Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

2,5-Bis(5-methylpyrazin-2-yl)-1,3,4oxadiazole

Yue Ju, Jing-Min Wu, Cheng-Peng Li* and Jian-Hua Guo

College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, Tianjin Normal University, Tianjin 300387, People's Republic of China
Correspondence e-mail: tjnulicp@gmail.com
Received 18 April 2011; accepted 21 April 2011
Key indicators: single-crystal X-ray study; $T=296 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$; R factor $=0.064 ; w R$ factor $=0.120$; data-to-parameter ratio $=12.1$.

In the title molecule, $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{6} \mathrm{O}$, the dihedral angle between the two pyrazine rings [planar to within 0.009 (3) and 0.018 (3) A] is $5.62(15)^{\circ}$. They deviate from the central oxadiazole ring [planar to within 0.005 (3) Å] by 1.52 (16) and $5.55(17)^{\circ}$, respectively. In the crystal, $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ interactions involving the pyrazine rings connect molecules to form zigzag supramolecular chains propagating in [010].

Related literature

For background information and applications of oxadiazole derivatives, see: Schnurch et al. (2006); Crabtree (2005); Venkatakrishnan et al. (2000). For related oxadiazole derivatives, see: Du et al. $(2005,2006,2009)$.

Experimental

Crystal data
$\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{6} \mathrm{O}$
$M_{r}=254.26$
Monoclinic, $P 2_{1} / c$
$a=3.9084$ (8) A
$b=19.054$ (4) \AA
$c=16.328$ (4) \AA
$\beta=101.64$ (3) ${ }^{\circ}$
$V=1191.0(5) \AA^{3}$
$Z=4$
Mo $K \alpha$ radiation
$\mu=0.10 \mathrm{~mm}^{-1}$
$T=296 \mathrm{~K}$
$0.16 \times 0.12 \times 0.08 \mathrm{~mm}$

Data collection

Bruker SMART CCD area-detector diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.984, T_{\text {max }}=0.992$
6101 measured reflections 2108 independent reflections 1077 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.074$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.064 \quad 174$ parameters
$w R\left(F^{2}\right)=0.120 \quad$ H-atom parameters constrained
$S=1.00$
$\Delta \rho_{\max }=0.15 \mathrm{e} \AA^{-3}$
2108 reflections

Table 1
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 11-\mathrm{H} 11 \cdots \mathrm{~N} 2^{\mathrm{i}}$	0.93	2.59	$3.414(4)$	148
Symmetry code: (i) $-x+1, y-\frac{1}{2},-z+\frac{1}{2}$				

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Bruker, 2007).

This work was supported financially by Tianjin Normal University (grant No. 52X09004). Professor Hai-Bin Song, Department of Chemistry, Nankai University, Tianjin 300371, People's Republic of China, is thanked for the data collection.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2270).

References

Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Bruker (2007). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Crabtree, R. H. (2005). J. Organomet. Chem. 690, 5451-5457.
Du, M. \& Bu, X. H. (2009). Bull. Chem. Soc. Jpn, 82, 539-554.
Du, M., Li, C.-P. \& Guo, J.-H. (2006). Inorg. Chim. Acta, 359, 2575-2582.
Du, M., Zhao, X.-J., Guo, J.-H. \& Batten, S. R. (2005). Chem. Commun. pp. 4836-4838.
Schnurch, M., Flasik, R., Khan, A. F., Spina, M., Mihovilovic, M. D. \& Stanetty, P. (2006). Eur. J. Org. Chem. pp. 3283-3307.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Venkatakrishnan, K., von Moltke, L. L. \& Greenblatt, D. J. (2000). Clin. Pharmacokinet. 38, 111-180.

supporting information

Acta Cryst. (2011). E67, o1416 [doi:10.1107/S1600536811015029]

2,5-Bis(5-methylpyrazin-2-yl)-1,3,4-oxadiazole

Yue Ju, Jing-Min Wu, Cheng-Peng Li and Jian-Hua Guo

S1. Comment

Currently derivatives of oxadiazole systems are of growing research interest, as they are precursors to functional Nheterocyclic compounds, as well as being used in pharmaceuticals as metabolically stable surrogates and photographically active systems (Schnurch et al., 2006; Crabtree, 2005; Venkatakrishnan, et al., 2000). Among them, oxadiazole compounds decorated by different groups on the 5-membered ring, such as pyridyl (Du, et al., 2009) and pyrazinyl rings, (Du, et al., 2005, 2006), also show interesting coordination behaviors. However, the related ligands involving methyl-pyrazinyl groups remain uninvestigated. They may display three typical configurations under different surroundings and multiple binding patterns (hexadentate at the most) during coordination. In this contribution, we present the crystal structure of the title compound, a bis(4-methylpyrazinyl) substituted oxadiazole. It was prepared by the reaction of 5-methylpyrazine-2-carboxylic acid and hydrazine dihydrochloride in the presence of polyphosphoric acid and anhydrous phosphorus pentoxide.
In the molecule of the title compound, Fig.1, pyrazinyl ring A [(N1,C3,C2,N2,C13,C4); planar to within 0.009 (3) \AA] is inclined to pyrazinyl ring B [(N5,C9,C10,N6,C11,C9); planar to within 0.018 (3) \AA] by $5.62(15){ }^{\circ}$. They deviate from the central oxadiazole ring (planar to within $0.005(3) \AA$) by $1.52(16)^{\circ}$ and $5.55(17)^{\circ}$, respectively.
In the crystal a $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ interaction, involving pyrazinyl rings A and B , connect molecules to form zigzag poylmer chains propagating in [010] (Table 1 and Fig. 2).

S2. Experimental

5-Methylpyrazine-2-carboxylic acid (0.3 mol) and hydrazine dihydrochloride (0.2 mol) were mixed with stirring, to which polyphosphoric acid $(85 \%, 60 \mathrm{ml})$ was added. Then, anhydrous phosphorus pentoxide (0.6 mol) was carefully added to the above mixture. The viscous solution was heated at 393 K , with stirring for $c a 6 \mathrm{~h}$. After cooling to room temperature, the resultant viscous liquid was poured over distilled water with stirring, dissolved, and then neutralized with sodium hydrate $(3 \mathrm{~mol} / L)$. A large amount of orange precipitation of title compound was obtained and dried in air. Its single-crystal can be recrystallized from its methanol solution (Yield: 63%). Anal. Calc. for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{6} \mathrm{O}: \mathrm{C}, 55.69$; H , 3.96 ; N, 33.05%. Found: C, $55.62 ; \mathrm{H}, 4.01$; N, 33.09%. Spectroscopic data for the title compound is given in the archived CIF.

S3. Refinement

All H atoms were initially located in a difference Fourier map. The $\mathrm{C}-\mathrm{H}$ atoms were then constrained to an ideal geometry, and refind as riding atoms: $\mathrm{C}-\mathrm{H}=0.93\left(\mathrm{CH}_{\text {aromatic }}\right)$ and $0.96 \AA\left(\mathrm{CH}_{3}\right)$, with $\operatorname{Uiso}(\mathrm{H})=1.2 \mathrm{Ueq}(\mathrm{C})$.

Figure 1

A view of the molecular structure of the title molecule with the numbering scheme. Displacement ellipsoids are drawn at the 50% probabilit level.

Figure 2

A partial view, along the a-axis, of the crystal packing in the title compound, showing the $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen-bonds [red dashed lines; see Table 1 for details; H -atoms not involved in these interactions have been omitted for clarity].

2,5-Bis(5-methylpyrazin-2-yl)-1,3,4-oxadiazole

Crystal data

$\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{6} \mathrm{O}$
$M_{r}=254.26$
Monoclinic, $P 2_{1} / c$
Hall symbol: -P 2ybc
$a=3.9084$ (8) Å
$b=19.054$ (4) \AA
$c=16.328$ (4) \AA
$\beta=101.64(3)^{\circ}$
$V=1191.0$ (5) \AA^{3}
$Z=4$

Data collection

Bruker SMART CCD area-detector diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
φ and ω scans
$F(000)=528$
$D_{\mathrm{x}}=1.418 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 460 reflections
$\theta=2.3-22.4^{\circ}$
$\mu=0.10 \mathrm{~mm}^{-1}$
$T=296 \mathrm{~K}$
BLOCK, yellow
$0.16 \times 0.12 \times 0.08 \mathrm{~mm}$

Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.984, T_{\text {max }}=0.992$
6101 measured reflections
2108 independent reflections

1077 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.074$
$\theta_{\text {max }}=25.0^{\circ}, \theta_{\text {min }}=2.1^{\circ}$

$$
\begin{aligned}
& h=-4 \rightarrow 3 \\
& k=-22 \rightarrow 22 \\
& l=-13 \rightarrow 19
\end{aligned}
$$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.064$
$w R\left(F^{2}\right)=0.120$
$S=1.00$
2108 reflections
174 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

Special details

Experimental. Spectroscopic data for the title compound: IR (KBr, cm^{-1}): 3036m, 1515w, 1568w, 1461s, 1340w, 1272m, $1176 \mathrm{~m}, 1092 \mathrm{~m}, 1028$?s, $915 \mathrm{~m}, 835 \mathrm{w}, 769 \mathrm{w}, 728 \mathrm{~m}, 522 \mathrm{w}$.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
O1	$0.3651(5)$	$0.85150(10)$	$0.39441(13)$	$0.0419(6)$
N1	$0.1455(7)$	$0.98781(14)$	$0.40516(16)$	$0.0502(8)$
N2	$0.1510(7)$	$1.08251(13)$	$0.27453(17)$	$0.0457(7)$
N3	$0.4865(7)$	$0.86734(14)$	$0.26968(17)$	$0.0513(8)$
N4	$0.5726(7)$	$0.79743(14)$	$0.29485(17)$	$0.0511(8)$
N5	$0.4644(7)$	$0.73687(13)$	$0.49788(18)$	$0.0471(8)$
N6	$0.7282(8)$	$0.61027(13)$	$0.44708(18)$	$0.0503(8)$
C1	$-0.0765(8)$	$1.17661(16)$	$0.3485(2)$	$0.0551(10)$
H1A	0.0961	1.2080	0.3350	0.083^{*}
H1B	-0.1100	1.1863	0.4041	0.083^{*}
H1C	-0.2932	1.1831	0.3094	0.083^{*}
C2	$0.0444(8)$	$1.10226(16)$	$0.3440(2)$	$0.0387(8)$
C3	$0.0457(8)$	$1.05456(17)$	$0.4080(2)$	$0.0495(9)$
H3	-0.0274	1.0699	0.4557	0.059^{*}
C4	$0.2502(8)$	$0.96885(15)$	$0.3355(2)$	$0.0386(8)$
C6	$0.3694(8)$	$0.89630(17)$	$0.3300(2)$	$0.0411(9)$
C7	$0.4940(8)$	$0.79085(16)$	$0.3676(2)$	$0.0403(8)$
C8	$0.5402(8)$	$0.72924(16)$	$0.4219(2)$	$0.0398(8)$
C9	$0.5263(8)$	$0.68055(17)$	$0.5472(2)$	$0.0485(9)$
H9	0.4742	0.6833	0.6002	0.058^{*}

C10	$0.6641(8)$	$0.61806(17)$	$0.5240(2)$	$0.0435(9)$
C11	$0.6639(8)$	$0.66627(17)$	$0.3962(2)$	$0.0485(9)$
H11	0.7035	0.6627	0.3421	0.058^{*}
C12	$0.7464(9)$	$0.55814(17)$	$0.5838(2)$	$0.0644(11)$
H12A	0.5515	0.5265	0.5760	0.097^{*}
H12B	0.7918	0.5757	0.6401	0.097^{*}
H12C	0.9489	0.5338	0.5737	0.097^{*}
C13	$0.2561(8)$	$1.01613(17)$	$0.2717(2)$	$0.0465(9)$
H13	0.3368	1.0011	0.2248	0.056^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	$0.0517(15)$	$0.0398(14)$	$0.0370(14)$	$-0.0001(10)$	$0.0157(11)$	$-0.0021(11)$
N1	$0.072(2)$	$0.0464(18)$	$0.0363(18)$	$0.0037(15)$	$0.0208(17)$	$0.0015(14)$
N2	$0.058(2)$	$0.0384(17)$	$0.0435(19)$	$-0.0050(14)$	$0.0157(16)$	$-0.0006(14)$
N3	$0.072(2)$	$0.0440(18)$	$0.043(2)$	$-0.0048(14)$	$0.0242(17)$	$-0.0012(15)$
N4	$0.071(2)$	$0.0427(18)$	$0.046(2)$	$-0.0013(15)$	$0.0256(17)$	$-0.0026(15)$
N5	$0.059(2)$	$0.0433(18)$	$0.0426(18)$	$0.0011(14)$	$0.0198(16)$	$-0.0029(15)$
N6	$0.062(2)$	$0.0465(18)$	$0.045(2)$	$0.0080(15)$	$0.0184(16)$	$-0.0027(16)$
C1	$0.058(3)$	$0.047(2)$	$0.061(3)$	$-0.0026(17)$	$0.013(2)$	$-0.0034(19)$
C2	$0.040(2)$	$0.041(2)$	$0.035(2)$	$-0.0037(16)$	$0.0081(17)$	$-0.0045(17)$
C3	$0.065(2)$	$0.050(2)$	$0.038(2)$	$0.003(2)$	$0.022(2)$	$-0.0031(19)$
C4	$0.043(2)$	$0.037(2)$	$0.037(2)$	$-0.0047(15)$	$0.0114(18)$	$-0.0020(16)$
C6	$0.047(2)$	$0.043(2)$	$0.035(2)$	$-0.0105(17)$	$0.0138(18)$	$-0.0013(17)$
C7	$0.047(2)$	$0.033(2)$	$0.041(2)$	$-0.0037(16)$	$0.0119(18)$	$-0.0064(18)$
C8	$0.044(2)$	$0.038(2)$	$0.039(2)$	$-0.0026(16)$	$0.0116(17)$	$-0.0086(17)$
C9	$0.061(2)$	$0.050(2)$	$0.039(2)$	$-0.0018(18)$	$0.0210(19)$	$-0.0048(19)$
C10	$0.041(2)$	$0.047(2)$	$0.044(2)$	$-0.0004(17)$	$0.0124(19)$	$-0.0026(18)$
C11	$0.060(2)$	$0.051(2)$	$0.038(2)$	$0.0036(18)$	$0.0179(19)$	$-0.0081(18)$
C12	$0.073(3)$	$0.064(3)$	$0.058(3)$	$0.014(2)$	$0.019(2)$	$0.011(2)$
C13	$0.060(2)$	$0.049(2)$	$0.035(2)$	$-0.0086(18)$	$0.0175(19)$	$-0.0057(18)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

$\mathrm{O} 1-\mathrm{C} 6$	$1.357(3)$	$\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	0.9600
$\mathrm{O} 1-\mathrm{C} 7$	$1.367(3)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.384(4)$
$\mathrm{N} 1-\mathrm{C} 3$	$1.334(4)$	$\mathrm{C} 3-\mathrm{H} 3$	0.9300
$\mathrm{~N} 1-\mathrm{C} 4$	$1.334(4)$	$\mathrm{C} 4-\mathrm{C} 13$	$1.381(4)$
$\mathrm{N} 2-\mathrm{C} 13$	$1.334(4)$	$\mathrm{C} 4-\mathrm{C} 6$	$1.467(4)$
$\mathrm{N} 2-\mathrm{C} 2$	$1.339(4)$	$\mathrm{C} 7-\mathrm{C} 8$	$1.460(4)$
$\mathrm{N} 3-\mathrm{C} 6$	$1.291(4)$	$\mathrm{C} 8-\mathrm{C} 11$	$1.390(4)$
$\mathrm{N} 3-\mathrm{N} 4$	$1.415(3)$	$\mathrm{C} 9-\mathrm{C} 10$	$1.390(4)$
$\mathrm{N} 4-\mathrm{C} 7$	$1.293(4)$	$\mathrm{C} 9-\mathrm{H} 9$	0.9300
$\mathrm{~N} 5-\mathrm{C} 9$	$1.334(4)$	$\mathrm{C} 10-\mathrm{C} 12$	$1.494(4)$
$\mathrm{N} 5-\mathrm{C} 8$	$1.340(4)$	$\mathrm{C} 11-\mathrm{H} 11$	0.9300
$\mathrm{~N} 6-\mathrm{C} 10$	$1.338(4)$	$\mathrm{C} 12-\mathrm{H} 12 \mathrm{~A}$	0.9600
$\mathrm{~N} 6-\mathrm{C} 11$	$1.344(4)$	$\mathrm{C} 12-\mathrm{H} 12 \mathrm{~B}$	0.9600

C1-C2	1.500 (4)
C1-H1A	0.9600
C1-H1B	0.9600
C6-O1-C7	102.8 (2)
$\mathrm{C} 3-\mathrm{N} 1-\mathrm{C} 4$	115.4 (3)
C13-N2-C2	116.6 (3)
C6-N3-N4	106.3 (2)
C7-N4-N3	105.8 (3)
C9-N5-C8	115.1 (3)
C10-N6-C11	116.4 (3)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	109.5
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	109.5
$\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	109.5
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	109.5
$\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	109.5
$\mathrm{H} 1 \mathrm{~B}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	109.5
N2-C2-C3	120.0 (3)
N2-C2-C1	117.5 (3)
C3-C2-C1	122.4 (3)
N1-C3-C2	123.8 (3)
N1-C3-H3	118.1
C2-C3-H3	118.1
N1-C4-C13	121.4 (3)
N1-C4-C6	117.6 (3)
C13-C4-C6	121.0 (3)
N3-C6-O1	112.6 (3)
N3-C6-C4	127.9 (3)
O1-C6-C4	119.5 (3)
C6-N3-N4-C7	0.9 (4)
C13-N2-C2-C3	-0.3 (5)
C13-N2-C2-C1	-179.7 (3)
C4-N1-C3-C2	0.5 (5)
N2-C2-C3-N1	-0.7 (5)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{N} 1$	178.7 (3)
C3-N1-C4-C13	0.6 (5)
C3-N1-C4-C6	178.8 (3)
N4-N3-C6-O1	-0.6 (4)
N4-N3-C6-C4	178.9 (3)
C7-O1-C6-N3	0.1 (4)
C7-O1-C6-C4	-179.5 (3)
N1-C4-C6-N3	-178.7 (3)
C13-C4-C6-N3	-0.5 (5)
N1-C4-C6-O1	0.8 (4)
C13-C4-C6-O1	179.0 (3)
N3-N4-C7-O1	-0.9 (4)
N3-N4-C7-C8	-178.4 (3)

$\mathrm{C} 12-\mathrm{H} 12 \mathrm{C}$	0.9600
$\mathrm{C} 13-\mathrm{H} 13$	0.9300

$\mathrm{N} 4-\mathrm{C} 7-\mathrm{O} 1$	$112.6(3)$
$\mathrm{N} 4-\mathrm{C} 7-\mathrm{C} 8$	$127.8(3)$
$\mathrm{O} 1-\mathrm{C} 7-\mathrm{C} 8$	$119.6(3)$
$\mathrm{N} 5-\mathrm{C} 8-\mathrm{C} 11$	$121.9(3)$
$\mathrm{N} 5-\mathrm{C} 8-\mathrm{C} 7$	$116.8(3)$
$\mathrm{C} 11-\mathrm{C} 8-\mathrm{C} 7$	$121.3(3)$
$\mathrm{N} 5-\mathrm{C} 9-\mathrm{C} 10$	$123.9(3)$
N5-C9-H9	118.1

178.2 (3)
1.9 (5)
-176.8 (3)
174.8 (3)
-2.6(4)
-4.0 (5)
178.7 (3)
0.9 (5)
2.3 (5)
-177.4 (3)
-3.2 (5)
176.5 (3)
0.5 (5)
-2.8 (5)
175.9 (3)
1.4 (5)
-1.7 (5)
-179.8 (3)

supporting information

C6-O1-C7-N4
 0.5 (4)

Hydrogen-bond geometry $\left(\AA,{ }^{\circ}\right)$

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 11 — \mathrm{H} 11 \cdots \mathrm{~N} 2^{\mathrm{i}}$	0.93	2.59	$3.414(4)$	148

Symmetry code: (i) $-x+1, y-1 / 2,-z+1 / 2$.

