2)0.067 (2)0.0161 (18)0.0382 (19)0.0177 (19)
C120.079 (3)0.073 (2)0.049 (2)0.005 (2)0.020 (2)0.0031 (16)
C210.057 (2)0.0517 (16)0.0488 (18)0.0103 (14)0.0153 (15)0.0030 (13)
C220.065 (2)0.0675 (19)0.062 (2)0.0153 (16)0.0255 (18)0.0023 (16)
C230.090 (3)0.098 (3)0.083 (3)0.038 (2)0.039 (2)0.002 (2)
C240.131 (4)0.095 (3)0.086 (3)0.053 (3)0.037 (3)0.007 (2)
C250.116 (4)0.059 (2)0.119 (4)0.014 (2)0.023 (3)0.023 (2)
C260.072 (2)0.0543 (18)0.092 (3)0.0060 (17)0.015 (2)0.0025 (17)
C310.105 (3)0.0566 (18)0.057 (2)0.0177 (18)0.045 (2)0.0049 (15)
C320.104 (3)0.084 (2)0.110 (3)0.040 (2)0.072 (3)0.023 (2)
C330.227 (7)0.122 (4)0.172 (6)0.084 (5)0.159 (6)0.050 (4)
C340.367 (15)0.104 (5)0.152 (6)0.095 (8)0.163 (9)0.018 (4)
C350.291 (10)0.073 (3)0.151 (6)0.013 (5)0.104 (7)0.023 (3)
C360.169 (5)0.054 (2)0.096 (3)0.003 (2)0.058 (3)0.017 (2)
C510.0420 (17)0.0577 (16)0.0450 (17)0.0033 (13)0.0173 (14)0.0051 (13)
C520.055 (2)0.075 (2)0.076 (2)0.0024 (16)0.0301 (19)0.0075 (17)
C530.055 (2)0.110 (3)0.105 (3)0.007 (2)0.039 (2)0.004 (3)
C540.071 (3)0.114 (3)0.090 (3)0.025 (2)0.042 (2)0.006 (2)
C550.083 (3)0.088 (2)0.076 (3)0.021 (2)0.031 (2)0.021 (2)
C560.057 (2)0.0697 (19)0.073 (2)0.0032 (16)0.0188 (18)0.0171 (17)
C610.0455 (17)0.0542 (15)0.0548 (19)0.0018 (13)0.0257 (15)0.0092 (14)
C620.060 (2)0.0599 (17)0.072 (2)0.0060 (15)0.0300 (18)0.0092 (16)
C630.083 (3)0.076 (2)0.095 (3)0.016 (2)0.044 (2)0.001 (2)
C640.084 (3)0.118 (3)0.097 (3)0.034 (3)0.050 (3)0.007 (3)
C650.046 (2)0.129 (3)0.085 (3)0.004 (2)0.030 (2)0.008 (3)
C660.050 (2)0.078 (2)0.054 (2)0.0052 (16)0.0242 (16)0.0077 (15)
C710.066 (2)0.088 (2)0.075 (3)0.006 (2)0.040 (2)0.007 (2)
C720.068 (2)0.092 (2)0.056 (2)0.005 (2)0.029 (2)0.0180 (19)
Cl10.0854 (8)0.0705 (6)0.1940 (15)0.0109 (5)0.0308 (9)0.0038 (7)
Cl20.0723 (7)0.1123 (8)0.0810 (7)0.0277 (5)0.0279 (5)0.0140 (5)
N110.100 (3)0.107 (2)0.104 (3)0.024 (2)0.067 (2)0.040 (2)
N120.106 (3)0.112 (3)0.081 (3)0.016 (2)0.028 (2)0.007 (2)
N710.100 (3)0.104 (3)0.128 (3)0.034 (2)0.055 (3)0.010 (2)
N720.089 (3)0.141 (3)0.083 (3)0.001 (2)0.026 (2)0.041 (2)
O10.0532 (13)0.0653 (12)0.0664 (15)0.0092 (11)0.0154 (11)0.0047 (11)
Geometric parameters (Å, º) top
C1—C121.441 (5)C31—C321.387 (5)
C1—C111.481 (5)C32—C331.373 (6)
C1—C21.546 (4)C32—H320.9300
C1—H10.9800C33—C341.335 (12)
C2—C211.503 (4)C33—H330.9300
C2—C31.551 (4)C34—C351.348 (12)
C2—H20.9800C34—H340.9300
C3—C311.506 (4)C35—C361.381 (8)
C3—C41.513 (4)C35—H350.9300
C3—H30.9800C36—H360.9300
C4—O11.211 (3)C51—C521.359 (4)
C4—C51.512 (4)C51—C561.405 (4)
C5—C511.518 (4)C52—C531.389 (5)
C5—C61.537 (4)C52—H520.9300
C5—H50.9800C53—C541.351 (6)
C6—C611.510 (4)C53—H530.9300
C6—C71.557 (4)C54—C551.361 (5)
C6—H60.9800C54—H540.9300
C7—C721.438 (5)C55—C561.356 (5)
C7—C711.473 (5)C55—H550.9300
C7—H70.9800C56—H560.9300
C11—N111.132 (4)C61—C661.391 (4)
C12—N121.132 (5)C61—C621.401 (4)
C21—C221.379 (4)C62—C631.365 (5)
C21—C261.385 (4)C62—H620.9300
C22—C231.368 (5)C63—C641.359 (6)
C22—H220.9300C63—H630.9300
C23—C241.343 (7)C64—C651.343 (6)
C23—H230.9300C64—H640.9300
C24—C251.338 (7)C65—C661.380 (5)
C24—H240.9300C65—H650.9300
C25—C261.403 (6)C66—Cl21.723 (3)
C25—H250.9300C71—N711.123 (4)
C26—Cl11.723 (4)C72—N721.119 (4)
C31—C361.366 (5)
C12—C1—C11109.1 (3)C25—C26—Cl1119.8 (3)
C12—C1—C2113.9 (3)C36—C31—C32118.6 (4)
C11—C1—C2110.6 (3)C36—C31—C3120.9 (4)
C12—C1—H1107.7C32—C31—C3120.5 (3)
C11—C1—H1107.7C33—C32—C31119.7 (5)
C2—C1—H1107.7C33—C32—H32120.2
C21—C2—C1112.3 (2)C31—C32—H32120.2
C21—C2—C3112.2 (2)C34—C33—C32120.1 (7)
C1—C2—C3110.6 (2)C34—C33—H33120.0
C21—C2—H2107.1C32—C33—H33120.0
C1—C2—H2107.1C33—C34—C35122.1 (7)
C3—C2—H2107.1C33—C34—H34118.9
C31—C3—C4107.9 (2)C35—C34—H34118.9
C31—C3—C2113.9 (2)C34—C35—C36118.5 (8)
C4—C3—C2110.4 (2)C34—C35—H35120.7
C31—C3—H3108.2C36—C35—H35120.7
C4—C3—H3108.2C31—C36—C35120.9 (6)
C2—C3—H3108.2C31—C36—H36119.5
O1—C4—C5121.6 (3)C35—C36—H36119.5
O1—C4—C3121.8 (2)C52—C51—C56118.2 (3)
C5—C4—C3116.6 (2)C52—C51—C5122.1 (3)
C4—C5—C51108.1 (2)C56—C51—C5119.7 (3)
C4—C5—C6111.2 (2)C51—C52—C53121.3 (3)
C51—C5—C6113.2 (2)C51—C52—H52119.4
C4—C5—H5108.1C53—C52—H52119.4
C51—C5—H5108.1C54—C53—C52119.2 (4)
C6—C5—H5108.1C54—C53—H53120.4
C61—C6—C5114.2 (2)C52—C53—H53120.4
C61—C6—C7111.5 (2)C53—C54—C55120.7 (4)
C5—C6—C7110.0 (2)C53—C54—H54119.7
C61—C6—H6106.9C55—C54—H54119.7
C5—C6—H6106.9C56—C55—C54120.8 (3)
C7—C6—H6106.9C56—C55—H55119.6
C72—C7—C71109.3 (3)C54—C55—H55119.6
C72—C7—C6112.3 (3)C55—C56—C51119.9 (3)
C71—C7—C6112.6 (3)C55—C56—H56120.1
C72—C7—H7107.4C51—C56—H56120.1
C71—C7—H7107.4C66—C61—C62116.1 (3)
C6—C7—H7107.4C66—C61—C6122.2 (3)
N11—C11—C1176.4 (4)C62—C61—C6121.7 (3)
N12—C12—C1178.2 (4)C63—C62—C61121.4 (3)
C22—C21—C26116.4 (3)C63—C62—H62119.3
C22—C21—C2121.7 (3)C61—C62—H62119.3
C26—C21—C2121.9 (3)C64—C63—C62120.7 (4)
C23—C22—C21122.8 (4)C64—C63—H63119.6
C23—C22—H22118.6C62—C63—H63119.6
C21—C22—H22118.6C65—C64—C63119.8 (4)
C24—C23—C22119.8 (4)C65—C64—H64120.1
C24—C23—H23120.1C63—C64—H64120.1
C22—C23—H23120.1C64—C65—C66120.8 (4)
C25—C24—C23120.2 (4)C64—C65—H65119.6
C25—C24—H24119.9C66—C65—H65119.6
C23—C24—H24119.9C65—C66—C61121.2 (3)
C24—C25—C26120.9 (4)C65—C66—Cl2117.7 (3)
C24—C25—H25119.5C61—C66—Cl2121.1 (2)
C26—C25—H25119.5N71—C71—C7179.0 (5)
C21—C26—C25119.9 (4)N72—C72—C7179.0 (5)
C21—C26—Cl1120.3 (3)
C12—C1—C2—C2171.0 (3)C4—C3—C31—C36121.2 (3)
C11—C1—C2—C2152.3 (3)C2—C3—C31—C36115.9 (4)
C12—C1—C2—C355.2 (3)C4—C3—C31—C3257.2 (4)
C11—C1—C2—C3178.5 (2)C2—C3—C31—C3265.7 (4)
C21—C2—C3—C31175.7 (3)C36—C31—C32—C331.9 (6)
C1—C2—C3—C3149.5 (3)C3—C31—C32—C33179.7 (4)
C21—C2—C3—C462.7 (3)C31—C32—C33—C340.9 (8)
C1—C2—C3—C4171.1 (2)C32—C33—C34—C352.0 (12)
C31—C3—C4—O192.2 (3)C33—C34—C35—C363.8 (13)
C2—C3—C4—O132.9 (3)C32—C31—C36—C350.1 (6)
C31—C3—C4—C588.1 (3)C3—C31—C36—C35178.5 (5)
C2—C3—C4—C5146.9 (2)C34—C35—C36—C312.7 (10)
O1—C4—C5—C5195.0 (3)C4—C5—C51—C52117.7 (3)
C3—C4—C5—C5184.7 (3)C6—C5—C51—C52118.7 (3)
O1—C4—C5—C629.7 (3)C4—C5—C51—C5661.6 (3)
C3—C4—C5—C6150.5 (2)C6—C5—C51—C5662.0 (3)
C4—C5—C6—C6158.8 (3)C56—C51—C52—C530.1 (5)
C51—C5—C6—C61179.2 (2)C5—C51—C52—C53179.4 (3)
C4—C5—C6—C7174.9 (2)C51—C52—C53—C541.1 (6)
C51—C5—C6—C753.0 (3)C52—C53—C54—C551.2 (7)
C61—C6—C7—C7255.6 (3)C53—C54—C55—C560.1 (7)
C5—C6—C7—C72176.6 (3)C54—C55—C56—C511.2 (6)
C61—C6—C7—C7168.4 (3)C52—C51—C56—C551.3 (5)
C5—C6—C7—C7159.4 (3)C5—C51—C56—C55179.4 (3)
C12—C1—C11—N11102 (6)C5—C6—C61—C66136.4 (3)
C2—C1—C11—N1124 (7)C7—C6—C61—C6698.2 (3)
C11—C1—C12—N12131 (13)C5—C6—C61—C6246.5 (4)
C2—C1—C12—N127 (13)C7—C6—C61—C6278.9 (3)
C1—C2—C21—C2274.6 (4)C66—C61—C62—C630.2 (5)
C3—C2—C21—C2250.7 (4)C6—C61—C62—C63177.5 (3)
C1—C2—C21—C26106.2 (3)C61—C62—C63—C640.5 (6)
C3—C2—C21—C26128.5 (3)C62—C63—C64—C651.2 (6)
C26—C21—C22—C230.1 (5)C63—C64—C65—C661.8 (7)
C2—C21—C22—C23179.2 (3)C64—C65—C66—C611.5 (6)
C21—C22—C23—C241.4 (6)C64—C65—C66—Cl2179.2 (3)
C22—C23—C24—C251.3 (7)C62—C61—C66—C650.7 (4)
C23—C24—C25—C260.1 (7)C6—C61—C66—C65178.0 (3)
C22—C21—C26—C251.5 (5)C62—C61—C66—Cl2180.0 (2)
C2—C21—C26—C25177.8 (3)C6—C61—C66—Cl22.7 (4)
C22—C21—C26—Cl1177.3 (3)C72—C7—C71—N71174 (100)
C2—C21—C26—Cl13.4 (5)C6—C7—C71—N7160 (27)
C24—C25—C26—C211.5 (7)C71—C7—C72—N7231 (24)
C24—C25—C26—Cl1177.2 (4)C6—C7—C72—N7294 (24)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···N11i0.982.333.186 (4)145
C23—H23···N11ii0.932.653.409 (5)139
C34—H34···N72iii0.932.523.443 (8)176
C52—H52···N12iv0.932.643.489 (5)152
C36—H36···N12iv0.932.963.805 (7)152
C54—H54···N71v0.932.913.564 (6)128
C53—H53···N71v0.932.963.583 (5)126
C64—H64···Cl2vi0.932.973.663 (5)133
C64—H64···O1vi0.932.883.673 (5)144
C65—H65···Cl1vi0.932.803.728 (4)174
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+2, y+1, z+2; (iii) x, y1/2, z+1/2; (iv) x+2, y, z+2; (v) x+2, y+1/2, z+3/2; (vi) x+1, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC35H24Cl2N4O
Mr587.48
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)17.7226 (6), 10.6169 (3), 20.8491 (7)
β (°) 113.724 (2)
V3)3591.4 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.28 × 0.26 × 0.22
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
32501, 6324, 3647
Rint0.042
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.211, 1.07
No. of reflections6324
No. of parameters379
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.27

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXTL/PC (Sheldrick, 2008), Mercury (Macrae et al., 2006) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···N11i0.982.333.186 (4)145
C23—H23···N11ii0.932.653.409 (5)139
C34—H34···N72iii0.932.523.443 (8)176
C52—H52···N12iv0.932.643.489 (5)152
C36—H36···N12iv0.932.963.805 (7)152
C54—H54···N71v0.932.913.564 (6)128
C53—H53···N71v0.932.963.583 (5)126
C64—H64···Cl2vi0.932.973.663 (5)133
C64—H64···O1vi0.932.883.673 (5)144
C65—H65···Cl1vi0.932.803.728 (4)174
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+2, y+1, z+2; (iii) x, y1/2, z+1/2; (iv) x+2, y, z+2; (v) x+2, y+1/2, z+3/2; (vi) x+1, y1/2, z+3/2.
 

Acknowledgements

AJA and SAB sincerely thank the Vice Chancellor and Management of the Kalasalingam University, Anand Nagar, Krishnan Koil, for their support and encouragement. AJA also thanks the Principal and the Management of the National College of Engineering for their support.

References

First citationAli, A. J., Athimoolam, S., Bahadur, S. A. & Raja, V. P. A. (2010). Acta Cryst. E66, o2593.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDesiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology, pp. 246–253. IUCr Monographs on Crystallography. Oxford University Press.  Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 6| June 2011| Pages o1407-o1408
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds