organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5,8-Di­methyl-3-methyl­ene-2-oxo-3,3a,4,5,5a,6,8a,8b-octa­hydro-2H-1-oxa-s-indacene-5-carbaldehyde

aLaboratoire de Chimie Bioorganique et Analytique, URAC 22, BP 146, FSTM, Université Hassan II, Mohammedia-Casablanca 20810 Mohammedia, Morocco, bLaboratoire de Chimie des Substances Naturelles, URAC16, Faculté des Sciences Semlalia, BP 2390 Bd My Abdellah, 40000 Marrakech, Morocco, and cLaboratoire de Chimie de Coordination, 205 route de Narbonne, 31077 Toulouse Cedex 04, France
*Correspondence e-mail: mmoumou17@yahoo.fr

(Received 12 May 2011; accepted 14 May 2011; online 20 May 2011)

The title compound, C15H18O3, was synthesized from 9α-hy­droxy­parthenolide (9α-hy­droxy-4,8-dimethyl-12-methyl­ene-3,14-dioxatricyclo­[9.3.0.02,4]tetra­dec-7-en-13-one), which was isolated from the chloro­form extract of the aerial parts of Anvillea radiata. The five-membered lactone ring has a twisted conformation, while the six- and five-membered rings display chair and envelope conformations, respectively. The dihedral angle between the two five-membered rings is 50.57 (11)°.

Related literature

For the isolation and biological activity of 9α-hy­droxy­parthenolide, see: Abdel Sattar et al. (1996[Abdel Sattar, E., Galal, A. M. & Mossa, J. S. (1996). J. Nat. Prod. 59, 403-405.]); El Hassany et al. (2004[El Hassany, B., El Hanbali, F., Akssira, M., Mellouki, F., Haidou, A. & Barero, A. F. (2004). Fitoterapia, 75, 573-576.]). For the reactivity of this sesquiterpene, see: Castaneda-Acosta et al. (1993[Castaneda-Acosta, J., Fisher, N. H. & Varga, D. (1993). J. Nat. Prod. 56, 90-98.]); Neukirch et al. (2003[Neukirch, H., Kaneider, N. C., Wiedermann, C. J., Guerriero, A. & Ambrosio, M. (2003). Bioorg. Med. Chem. 11, 1503-1510.]); Der-Ren et al. (2006[Der-Ren, H., Yu-Shan, W., Chun-Wei, C., Tzu-Wen, L., Wei-Cheng, C., Uan-Kang, T., John, T. A. H. & Hsing-Pang, H. (2006). Bioorg. Med. Chem. Lett. 14, 83-, 91.]); Neelakantan et al. (2009[Neelakantan, S., Nasim, Sh., Guzman, M. L., Jordan, C. T. & Crooks, P. A. (2009). Bioorg. Med. Chem. Lett. 19, 4346-4349.]). For conformational analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C15H18O3

  • Mr = 246.29

  • Orthorhombic, P 21 21 21

  • a = 9.5293 (3) Å

  • b = 9.7885 (3) Å

  • c = 13.7524 (4) Å

  • V = 1282.79 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 173 K

  • 0.50 × 0.33 × 0.08 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • 22932 measured reflections

  • 1517 independent reflections

  • 1403 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.085

  • S = 1.09

  • 1517 reflections

  • 165 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.16 e Å−3

Data collection: APEX2 (Bruker, 2005[Bruker, (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2005[Bruker, (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The natural sesquiterpene lactone (9α - hydroxypartenolide) is the main constituent of the chloroform extract of aerial parts of Anvillea radiata (El Hassany et al., 2004) and of Anvillea garcini (Abdel Sattar et al., 1996). The reactivity of this sesquiterpene lactone and its derivatives has been the subject of several studies (Castaneda-Acosta et al. 1993; Neukirch et al., 2003; Der-Ren et al., 2006; Neelakantan et al., 2009), in order to prepare products with high added value for use in industrial pharmacology. In the same context, we have treated the 9α-hydroxyparthenolide with boron trifluoride etherate and obtained the 5,8-diméthyl-3-methylen-2-oxo-3,3a,4,5,5a,6,8a,8b- octahydro-2H-1-oxa-as-indacene-5-carbaldehyde 64% yield. The structure of this new sesquiterpene derivative of 9α - hydroxypartenolide was determined by 1H and 13C NMR spectral analysis and mass spectrometry, and was confirmed by its single crystal X-ray structure. The molecule contains three fused rings which exhibit different conformations. The molecular structure of (I), Fig.1, shows the lactone ring to adopt a twisted conformation, as indicated by Cremer & Pople (1975) puckering parameters Q = 0.3329 (18) Å and ϕ = 304.4 (3)°. The five-membered ring displays an envelope conformation with Q = 0.340 (2)Å and ϕ = 356.8 (3)°, while the six-membered ring has a chair conformation with QT = 0.5707 (18) Å, θ = 16.39 (18)°, ϕ = 333.5 (7)°.

Related literature top

For the isolation and biological activity of 9α-hydroxyparthenolide, see: Abdel Sattar et al. (1996); El Hassany et al. (2004). For the reactivity of this sesquiterpene, see: Castaneda-Acosta et al. (1993); Neukirch et al. (2003); Der-Ren et al. (2006); Neelakantan et al. (2009). For conformational analysis, see: Cremer & Pople (1975).

Experimental top

Boron trifluoride etherate (1 ml, freshly distilled under reduced pressure) was added via syringe over a 10 minute period to a stirred solution of 500 mg (1.89 mmol) of the 9α-hydroxyparthenolide in anhydrous benzene (20 ml), cooled in an ice-bath and maintained under a N2 atmosphere. The ice-bath was then removed and stirring was continued for 2 h during which time the solution became cloudy and reddish in colour. The reaction mixture was poured into cooled water and dichloromethane. After shaking, the layers were separated; the organic layer was treated three time with saturated sodium bicarbonate (3x30ml), dried over sodium sulfate and concentrated under reduced pressure. Chromatography of the residue obtained on silica gel with hexane/ ethyl acetate (85/15) as eluent allowed us to isolate in pure 300 mg (1.21 mmol) of 5,8-dimethyl-3-methylene - 2-oxo-3,3a,4,5,5a,6,8a,8 b –octahydro-2H-1-oxa-as-indacene-5-carbaldehyde. The title compound was recrystallized from ethyl acetate.

Refinement top

All H atoms were fixed geometrically and treated as riding with C—H = 0.96 Å (methyl), 0.97 Å (methylene), 0.98Å (methine) with Uiso(H) = 1.2Ueq (methylene, methine and OH) or Uiso(H) = 1.5Ueq(methyl). In the absence of significant anomalous scattering, the absolute configuration could not be reliably determined and thus 1100 Friedel pairs were merged and any references to the Flack parameter were removed.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 and SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. : Molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.
5,8-Dimethyl-3-methylene-2-oxo-3,3a,4,5,5a,6,8a,8b-octahydro- 2H-1-oxa-s-indacene-5-carbaldehyde top
Crystal data top
C15H18O3F(000) = 528
Mr = 246.29Dx = 1.275 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 22932 reflections
a = 9.5293 (3) Åθ = 2.6–26.4°
b = 9.7885 (3) ŵ = 0.09 mm1
c = 13.7524 (4) ÅT = 173 K
V = 1282.79 (7) Å3Platelet, colourless
Z = 40.50 × 0.33 × 0.08 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1403 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.026
Graphite monochromatorθmax = 26.4°, θmin = 2.6°
ϕ and ω scansh = 911
22932 measured reflectionsk = 1212
1517 independent reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.085H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0511P)2 + 0.1837P]
where P = (Fo2 + 2Fc2)/3
1517 reflections(Δ/σ)max < 0.001
165 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C15H18O3V = 1282.79 (7) Å3
Mr = 246.29Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 9.5293 (3) ŵ = 0.09 mm1
b = 9.7885 (3) ÅT = 173 K
c = 13.7524 (4) Å0.50 × 0.33 × 0.08 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1403 reflections with I > 2σ(I)
22932 measured reflectionsRint = 0.026
1517 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.085H-atom parameters constrained
S = 1.09Δρmax = 0.18 e Å3
1517 reflectionsΔρmin = 0.16 e Å3
165 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C20.05168 (19)0.3323 (2)0.83535 (13)0.0323 (4)
C30.01615 (19)0.47821 (19)0.85677 (12)0.0307 (4)
C3A0.12071 (17)0.47296 (17)0.91013 (12)0.0267 (4)
H30.09960.45730.97900.032*
C40.22933 (18)0.58577 (18)0.90494 (13)0.0301 (4)
H4A0.19030.67010.93030.036*
H4B0.25680.60100.83790.036*
C50.3576 (2)0.54344 (18)0.96536 (13)0.0311 (4)
C5A0.40893 (18)0.39541 (18)0.94628 (13)0.0288 (4)
H5A0.46490.36981.00320.035*
C60.5034 (2)0.3693 (2)0.85704 (15)0.0382 (5)
H6A0.47000.41830.80030.046*
H6B0.60000.39500.86990.046*
C70.4886 (2)0.2173 (2)0.84457 (14)0.0377 (4)
H70.55140.16380.80950.045*
C80.3756 (2)0.16819 (18)0.88923 (12)0.0321 (4)
C8A0.29432 (17)0.28351 (16)0.93605 (11)0.0254 (3)
H8A0.25580.25680.99930.030*
C8B0.18260 (17)0.34167 (17)0.86986 (12)0.0252 (3)
H8B0.22530.36150.80660.030*
C90.0975 (2)0.5818 (2)0.83263 (14)0.0386 (4)
H9A0.18190.56600.80060.046*
H9B0.07050.67060.84770.046*
C100.3226 (2)0.55169 (19)1.07397 (14)0.0379 (4)
H100.38570.51041.11640.046*
C110.4789 (2)0.6450 (2)0.95088 (17)0.0439 (5)
H11A0.44870.73500.96910.066*
H11B0.50690.64510.88380.066*
H11C0.55700.61840.99070.066*
C120.3260 (2)0.02303 (19)0.89327 (14)0.0401 (5)
H12A0.32500.00750.95960.060*
H12B0.38820.03370.85600.060*
H12C0.23300.01730.86680.060*
O10.06185 (12)0.25263 (13)0.85447 (9)0.0302 (3)
O20.16069 (14)0.28443 (16)0.80758 (11)0.0455 (4)
O30.22305 (18)0.60552 (17)1.10965 (11)0.0531 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C20.0276 (9)0.0415 (10)0.0279 (8)0.0015 (8)0.0021 (7)0.0003 (8)
C30.0266 (8)0.0389 (9)0.0266 (8)0.0034 (8)0.0031 (7)0.0002 (7)
C3A0.0255 (8)0.0299 (8)0.0249 (7)0.0042 (7)0.0017 (7)0.0012 (7)
C40.0310 (9)0.0268 (8)0.0324 (8)0.0032 (8)0.0011 (7)0.0029 (7)
C50.0293 (9)0.0276 (8)0.0363 (9)0.0007 (8)0.0049 (7)0.0014 (7)
C5A0.0253 (8)0.0300 (8)0.0311 (8)0.0026 (7)0.0042 (7)0.0048 (7)
C60.0260 (9)0.0436 (11)0.0450 (10)0.0037 (8)0.0069 (8)0.0072 (9)
C70.0337 (10)0.0403 (10)0.0391 (10)0.0121 (9)0.0021 (8)0.0002 (8)
C80.0370 (9)0.0315 (8)0.0277 (8)0.0087 (8)0.0050 (7)0.0024 (7)
C8A0.0284 (8)0.0252 (7)0.0224 (7)0.0017 (7)0.0006 (6)0.0031 (6)
C8B0.0234 (8)0.0284 (8)0.0238 (7)0.0000 (7)0.0024 (6)0.0013 (6)
C90.0369 (10)0.0447 (10)0.0341 (9)0.0101 (9)0.0045 (8)0.0023 (8)
C100.0452 (11)0.0324 (9)0.0361 (9)0.0010 (9)0.0088 (8)0.0034 (7)
C110.0363 (10)0.0347 (10)0.0607 (13)0.0060 (9)0.0088 (10)0.0054 (9)
C120.0527 (12)0.0303 (9)0.0373 (9)0.0080 (9)0.0072 (9)0.0012 (8)
O10.0274 (6)0.0322 (6)0.0310 (6)0.0012 (5)0.0001 (5)0.0018 (5)
O20.0287 (7)0.0547 (9)0.0530 (8)0.0036 (7)0.0043 (6)0.0080 (7)
O30.0599 (10)0.0579 (9)0.0414 (8)0.0095 (9)0.0002 (7)0.0130 (7)
Geometric parameters (Å, º) top
C2—O21.202 (2)C6—H6B0.9700
C2—O11.360 (2)C7—C81.330 (3)
C2—C31.497 (3)C7—H70.9300
C3—C91.319 (3)C8—C121.499 (3)
C3—C3A1.497 (2)C8—C8A1.513 (2)
C3A—C41.515 (2)C8A—C8B1.512 (2)
C3A—C8B1.519 (2)C8A—H8A0.9800
C3A—H30.9800C8B—O11.459 (2)
C4—C51.535 (2)C8B—H8B0.9800
C4—H4A0.9700C9—H9A0.9300
C4—H4B0.9700C9—H9B0.9300
C5—C101.533 (3)C10—O31.191 (2)
C5—C111.538 (3)C10—H100.9300
C5—C5A1.552 (2)C11—H11A0.9600
C5A—C61.544 (3)C11—H11B0.9600
C5A—C8A1.553 (2)C11—H11C0.9600
C5A—H5A0.9800C12—H12A0.9600
C6—C71.504 (3)C12—H12B0.9600
C6—H6A0.9700C12—H12C0.9600
O2—C2—O1121.68 (18)C8—C7—H7123.8
O2—C2—C3129.07 (18)C6—C7—H7123.8
O1—C2—C3109.23 (15)C7—C8—C12128.02 (18)
C9—C3—C2123.43 (17)C7—C8—C8A109.96 (16)
C9—C3—C3A131.43 (18)C12—C8—C8A122.00 (16)
C2—C3—C3A105.12 (14)C8B—C8A—C8112.67 (13)
C3—C3A—C4123.15 (14)C8B—C8A—C5A106.51 (13)
C3—C3A—C8B100.87 (14)C8—C8A—C5A101.81 (14)
C4—C3A—C8B109.53 (13)C8B—C8A—H8A111.8
C3—C3A—H3107.4C8—C8A—H8A111.8
C4—C3A—H3107.4C5A—C8A—H8A111.8
C8B—C3A—H3107.4O1—C8B—C8A114.69 (13)
C3A—C4—C5108.77 (14)O1—C8B—C3A104.61 (13)
C3A—C4—H4A109.9C8A—C8B—C3A111.88 (13)
C5—C4—H4A109.9O1—C8B—H8B108.5
C3A—C4—H4B109.9C8A—C8B—H8B108.5
C5—C4—H4B109.9C3A—C8B—H8B108.5
H4A—C4—H4B108.3C3—C9—H9A120.0
C10—C5—C4109.89 (16)C3—C9—H9B120.0
C10—C5—C11104.81 (16)H9A—C9—H9B120.0
C4—C5—C11110.74 (15)O3—C10—C5126.73 (19)
C10—C5—C5A106.41 (14)O3—C10—H10116.6
C4—C5—C5A114.30 (15)C5—C10—H10116.6
C11—C5—C5A110.18 (15)C5—C11—H11A109.5
C6—C5A—C5118.22 (15)C5—C11—H11B109.5
C6—C5A—C8A102.79 (14)H11A—C11—H11B109.5
C5—C5A—C8A116.89 (14)C5—C11—H11C109.5
C6—C5A—H5A106.0H11A—C11—H11C109.5
C5—C5A—H5A106.0H11B—C11—H11C109.5
C8A—C5A—H5A106.0C8—C12—H12A109.5
C7—C6—C5A101.51 (16)C8—C12—H12B109.5
C7—C6—H6A111.5H12A—C12—H12B109.5
C5A—C6—H6A111.5C8—C12—H12C109.5
C7—C6—H6B111.5H12A—C12—H12C109.5
C5A—C6—H6B111.5H12B—C12—H12C109.5
H6A—C6—H6B109.3C2—O1—C8B108.23 (13)
C8—C7—C6112.41 (18)

Experimental details

Crystal data
Chemical formulaC15H18O3
Mr246.29
Crystal system, space groupOrthorhombic, P212121
Temperature (K)173
a, b, c (Å)9.5293 (3), 9.7885 (3), 13.7524 (4)
V3)1282.79 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.50 × 0.33 × 0.08
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
22932, 1517, 1403
Rint0.026
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.085, 1.09
No. of reflections1517
No. of parameters165
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.16

Computer programs: APEX2 (Bruker, 2005), APEX2 and SAINT (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.

References

First citationAbdel Sattar, E., Galal, A. M. & Mossa, J. S. (1996). J. Nat. Prod. 59, 403–405.  CrossRef CAS PubMed Google Scholar
First citationBruker, (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCastaneda-Acosta, J., Fisher, N. H. & Varga, D. (1993). J. Nat. Prod. 56, 90–98.  CrossRef CAS PubMed Web of Science Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDer-Ren, H., Yu-Shan, W., Chun-Wei, C., Tzu-Wen, L., Wei-Cheng, C., Uan-Kang, T., John, T. A. H. & Hsing-Pang, H. (2006). Bioorg. Med. Chem. Lett. 14, 83–, 91.  Google Scholar
First citationEl Hassany, B., El Hanbali, F., Akssira, M., Mellouki, F., Haidou, A. & Barero, A. F. (2004). Fitoterapia, 75, 573–576.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationNeelakantan, S., Nasim, Sh., Guzman, M. L., Jordan, C. T. & Crooks, P. A. (2009). Bioorg. Med. Chem. Lett. 19, 4346–4349.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNeukirch, H., Kaneider, N. C., Wiedermann, C. J., Guerriero, A. & Ambrosio, M. (2003). Bioorg. Med. Chem. 11, 1503–1510.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds