organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-Methyl-N-phenyl-2-(quinolin-8-yl­­oxy)acetamide monohydrate

aDepartment of Physics and Chemistry, Henan Polytechnic University, Jiaozuo 454000, People's Republic of China
*Correspondence e-mail: wuwn08@hpu.edu.cn

(Received 25 April 2011; accepted 6 May 2011; online 14 May 2011)

In the title compound, C18H16N2O2·H2O, the dihedral angle between the quinoline ring system and the benzene ring is 87.19 (8)°. In the crystal, water mol­ecules are linked to acetamide mol­ecules via inter­molecular O—H⋯N and O—H⋯O hydrogen bonds.

Related literature

For the luminescent properties of lanthanide complexes with amide-type ligands, see: Li et al. (2003[Li, X.-F., Liu, W.-S., Guo, Z.-J. & Tan, M.-Y. (2003). Inorg. Chem. 42, 8735-8738.]); Wu et al. (2008[Wu, W.-N., Cheng, F.-X., Yan, L. & Tang, N. (2008). J. Coord. Chem. 61, 2207-2215.]). For the synthesis of 2-chloro-N-methyl-N-phenyl­acetamide, see: Zhi et al. (2011[Zhi, L.-H., Wu, W.-N., Li, X.-X., Li, Y.-W. & Wang, Y. (2011). Acta Cryst. E67, o68.]). For the similar structure of N-phenyl-2-(quinolin-8-yl­oxy)acetamide hemihydrate, see: Li et al. (2005[Li, X.-M., Wen, Y.-H., Li, M.-J. & Zhang, S.-S. (2005). Acta Cryst. E61, o2389-o2390.]).

[Scheme 1]

Experimental

Crystal data
  • C18H16N2O2·H2O

  • Mr = 310.34

  • Orthorhombic, P 21 21 21

  • a = 6.6028 (8) Å

  • b = 14.9207 (18) Å

  • c = 16.3505 (19) Å

  • V = 1610.8 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.16 × 0.15 × 0.10 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA .]) Tmin = 0.986, Tmax = 0.991

  • 10373 measured reflections

  • 3911 independent reflections

  • 3113 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.101

  • S = 1.05

  • 3911 reflections

  • 217 parameters

  • 125 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.12 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯O2 0.86 (1) 1.97 (1) 2.8249 (19) 178 (3)
O1W—H1WB⋯N1 0.86 (1) 1.97 (1) 2.831 (2) 176 (3)

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA .]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA .]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The amide type open-chain ligands have attracted much attention mainly because their excellent coordination ability and high selectivity to metal ions. Lanthanide complexes usually exhibit fascinating properties that may have potential applications in biology, medicine, and material science (Li et al., 2003). The luminescent properties of lanthanide complexes with amide type ligands have been investigated in our previous work (Wu et al., 2008). As part of our ongoing studies of the amide type ligands, the title compound was synthesized and characterized by X-ray diffraction.

In the title compound, all bond lengths are comparable with those observed in a similar compound (Li et al., 2005). The dihedral angle between the quinoline ring (N1/C1–C9, r.m.s. deviation 0.0038 Å) and the benzene ring(C13–C18, r.m.s. deviation 0.0049 Å) is 87.19 (8)°. In the crystal structure, solvent water molecules form intermolecular O—H···N and O—H···O hydrogen bonds with acetamide molecules to stabilize the packing (Table 1).

Related literature top

For the luminescent properties of lanthanide complexes with amide-type ligands, see: Li et al. (2003); Wu et al. (2008). For the synthesis of 2-chloro-N-methyl-N-phenylacetamide, see: Zhi et al. (2011). For the similar structure of N-phenyl-2-(quinolin-8-yloxy)acetamide hemihydrate, see: Li et al. (2005).

Experimental top

8-Hydroxyquinoline (1.5 g, 10.3 mmol) and anhydrous potassium carbonate (1.6 g, 11.6 mmol)were added to DMF (15 mL), then 2-chloro-N-methyl-N-phenylacetamide (1.83 g, 10.0 mmol, Zhi et al., 2011) and a small quantity of KI were added. The reaction mixture was stirred for 5 h at 100–110 °C. After cooling down, 150 mL water was added and stirred for 2 h. The precipitate was collected by filtration and washed with water. Recrystallization from EtOH/H2O (1:1) gave colorless blocks.

Refinement top

C-bound H atoms were placed in calculated positions (C—H = 0.93 and 0.97 Å) and were included in the refinement in the riding model approximation, with Uiso(H) = 1.2Ueq(C). The water H atoms were located from difference Fourier map calculation and then refined unsing DFIX and DANG instruction, with O—H = 0.85Å and Uiso(H) = 1.5Ueq(O). DELU, SIMU and ISOR restraints have been applied on the Uij-values of the C atoms.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids shown at the 50% probability level.
N-Methyl-N-phenyl-2-(quinolin-8-yloxy)acetamide monohydrate top
Crystal data top
C18H16N2O2·H2OF(000) = 656
Mr = 310.34Dx = 1.280 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abθ = 1.9–28.2°
a = 6.6028 (8) ŵ = 0.09 mm1
b = 14.9207 (18) ÅT = 296 K
c = 16.3505 (19) ÅBlock, colorless
V = 1610.8 (3) Å30.16 × 0.15 × 0.10 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
3911 independent reflections
Radiation source: fine-focus sealed tube3113 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ϕ and ω scansθmax = 28.2°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 88
Tmin = 0.986, Tmax = 0.991k = 1918
10373 measured reflectionsl = 2118
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.101 w = 1/[σ2(Fo2) + (0.0498P)2 + 0.0847P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.005
3911 reflectionsΔρmax = 0.12 e Å3
217 parametersΔρmin = 0.14 e Å3
125 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0132 (19)
Crystal data top
C18H16N2O2·H2OV = 1610.8 (3) Å3
Mr = 310.34Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 6.6028 (8) ŵ = 0.09 mm1
b = 14.9207 (18) ÅT = 296 K
c = 16.3505 (19) Å0.16 × 0.15 × 0.10 mm
Data collection top
Bruker SMART CCD
diffractometer
3911 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
3113 reflections with I > 2σ(I)
Tmin = 0.986, Tmax = 0.991Rint = 0.027
10373 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.039125 restraints
wR(F2) = 0.101H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.12 e Å3
3911 reflectionsΔρmin = 0.14 e Å3
217 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.80212 (17)0.10711 (7)0.15970 (6)0.0452 (3)
O20.8822 (2)0.06977 (8)0.31349 (8)0.0583 (4)
C80.7564 (3)0.12177 (10)0.07926 (9)0.0420 (4)
N20.6671 (2)0.17225 (9)0.36347 (8)0.0471 (3)
N11.0695 (2)0.04605 (10)0.05053 (9)0.0510 (4)
C100.6699 (3)0.14635 (11)0.21760 (9)0.0440 (4)
H10A0.53450.12210.21130.053*
H10B0.66370.21070.20950.053*
C110.7500 (2)0.12557 (10)0.30174 (10)0.0419 (3)
C90.9020 (3)0.08886 (10)0.02220 (10)0.0437 (4)
C130.5129 (2)0.23910 (10)0.35189 (9)0.0415 (4)
C70.5874 (3)0.16515 (12)0.05232 (12)0.0552 (5)
H70.49210.18600.08960.066*
C180.5634 (3)0.32878 (11)0.35671 (12)0.0525 (4)
H180.69690.34560.36650.063*
C40.8680 (3)0.10316 (12)0.06202 (11)0.0574 (5)
C140.3166 (3)0.21536 (12)0.33744 (12)0.0560 (5)
H140.28100.15510.33490.067*
C170.4168 (3)0.39294 (12)0.34698 (13)0.0596 (5)
H170.45150.45320.35040.072*
C21.1823 (4)0.02794 (15)0.08759 (13)0.0711 (5)
H21.28110.00650.12300.085*
C31.0166 (4)0.07026 (13)0.11641 (12)0.0676 (5)
H31.00010.07780.17250.081*
C120.7333 (4)0.15493 (14)0.44699 (11)0.0660 (5)
H12A0.84000.11120.44650.099*
H12B0.62140.13260.47850.099*
H12C0.78210.20950.47100.099*
C11.2014 (3)0.01726 (14)0.00346 (12)0.0651 (5)
H11.31570.01240.01590.078*
C150.1708 (3)0.28045 (14)0.32658 (14)0.0636 (5)
H150.03790.26380.31530.076*
C160.2201 (3)0.36932 (13)0.33224 (11)0.0572 (5)
H160.12100.41310.32610.069*
C60.5576 (4)0.17827 (13)0.03189 (14)0.0698 (6)
H60.44250.20840.04970.084*
C50.6923 (4)0.14804 (14)0.08755 (13)0.0716 (6)
H50.66860.15700.14300.086*
O1W1.2156 (2)0.02723 (13)0.21238 (9)0.0780 (5)
H1WA1.116 (3)0.039 (2)0.2438 (12)0.117*
H1WB1.175 (4)0.035 (2)0.1629 (7)0.117*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0470 (6)0.0525 (6)0.0361 (6)0.0104 (5)0.0031 (5)0.0040 (5)
O20.0599 (8)0.0629 (7)0.0521 (7)0.0214 (7)0.0033 (6)0.0043 (6)
C80.0488 (9)0.0365 (7)0.0408 (8)0.0012 (7)0.0025 (7)0.0026 (6)
N20.0526 (8)0.0498 (7)0.0388 (7)0.0069 (7)0.0004 (6)0.0044 (6)
N10.0518 (8)0.0548 (8)0.0464 (8)0.0031 (7)0.0078 (7)0.0076 (7)
C100.0421 (8)0.0464 (8)0.0434 (9)0.0066 (7)0.0034 (7)0.0065 (6)
C110.0407 (8)0.0403 (7)0.0447 (8)0.0014 (7)0.0044 (7)0.0006 (6)
C90.0550 (10)0.0375 (8)0.0387 (8)0.0057 (7)0.0012 (7)0.0039 (6)
C130.0455 (9)0.0432 (8)0.0359 (8)0.0022 (7)0.0068 (7)0.0048 (6)
C70.0585 (11)0.0503 (9)0.0567 (11)0.0080 (9)0.0105 (9)0.0038 (8)
C180.0482 (9)0.0485 (9)0.0609 (11)0.0033 (9)0.0073 (8)0.0083 (8)
C40.0805 (12)0.0517 (9)0.0399 (9)0.0131 (9)0.0012 (8)0.0027 (7)
C140.0520 (10)0.0456 (9)0.0702 (12)0.0054 (8)0.0062 (9)0.0068 (8)
C170.0673 (12)0.0426 (9)0.0688 (12)0.0005 (9)0.0122 (10)0.0021 (8)
C20.0772 (12)0.0777 (11)0.0583 (10)0.0052 (11)0.0226 (10)0.0194 (9)
C30.0946 (13)0.0671 (10)0.0410 (9)0.0168 (10)0.0102 (9)0.0082 (8)
C120.0814 (14)0.0756 (12)0.0409 (9)0.0124 (11)0.0048 (10)0.0004 (8)
C10.0650 (11)0.0710 (10)0.0594 (10)0.0011 (10)0.0170 (9)0.0157 (8)
C150.0460 (10)0.0669 (12)0.0779 (13)0.0010 (9)0.0040 (10)0.0074 (10)
C160.0607 (12)0.0571 (10)0.0538 (10)0.0140 (9)0.0081 (9)0.0007 (8)
C60.0790 (14)0.0625 (11)0.0680 (13)0.0115 (11)0.0239 (11)0.0068 (10)
C50.1004 (17)0.0673 (12)0.0472 (11)0.0026 (12)0.0181 (12)0.0063 (9)
O1W0.0531 (8)0.1216 (12)0.0594 (8)0.0265 (9)0.0078 (7)0.0196 (9)
Geometric parameters (Å, º) top
O1—C81.3670 (19)C4—C31.412 (3)
O1—C101.4148 (19)C14—C151.379 (3)
O2—C111.2217 (19)C14—H140.9300
C8—C71.363 (2)C17—C161.367 (3)
C8—C91.427 (2)C17—H170.9300
N2—C111.343 (2)C2—C31.348 (3)
N2—C131.438 (2)C2—C11.391 (3)
N2—C121.457 (2)C2—H20.9300
N1—C11.312 (2)C3—H30.9300
N1—C91.358 (2)C12—H12A0.9600
C10—C111.506 (2)C12—H12B0.9600
C10—H10A0.9700C12—H12C0.9600
C10—H10B0.9700C1—H10.9300
C9—C41.412 (2)C15—C161.368 (3)
C13—C141.364 (3)C15—H150.9300
C13—C181.381 (2)C16—H160.9300
C7—C61.405 (3)C6—C51.350 (3)
C7—H70.9300C6—H60.9300
C18—C171.371 (3)C5—H50.9300
C18—H180.9300O1W—H1WA0.855 (10)
C4—C51.403 (3)O1W—H1WB0.860 (10)
C8—O1—C10116.19 (12)C13—C14—H14119.9
C7—C8—O1124.58 (15)C15—C14—H14119.9
C7—C8—C9120.25 (15)C16—C17—C18120.76 (17)
O1—C8—C9115.17 (14)C16—C17—H17119.6
C11—N2—C13123.34 (13)C18—C17—H17119.6
C11—N2—C12119.34 (15)C3—C2—C1118.3 (2)
C13—N2—C12117.32 (14)C3—C2—H2120.9
C1—N1—C9117.70 (16)C1—C2—H2120.9
O1—C10—C11108.01 (13)C2—C3—C4120.4 (2)
O1—C10—H10A110.1C2—C3—H3119.8
C11—C10—H10A110.1C4—C3—H3119.8
O1—C10—H10B110.1N2—C12—H12A109.5
C11—C10—H10B110.1N2—C12—H12B109.5
H10A—C10—H10B108.4H12A—C12—H12B109.5
O2—C11—N2121.78 (15)N2—C12—H12C109.5
O2—C11—C10122.34 (14)H12A—C12—H12C109.5
N2—C11—C10115.88 (14)H12B—C12—H12C109.5
N1—C9—C4122.23 (16)N1—C1—C2124.6 (2)
N1—C9—C8119.17 (14)N1—C1—H1117.7
C4—C9—C8118.59 (17)C2—C1—H1117.7
C14—C13—C18119.42 (16)C16—C15—C14120.51 (19)
C14—C13—N2121.02 (15)C16—C15—H15119.7
C18—C13—N2119.55 (15)C14—C15—H15119.7
C8—C7—C6119.84 (19)C17—C16—C15119.19 (19)
C8—C7—H7120.1C17—C16—H16120.4
C6—C7—H7120.1C15—C16—H16120.4
C17—C18—C13119.93 (17)C5—C6—C7121.5 (2)
C17—C18—H18120.0C5—C6—H6119.3
C13—C18—H18120.0C7—C6—H6119.3
C5—C4—C9119.61 (18)C6—C5—C4120.24 (19)
C5—C4—C3123.58 (19)C6—C5—H5119.9
C9—C4—C3116.8 (2)C4—C5—H5119.9
C13—C14—C15120.17 (17)H1WA—O1W—H1WB107.3 (16)
C10—O1—C8—C75.0 (2)C14—C13—C18—C170.0 (3)
C10—O1—C8—C9174.32 (13)N2—C13—C18—C17179.02 (16)
C8—O1—C10—C11177.88 (13)N1—C9—C4—C5179.83 (17)
C13—N2—C11—O2179.28 (15)C8—C9—C4—C50.7 (2)
C12—N2—C11—O21.2 (2)N1—C9—C4—C30.3 (2)
C13—N2—C11—C100.7 (2)C8—C9—C4—C3179.43 (15)
C12—N2—C11—C10178.81 (16)C18—C13—C14—C150.9 (3)
O1—C10—C11—O212.8 (2)N2—C13—C14—C15179.93 (17)
O1—C10—C11—N2167.15 (14)C13—C18—C17—C160.2 (3)
C1—N1—C9—C40.3 (2)C1—C2—C3—C40.4 (3)
C1—N1—C9—C8179.41 (16)C5—C4—C3—C2179.79 (19)
C7—C8—C9—N1179.84 (15)C9—C4—C3—C20.4 (3)
O1—C8—C9—N10.5 (2)C9—N1—C1—C20.4 (3)
C7—C8—C9—C40.7 (2)C3—C2—C1—N10.4 (3)
O1—C8—C9—C4178.61 (14)C13—C14—C15—C161.7 (3)
C11—N2—C13—C1477.0 (2)C18—C17—C16—C150.5 (3)
C12—N2—C13—C14102.5 (2)C14—C15—C16—C171.5 (3)
C11—N2—C13—C18103.99 (19)C8—C7—C6—C50.6 (3)
C12—N2—C13—C1876.5 (2)C7—C6—C5—C40.7 (3)
O1—C8—C7—C6178.61 (17)C9—C4—C5—C60.7 (3)
C9—C8—C7—C60.7 (3)C3—C4—C5—C6179.47 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O20.86 (1)1.97 (1)2.8249 (19)178 (3)
O1W—H1WB···N10.86 (1)1.97 (1)2.831 (2)176 (3)

Experimental details

Crystal data
Chemical formulaC18H16N2O2·H2O
Mr310.34
Crystal system, space groupOrthorhombic, P212121
Temperature (K)296
a, b, c (Å)6.6028 (8), 14.9207 (18), 16.3505 (19)
V3)1610.8 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.16 × 0.15 × 0.10
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.986, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
10373, 3911, 3113
Rint0.027
(sin θ/λ)max1)0.665
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.101, 1.05
No. of reflections3911
No. of parameters217
No. of restraints125
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.12, 0.14

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O20.855 (10)1.970 (11)2.8249 (19)178 (3)
O1W—H1WB···N10.860 (10)1.972 (11)2.831 (2)176 (3)
 

Acknowledgements

The authors are grateful to the National Natural Science Foundation of China for financial support (grant No. 21001040).

References

First citationBruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA .  Google Scholar
First citationLi, X.-F., Liu, W.-S., Guo, Z.-J. & Tan, M.-Y. (2003). Inorg. Chem. 42, 8735–8738.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLi, X.-M., Wen, Y.-H., Li, M.-J. & Zhang, S.-S. (2005). Acta Cryst. E61, o2389–o2390.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, W.-N., Cheng, F.-X., Yan, L. & Tang, N. (2008). J. Coord. Chem. 61, 2207–2215.  Web of Science CrossRef CAS Google Scholar
First citationZhi, L.-H., Wu, W.-N., Li, X.-X., Li, Y.-W. & Wang, Y. (2011). Acta Cryst. E67, o68.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds