## Acta Crystallographica Section E

## Structure Reports

Online
ISSN 1600-5368

## 2-Chloro-5-chloromethyl-1,3-thiazole

Ling-Ling Zhao, ${ }^{\mathbf{a}}{ }^{*}$ Wei-Hua Cheng ${ }^{\mathbf{b}}$ and Zhao-Sheng Cai ${ }^{\mathbf{a}}$<br>${ }^{\text {a }}$ Department of Pharmacy Engineering, College of Chemical and Biological Engineering, Yancheng Institute of Technology, Yancheng 224051, People's Republic of China, and ${ }^{\mathbf{b}}$ Department of Chemical Engineering, Yancheng College of Textile Technology, Yancheng 224051, People's Republic of China<br>Correspondence e-mail: zll830218@126.com

Received 17 May 2011; accepted 19 May 2011
Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$; $R$ factor $=0.043 ; w R$ factor $=0.151$; data-to-parameter ratio $=16.4$.

In the title compound, $\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{Cl}_{2} \mathrm{NS}$, the chloromethyl C and 2position Cl atoms lie close to the mean plane of the thiazole ring [deviations $=0.0568$ (2) and 0.0092 (1) $\AA$, respectively]. No classical hydrogen bonds are found in the crystal structure.

## Related literature

The title compound is an intermediate in the manufacture of agrochemicals, see: Kozo et al. (1986). For the synthesis of the title compound, see: Beck \& Heitzer (1988); For bond-length data, see: Allen et al. (1987).


## Experimental

Crystal data
$\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{Cl}_{2} \mathrm{NS}$
$M_{r}=168.03$
Monoclinic, $P 2_{1} / c$
$a=4.2430$ (8) A
$b=17.151$ (3) A
$c=9.1640(18) \AA$
$\beta=96.82$ (3) ${ }^{\circ}$

## Data collection

Enraf-Nonius CAD-4 diffractometer
Absorption correction: $\psi$ scan
(North et al., 1968)
$T_{\text {min }}=0.718, T_{\text {max }}=0.891$
2697 measured reflections

## Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.043 \quad 74$ parameters
$w R\left(F^{2}\right)=0.151$
H -atom parameters constrained
$S=1.00$
1211 reflections
$V=662.2(2) \AA^{3}$
$Z=4$
Mo $K \alpha$ radiation
$\mu=1.18 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
$0.30 \times 0.20 \times 0.10 \mathrm{~mm}$

1211 independent reflections 932 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.060$
3 standard reflections every 200 reflections
intensity decay: $1 \%$
$\Delta \rho_{\max }=0.30 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.28 \mathrm{e}^{-3}$

Data collection: CAD-4 Software (Enraf-Nonius, 1985); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms \& Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

The authors thank the Center of Test and Analysis, Nanjing University, for support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: VM2096).

## References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Beck, G. \& Heitzer, H. (1988). US Patent No. 4748243.
Enraf-Nonius (1985). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.
Harms, K. \& Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
Kozo, S., Shinichi, T., Shinzo, K. \& Koichi, M. (1986). EP Patent No. 0192060.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

## supporting information

Acta Cryst. (2011). E67, o1531 [doi:10.1107/S1600536811019052]

## 2-Chloro-5-chloromethyl-1,3-thiazole

## Ling-Ling Zhao, Wei-Hua Cheng and Zhao-Sheng Cai

## S1. Comment

The title compound, 2-chloro-5-(chloromethyl)thiazole is an important intermediate for manufacturing agrochemicals (Kozo et al., 1986).

The molecular structure of $(\mathrm{I})$ is shown in Fig. 1. The bond lengths and angles are within normal ranges (Allen et al., 1987).

The thiazole ring is planar (max. deviation of 0.000 (5) $\AA$ for C3). Atoms C4 and Cl1 lie close to this mean plane, whereas atom C 12 is 1.4090 (1) $\AA$ out of the thiazole plane. The torsion angle $\mathrm{S}-\mathrm{C} 2-\mathrm{C} 4-\mathrm{C} 12$ is $-66.66(1)^{\circ}$. The shortest distance between the centroids of the thiazole rings in the packing is 5.554 (1) $\AA$.

## S2. Experimental

The title compound, (I) was prepared by the method of chlorination-cyclization reaction reported in literature (Beck \& Heitzer, 1988). The crystals were obtained by dissolving (I) ( $0.2 \mathrm{~g}, 1.2 \mathrm{mmol})$ in ethanol ( 25 ml ) and evaporating the solvent slowly at room temperature for about 5 d .

## S3. Refinement

H atoms were positioned geometrically $\left(\mathrm{C}-\mathrm{H}=0.93-0.97 \AA\right.$ ) and refined using a riding model with $U_{\mathrm{iso}}(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{C})$.


## Figure 1

The molecular structure of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the $50 \%$ probability level.

## 2-Chloro-5-chloromethyl-1,3-thiazole

## Crystal data

## $\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{Cl}_{2} \mathrm{NS}$

$M_{r}=168.03$
Monoclinic, $P 2_{1} / c$
Hall symbol: - P 2 ybc
$a=4.2430$ (8) $\AA$
$b=17.151$ (3) $\AA$
$c=9.1640(18) \AA$
$\beta=96.82(3)^{\circ}$
$V=662.2(2) \AA^{3}$
$Z=4$

## Data collection

Enraf-Nonius CAD-4
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
$\omega / 2 \theta$ scans
Absorption correction: $\psi$ scan
(North et al., 1968)
$T_{\text {min }}=0.718, T_{\text {max }}=0.891$
2697 measured reflections

$$
F(000)=336
$$

$D_{\mathrm{x}}=1.686 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 25 reflections
$\theta=10-13^{\circ}$
$\mu=1.18 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Block, colourless
$0.30 \times 0.20 \times 0.10 \mathrm{~mm}$

1211 independent reflections
932 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.060$
$\theta_{\text {max }}=25.4^{\circ}, \theta_{\text {min }}=2.4^{\circ}$
$h=0 \rightarrow 5$
$k=-20 \rightarrow 20$
$l=-11 \rightarrow 10$
3 standard reflections every 200 reflections
intensity decay: $1 \%$

## Refinement

## Refinement on $F^{2}$

Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.043$
$w R\left(F^{2}\right)=0.151$
$S=1.00$
1211 reflections
74 parameters
0 restraints
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.098 P)^{2}\right]$
where $P=\left(F_{0}^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.30 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.28 \mathrm{e} \AA^{-3}$
Extinction correction: SHELXS97 (Sheldrick, 2008), $\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$

Extinction coefficient: 0.030 (8)

## Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of $F^{2}$ against ALL reflections. The weighted $R$-factor $w R$ and goodness of fit $S$ are based on $F^{2}$, conventional $R$-factors $R$ are based on $F$, with $F$ set to zero for negative $F^{2}$. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating $R$-factors(gt) etc. and is not relevant to the choice of reflections for refinement. $R$-factors based on $F^{2}$ are statistically about twice as large as those based on $F$, and $R$ - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters ( $A^{2}$ )

|  | $x$ | $y$ | $z$ | $U_{\text {iso }} * / U_{\text {eq }}$ |
| :--- | :--- | :--- | :--- | :--- |
| S | $0.3422(2)$ | $0.57491(5)$ | $0.76517(10)$ | $0.0589(4)$ |
| N | $0.5235(10)$ | $0.71113(19)$ | $0.8427(3)$ | $0.0725(10)$ |


| C11 | $0.7424(3)$ | $0.60986(7)$ | $1.04471(11)$ | $0.0811(5)$ |
| :--- | :--- | :--- | :--- | :--- |
| C1 | $0.5381(9)$ | $0.6400(2)$ | $0.8830(3)$ | $0.0530(9)$ |
| Cl2 | $0.2025(2)$ | $0.58243(7)$ | $0.38099(10)$ | $0.0671(4)$ |
| C2 | $0.2262(8)$ | $0.6502(2)$ | $0.6483(3)$ | $0.0484(8)$ |
| C3 | $0.3450(12)$ | $0.7162(2)$ | $0.7087(4)$ | $0.0684(11)$ |
| H3A | 0.3078 | 0.7639 | 0.6615 | $0.082^{*}$ |
| C4 | $0.0159(10)$ | $0.6382(2)$ | $0.5089(4)$ | $0.0637(10)$ |
| H4A | -0.0443 | 0.6886 | 0.4660 | $0.076^{*}$ |
| H4B | -0.1761 | 0.6119 | 0.5297 | $0.076^{*}$ |

Atomic displacement parameters $\left(\AA^{2}\right)$

|  | $U^{11}$ | $U^{22}$ | $U^{33}$ | $U^{12}$ | $U^{13}$ | $U^{23}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| S | $0.0750(7)$ | $0.0467(5)$ | $0.0523(6)$ | $-0.0053(4)$ | $-0.0033(4)$ | $0.0014(4)$ |
| N | $0.109(3)$ | $0.0552(18)$ | $0.0516(18)$ | $-0.016(2)$ | $0.0015(18)$ | $-0.0070(14)$ |
| C 11 | $0.0967(9)$ | $0.0963(9)$ | $0.0464(6)$ | $0.0075(6)$ | $-0.0078(5)$ | $0.0011(5)$ |
| C 1 | $0.065(2)$ | $0.055(2)$ | $0.0386(17)$ | $-0.0016(17)$ | $0.0064(15)$ | $-0.0013(14)$ |
| C 2 | $0.0682(7)$ | $0.0810(7)$ | $0.0494(6)$ | $-0.0024(5)$ | $-0.0041(4)$ | $-0.0146(4)$ |
| C 2 | $0.0480(19)$ | $0.0554(19)$ | $0.0427(17)$ | $0.0070(15)$ | $0.0090(14)$ | $0.0017(14)$ |
| C 3 | $0.102(3)$ | $0.0468(19)$ | $0.055(2)$ | $0.003(2)$ | $0.005(2)$ | $0.0037(17)$ |
| C 4 | $0.057(2)$ | $0.076(2)$ | $0.057(2)$ | $0.0128(19)$ | $0.0042(18)$ | $-0.0003(19)$ |

Geometric parameters $\left({ }^{A},{ }^{\circ}\right)$

| S-C1 | 1.700 (4) | C2-C3 | 1.333 (5) |
| :---: | :---: | :---: | :---: |
| S-C2 | 1.712 (3) | C2-C4 | 1.482 (5) |
| $\mathrm{N}-\mathrm{C} 1$ | 1.275 (5) | $\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$ | 0.9300 |
| $\mathrm{N}-\mathrm{C} 3$ | 1.367 (5) | $\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$ | 0.9700 |
| C11-C1 | 1.705 (3) | C4-H4B | 0.9700 |
| C12-C4 | 1.772 (4) |  |  |
| C1-S-C2 | 89.16 (17) | C2-C3-H3A | 121.3 |
| $\mathrm{C} 1-\mathrm{N}-\mathrm{C} 3$ | 108.9 (3) | $\mathrm{N}-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$ | 121.3 |
| $\mathrm{N}-\mathrm{C} 1-\mathrm{S}$ | 116.2 (3) | $\mathrm{C} 2-\mathrm{C} 4-\mathrm{Cl} 2$ | 112.0 (3) |
| $\mathrm{N}-\mathrm{C} 1-\mathrm{Cl} 1$ | 122.9 (3) | $\mathrm{C} 2-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$ | 109.2 |
| $\mathrm{S}-\mathrm{C} 1-\mathrm{Cl1}$ | 120.9 (2) | $\mathrm{Cl} 2-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$ | 109.2 |
| C3-C2-C4 | 129.4 (3) | $\mathrm{C} 2-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~B}$ | 109.2 |
| C3-C2-S | 108.3 (3) | $\mathrm{Cl2}-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~B}$ | 109.2 |
| C4-C2-S | 122.3 (3) | $\mathrm{H} 4 \mathrm{~A}-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~B}$ | 107.9 |
| $\mathrm{C} 2-\mathrm{C} 3-\mathrm{N}$ | 117.5 (3) |  |  |
| C3-N-C1-S | 0.0 (5) | C4-C2-C3-N | 177.2 (4) |
| $\mathrm{C} 3-\mathrm{N}-\mathrm{C} 1-\mathrm{Cl} 1$ | 179.6 (3) | S-C2-C3-N | 0.0 (5) |
| $\mathrm{C} 2-\mathrm{S}-\mathrm{C} 1-\mathrm{N}$ | 0.0 (4) | $\mathrm{C} 1-\mathrm{N}-\mathrm{C} 3-\mathrm{C} 2$ | 0.0 (6) |
| C2-S-C1-C11 | -179.6 (2) | C3-C2-C4-Cl2 | 116.5 (4) |
| C1-S-C2-C3 | 0.0 (3) | $\mathrm{S}-\mathrm{C} 2-\mathrm{C} 4-\mathrm{Cl} 2$ | -66.6 (4) |
| C1-S-C2-C4 | -177.4 (3) |  |  |

