

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Bis(1-methylpiperidinium) tetrachloridocuprate(II)

Bryan J. Reynolds and Marcus R. Bond*

Department of Chemistry, Southeast Missouri State University, Cape Girardeau, MO 63701. USA

Correspondence e-mail: bond@mbond2.st.semo.edu

Received 19 April 2011; accepted 29 April 2011

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.002 Å; R factor = 0.030; wR factor = 0.067; data-to-parameter ratio = 29.7.

The structure of the title compound, $(C_6H_{14}N)_2[CuCl_4]$, consists of two inequivalent 1-methylpiperidinium cations and a flattened tetrahedral [CuCl₄]²⁻ anion. Each organic cation exhibits a chair conformation with the methyl group in the equatorial position. They are segregated into alternating layers parallel to (100) and stacked along [100]. The first cation is arranged in parallel stacks in a herringbone pattern with rows of $[CuCl_4]^{2-}$ anions fitting between the stacks and with a Cl⁻ ion directed into the interior of the layer. The second organic cation forms distorted *hcp* layers that separate the other organic cation/ $[CuCl_4]^{2-}$ slabs. N-H···Cl hydrogen bonding between the cations and the anions consolidates the crystal packing.

Related literature

For background to compounds with $[CuCl_4]^{2-}$ anions, see: Awwadi et al. (2007); Bloomquist et al. (1988); Ihara (2007); Nelson et al. (1979); Schneider et al. (2007); Willett (1991); Willett & Twamley (2007). For related structures, see: Fernandez et al. (1987); Parent et al. (2007); Nalla & Bond (2011). For comparison bond lengths and angles, see: Ladd & Palmer (1994).

16568 measured reflections

 $R_{\rm int} = 0.026$

8453 independent reflections

6647 reflections with $I > 2\sigma(I)$

Experimental

Crystal data

$(C_6H_{14}N)_2[CuCl_4]$	V = 1837.73 (5) Å ³
$M_r = 405.7$	Z = 4
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation
a = 12.2264 (2) Å	$\mu = 1.76 \text{ mm}^{-1}$
b = 11.3442 (2) Å	$T = 100 { m K}$
c = 13.3455 (2) Å	$0.32 \times 0.23 \times 0.17 \text{ mm}$
$\beta = 96.865 \ (1)^{\circ}$	

Data collection

Nonius KappaCCD diffractometer Absorption correction: multi-scan (DÊNZO/SCALEPACK; Otwinowski & Minor, 1997) $T_{\min} = 0.628, \ T_{\max} = 0.694$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.030$	285 parameters
$wR(F^2) = 0.067$	All H-atom parameters refined
S = 1.05	$\Delta \rho_{\rm max} = 0.57 \ {\rm e} \ {\rm \AA}^{-3}$
8453 reflections	$\Delta \rho_{\rm min} = -0.58 \text{ e } \text{\AA}^{-3}$

Table 1

Selected geometric parameters (Å, °).

Cu1-Cl1	2.2816 (3)	Cu1-Cl3	2.2539 (3)
Cu1-Cl2	2.2351 (3)	Cu1-Cl4	2.2475 (3)
Cl1-Cu1-Cl2	100.615 (11)	Cl2-Cu1-Cl3	135.003 (13)
Cl1-Cu1-Cl3	98.880 (12)	Cl2-Cu1-Cl4	100.840 (12)
Cl1-Cu1-Cl4	128.967 (13)	Cl3-Cu1-Cl4	97.568 (12)

Table 2			
Hydrogen-bond	geometry	/ (Å,	°).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{array}{c} N11 - H11 \cdots Cl1 \\ N21 - H21 \cdots Cl3 \\ N21 - H21 \cdots Cl4 \end{array}$	0.895 (16)	2.331 (16)	3.188 (1)	160 (1)
	0.833 (17)	2.508 (16)	3.280 (1)	155 (1)
	0.833 (17)	2.821 (17)	3.364 (1)	125 (1)

Data collection: COLLECT (Hooft, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997) and SCALEPACK: program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors wish to thank the National Science Foundation DUE CCLI-A&I program (grant No. 9951348) and Southeast Missouri State University for funding the X-ray diffraction facility.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2484).

References

Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.

Awwadi, F. F., Willett, R. D. & Twamley, B. (2007). Cryst. Growth Des. 7, 624-632

- Bloomquist, D. R., Pressprich, M. R. & Willett, R. D. (1988). J. Am. Chem. Soc. 110, 7391–7398.
- Burnett, M. N. & Johnson, C. K. (1996). *ORTEPIII*. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Fernandez, V., Moran, M., Gutierrez-Rios, M. T., Foces-Foces, C. & Cano, F. H. (1987). *Inorg. Chim. Acta*, **128**, 239–243.
- Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.
- Ihara, Y. (2007). *Inorganic Chromotropism*, edited by Y. Fukuda, pp. 78-81. Japan: Kondansha.
- Ladd, M. F. C. & Palmer, R. A. (1994). Structure Determination by X-ray Crystallography, 3rd ed., pp. 434–435. New York: Plenum Press.

- Nalla, S. & Bond, M. R. (2011). Acta Cryst. C67. Submitted.
- Nelson, H. C., Simonsen, S. H. & Watt, G. W. (1979). J. Chem. Soc. Chem. Commun. pp. 632–633.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Parent, A. R., Landee, C. P. & Turnbull, M. M. (2007). *Inorg. Chim. Acta*, **360**, 1943–1953.
- Schneider, T. T., Landee, C. P., Turnbull, M. M., Awwadi, F. F. & Twamley, B. (2007). Polyhedron, 26, 1849–1858.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Willett, R. D. (1991). Coord. Chem. Rev. 109, 181-205.
- Willett, R. D. & Twamley, B. (2007). Acta Cryst. E63, m2591.

supporting information

Acta Cryst. (2011). E67, m725-m726 [doi:10.1107/S1600536811016382]

Bis(1-methylpiperidinium) tetrachloridocuprate(II)

Bryan J. Reynolds and Marcus R. Bond

S1. Comment

[CuCl₄]²⁻ anions exhibit geometries ranging from tetrahedral to square planar. The exact geometry adopted results from factors such as packing forces (Schneider *et al.*, 2007; Nelson *et al.*, 1979), hydrogen bonding (Bloomquist *et al.*, 1988; Willett and Twamley, 2007), and halide···halide interactions (Awwadi *et al.*, 2007), although the most commonly observed geometry is flattened tetrahedral with a *trans* Cl—Cu—Cl angle of \approx 130–135° (Willett, 1991). A small number of thermochromic A_2 [CuCl₄] compounds are known in which the low temperature (green-coloured) phase contains square-planar [CuCl₄]²⁻ while the high-temperature (yellow) phase contains flattened tetrahedral [CuCl₄]²⁻ anions (Ihara, 2007).

The crystal structure of the title compound, (1-methylpiperidinium)₂CuCl₄, is comprised of a [CuCl₄]²⁻ anion and two symmetrically inequivalent 1-methylpiperidinium cations. The [CuCl₄]²⁻ anion displays the typical flattened tetrahedral geometry with an average *trans* Cl—Cu—Cl angle of 131.99° at 100 K, so no thermochromic phase transition is observed upon cooling to at least this temperature. Each 1-methylpiperidinium ion exhibits a chair conformation with the methyl group equatorial. Bond lengths and angles for the inorganic complex and organic cation conform to expected values (Ladd & Palmer, 1994). An *ORTEP* diagram of the asymmetric unit is presented in Figure 1.

The two inequivalent organic cations are segregated into alternating layers parallel to (100) and stacked along [100]. The cation #1 layer (containing N11) arranges cations in parallel stacks along [010] and in a herringbone pattern with the cation plane approximately perpendicular to the layer plane (mean plane normal forming an angle of 91.63 (3)° with respect to **a**). Neighboring cations in the stacks are related by inversion and neighboring stacks are related by the *c*-glide plane. The [CuCl₄]²⁻ anions form rows of translationally equivalent complexes parallel to [010] that fit in between the stacks and on both sides of the cation #1 layer. Atom Cl1 is directed almost into the middle of the cation layer with the rows of complexes on either side of the layer offset from one another to provide spacing between the Cl1 atoms inside the layer. The closest intermolecular Cl···Cl contact distance is, thus, Cl1···Cl1ⁱ⁼ 5.891 (4) Å (i=-*x*, 1/2+*y*, 1/2-*z*) between Cl1 atoms from opposite rows of complexes. Cation #2 forms a layer at *x* = 0.5 to separate the cation #1/[CuCl₄]²⁻ slabs at *x* = 0.0 and 1.0. In this layer the mean plane of the cation is closer to the layer plane with the normal forming an angle of 41.34° with respect to **a**. The cations in this layer are arranged in a distorted *hcp* pattern with neighboring cations related by inversion, 2₁ rotation, or *c*-glide plane operations. A short, direct N11—H11···Cl1 hydrogen bond locks the Cl1 atoms into the interior of the cation #1 layer while a longer, less direct, and bifurcated N21—H21···Cl3 and ···Cl4 hydrogen bond links the cation #1 layer while a longer, less direct, and bifurcated N21—H21···Cl3 and ···Cl4 hydrogen bond links the cation #1/[CuCl₄]²⁻ slabs to the cation #2 layer. A packing diagram for the structure viewed along [010] is presented in Figure 2.

In contrast to the layer structure of (1-methylpiperidinium)₂[CuCl₄], in the related piperdinium salt (Fernandez *et al.*, 1987; CSD refcode: PNCLCU01) translationally equivalent rows of [CuCl₄]²⁻ anions are surrounded by stacks of translationally equivalent organic cations. N—H···Cl hydrogen bonding from one inequivalent organic cation links neighboring complexes in the same row while hydrogen bonding from the other inequivalent organic cation links

complexes in different rows. So there are four direct hydrogen bonds in the piperidinium salt, *versus* one direct and one bifurcated in the title structure. Yet in spite of the greater degree of hydrogen bonding the average *trans* Cl—Cu—Cl angle of 133.49° (at room temperature) is only slightly larger. (1-Methylmorpholinium)₂[CuCl₄] (Parent *et al.*, 2007; CSD refcode: VICMIE) also has rows or chains of [CuCl₄]²⁻ anions with short Cl···Cl contacts surrounded by parallel stacks of organic cations. The two inequivalent organic cations each form a bifurcated hydrogen bond to all four Cl ligands of the complex, which has an average *trans* Cl—Cu—Cl angle of 134.32° (158 K). The *N*,*N*-dimethylpiperidinium system has been studied, although no examples of a [CuCl₄]²⁻ salt have yet been found. Crystals of a light green [CuCl₃(H₂O)]⁻ salt do, however, form readily (Nalla and Bond, 2011).

S2. Experimental

5 ml of 1-methylpiperidine were neutralized with concentrated HCl. This solution was mixed in a 2:1 molar ratio with copper(II) chloride dissolved in 6M HCl. Slow evaporation yielded yellow crystals of the title compound.

S3. Refinement

All non-hydrogen atoms were refined with anisotropic displacement parameters. All hydrogen atoms were visible on electron density difference maps and freely refined to give N—H = 0.833-0.895 Å, methylene C—H = 0.913-1.03 Å. and methyl C—H = 0.945-0.97 Å.

Figure 1

ORTEP diagram of the asymmetric unit with atom labels. Displacement ellipsoids are drawn at the 50% level. The hydrogen bonding between N—H and Cl is indicated with dotted lines.

Figure 2

Unit cell packing diagram viewed along [010] showing the cation $\#1/[CuCl_4]^{2-}$ slabs at x = 0.0 and 1.0, and the cation #2 layer at x = 0.5. For clarity, hydrogen atoms are omitted and other atoms are drawn as circles of arbitrary radii ranked in size with Cu largest followed by Cl, then C and N smallest.

Bis(1-methylpiperidinium) tetrachloridocuprate(II)

Crystal data	
$(C_{6}H_{14}N)_{2}[CuCl_{4}]$ $M_{r} = 405.7$ Monoclinic, $P2_{1}/c$ $a = 12.2264 (2) Å$ $b = 11.3442 (2) Å$ $c = 13.3455 (2) Å$ $\beta = 96.865 (1)^{\circ}$ $V = 1837.73 (5) Å^{3}$ $Z = 4$	F(000) = 844 $D_x = 1.466 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 8818 reflections $\theta = 1.0-35.6^{\circ}$ $\mu = 1.76 \text{ mm}^{-1}$ T = 100 K Block, yellow $0.32 \times 0.23 \times 0.17 \text{ mm}$
Data collection	
Nonius KappaCCD diffractometer Graphite monochromator Detector resolution: 9 pixels mm ⁻¹ ω and φ scans	Absorption correction: multi-scan (<i>DENZO/SCALEPACK</i> ; Otwinowski & Minor, 1997) $T_{min} = 0.628, T_{max} = 0.694$ 16568 measured reflections 8453 independent reflections 6647 reflections with $I > 2\sigma(I)$

$R_{\rm int} = 0.026$	$k = -18 \rightarrow 18$
$\theta_{\rm max} = 35.6^\circ, \theta_{\rm min} = 4.0^\circ$	$l = -21 \rightarrow 21$
$h = -19 \rightarrow 20$	

Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.030$	Hydrogen site location: difference Fourier map
$wR(F^2) = 0.067$	All H-atom parameters refined
<i>S</i> = 1.05	$w = 1/[\sigma^2(F_o^2) + (0.0249P)^2 + 0.6467P]$
8453 reflections	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
285 parameters	$(\Delta/\sigma)_{\rm max} = 0.006$
0 restraints	$\Delta ho_{ m max} = 0.57 \ { m e} \ { m \AA}^{-3}$
Primary atom site location: structure-invariant	$\Delta ho_{ m min} = -0.58 \ m e \ m \AA^{-3}$
direct methods	Extinction correction: SHELXL97 (Sheldrick,
	2008), $Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
	Extinction coefficient: 0.0017 (3)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Cul	0.251677 (12)	0.415201 (12)	0.299141 (10)	0.01376 (4)
Cl1	0.06546 (2)	0.42579 (2)	0.25734 (2)	0.01674 (5)
Cl2	0.27180 (2)	0.52180 (2)	0.44100 (2)	0.01610 (5)
C13	0.30403 (3)	0.43621 (3)	0.14382 (2)	0.02020 (6)
Cl4	0.35629 (3)	0.25748 (3)	0.34713 (2)	0.01954 (6)
N11	0.07370 (8)	0.22960 (9)	0.08737 (7)	0.01501 (17)
H11	0.0798 (13)	0.2956 (15)	0.1244 (12)	0.020 (4)*
C11	0.14106 (11)	0.13720 (12)	0.14522 (10)	0.0219 (2)
H11A	0.1456 (15)	0.0723 (16)	0.1014 (13)	0.028 (5)*
H11B	0.2116 (14)	0.1704 (15)	0.1677 (12)	0.024 (4)*
H11C	0.1045 (16)	0.1151 (17)	0.2025 (15)	0.037 (5)*
C12	-0.04575 (10)	0.19611 (12)	0.07114 (10)	0.0206 (2)
H12A	-0.0483 (14)	0.1249 (16)	0.0391 (12)	0.023 (4)*
H12B	-0.0671 (14)	0.1811 (15)	0.1347 (13)	0.024 (4)*
C13	-0.11317 (11)	0.29197 (12)	0.01392 (10)	0.0211 (2)
H13A	-0.1880 (15)	0.2688 (15)	0.0042 (13)	0.026 (4)*
H13B	-0.1108 (14)	0.3600 (16)	0.0564 (13)	0.026 (4)*
C14	-0.07016 (12)	0.32027 (14)	-0.08588 (10)	0.0264 (3)
H14A	-0.0764 (15)	0.2522 (17)	-0.1302 (14)	0.033 (5)*
H14B	-0.1129 (15)	0.3849 (17)	-0.1173 (14)	0.033 (5)*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C15	0.05150 (12)	0.35232 (14)	-0.06641 (11)	0.0275 (3)
H15A	0.0813 (15)	0.3663 (17)	-0.1260 (14)	0.031 (5)*
H15B	0.0616 (17)	0.4262 (18)	-0.0268 (15)	0.040 (5)*
C16	0.11738 (11)	0.25462 (11)	-0.01073 (9)	0.0190 (2)
H16A	0.1110 (13)	0.1833 (14)	-0.0472 (11)	0.017 (4)*
H16B	0.1918 (14)	0.2742 (14)	0.0066 (12)	0.019 (4)*
N21	0.51192 (8)	0.25190 (9)	0.15565 (8)	0.01564 (18)
H21	0.4620 (13)	0.2945 (14)	0.1731 (12)	0.017 (4)*
C21	0.45664 (12)	0.14160 (12)	0.11569 (11)	0.0232 (2)
H21A	0.5108 (15)	0.0891 (16)	0.0926 (14)	0.030 (5)*
H21B	0.4240 (16)	0.1038 (17)	0.1704 (15)	0.036 (5)*
H21C	0.4060 (14)	0.1605 (16)	0.0588 (13)	0.028 (4)*
C22	0.55885 (11)	0.31840 (12)	0.07359 (9)	0.0203 (2)
H22A	0.6091 (13)	0.2664 (14)	0.0498 (12)	0.020 (4)*
H22B	0.4995 (15)	0.3324 (16)	0.0233 (13)	0.027 (4)*
C23	0.61029 (13)	0.43323 (12)	0.11370 (11)	0.0259 (3)
H23A	0.6408 (16)	0.4715 (17)	0.0596 (14)	0.034 (5)*
H23B	0.5515 (15)	0.4840 (16)	0.1296 (13)	0.030 (5)*
C24	0.69579 (12)	0.41383 (14)	0.20480 (11)	0.0276 (3)
H24A	0.7614 (16)	0.3662 (18)	0.1844 (14)	0.039 (5)*
H24B	0.7199 (17)	0.491 (2)	0.2345 (15)	0.045 (6)*
C25	0.64709 (12)	0.34239 (14)	0.28531 (10)	0.0256 (3)
H25A	0.7000 (15)	0.3232 (16)	0.3397 (13)	0.030 (5)*
H25B	0.5928 (15)	0.3843 (16)	0.3125 (13)	0.025 (4)*
C26	0.59873 (11)	0.22741 (12)	0.24265 (9)	0.0206 (2)
H26A	0.6515 (13)	0.1796 (14)	0.2156 (11)	0.019 (4)*
H26B	0.5624 (13)	0.1821 (14)	0.2901 (12)	0.018 (4)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu1	0.01396 (7)	0.01435 (7)	0.01306 (6)	0.00173 (5)	0.00206 (4)	-0.00012 (5)
Cl1	0.01474 (12)	0.01853 (12)	0.01674 (11)	0.00235 (9)	0.00100 (9)	-0.00114 (9)
Cl2	0.01717 (12)	0.01518 (12)	0.01603 (11)	-0.00021 (9)	0.00233 (9)	-0.00179 (9)
C13	0.02281 (14)	0.02322 (14)	0.01554 (12)	0.00504 (11)	0.00628 (10)	0.00299 (10)
Cl4	0.02184 (14)	0.01968 (13)	0.01715 (12)	0.00794 (10)	0.00254 (10)	0.00137 (9)
N11	0.0150 (4)	0.0163 (4)	0.0139 (4)	-0.0004 (3)	0.0024 (3)	-0.0013 (3)
C11	0.0210 (6)	0.0241 (6)	0.0199 (5)	0.0035 (5)	-0.0001 (4)	0.0035 (5)
C12	0.0159 (5)	0.0209 (6)	0.0249 (6)	-0.0028 (4)	0.0024 (4)	0.0056 (5)
C13	0.0153 (5)	0.0222 (6)	0.0259 (6)	0.0016 (4)	0.0030 (4)	0.0026 (5)
C14	0.0264 (7)	0.0306 (7)	0.0219 (6)	0.0090 (6)	0.0013 (5)	0.0068 (5)
C15	0.0279 (7)	0.0290 (7)	0.0278 (6)	0.0073 (6)	0.0127 (5)	0.0135 (5)
C16	0.0194 (6)	0.0216 (6)	0.0171 (5)	0.0023 (4)	0.0067 (4)	0.0005 (4)
N21	0.0142 (4)	0.0144 (4)	0.0184 (4)	0.0005 (3)	0.0022 (3)	-0.0018 (3)
C21	0.0212 (6)	0.0185 (6)	0.0307 (7)	-0.0037 (5)	0.0059 (5)	-0.0071 (5)
C22	0.0211 (6)	0.0225 (6)	0.0174 (5)	-0.0028 (5)	0.0024 (4)	0.0005 (4)
C23	0.0281 (7)	0.0207 (6)	0.0295 (7)	-0.0066 (5)	0.0062 (5)	0.0004 (5)
C24	0.0211 (6)	0.0306 (7)	0.0312 (7)	-0.0085 (5)	0.0031 (5)	-0.0106 (6)

supporting information

C25	0.0223 (6)	0.0334 (7)	0.0200 (6)	0.0009 (5)	-0.0009 (5)	-0.0086 (5)
C26	0.0202 (6)	0.0228 (6)	0.0185 (5)	0.0056 (5)	0.0014 (4)	0.0001 (4)

Geometric parameters (Å, °)

1			
Cu1—Cl1	2.2816 (3)	C16—H16A	0.943 (16)
Cu1—Cl2	2.2351 (3)	C16—H16B	0.938 (16)
Cu1—Cl3	2.2539 (3)	N21—C21	1.4903 (16)
Cu1—Cl4	2.2475 (3)	N21—C22	1.4992 (16)
N11—C11	1.4904 (16)	N21—C26	1.5024 (16)
N11—C16	1.4990 (15)	N21—H21	0.833 (16)
N11—C12	1.4995 (16)	C21—H21A	0.968 (19)
N11—H11	0.895 (17)	C21—H21B	0.97 (2)
C11—H11A	0.946 (18)	C21—H21C	0.945 (18)
C11—H11B	0.957 (17)	C22—C23	1.5160 (19)
C11—H11C	0.96 (2)	C22—H22A	0.934 (17)
C12—C13	1.5148 (18)	C22—H22B	0.941 (18)
C12—H12A	0.913 (18)	C23—C24	1.522 (2)
C12—H12B	0.932 (17)	C23—H23A	0.955 (19)
C13—C14	1.5233 (19)	С23—Н23В	0.964 (19)
C13—H13A	0.946 (18)	C24—C25	1.523 (2)
C13—H13B	0.956 (18)	C24—H24A	1.03 (2)
C14—C15	1.523 (2)	C24—H24B	0.99 (2)
C14—H14A	0.970 (19)	C25—C26	1.515 (2)
C14—H14B	0.966 (19)	C25—H25A	0.938 (18)
C15—C16	1.5121 (19)	С25—Н25В	0.925 (18)
C15—H15A	0.927 (18)	C26—H26A	0.948 (16)
C15—H15B	0.99 (2)	C26—H26B	0.964 (16)
$C_{11} = C_{11} = C_{12}$	100 615 (11)	N11H16B	105 4 (10)
$C_{11} = C_{11} = C_{12}$	100.013(11) 98 880 (12)	C_{15} C_{16} H_{16B}	103.4(10) 113.0(10)
$C_{11} = C_{11} = C_{13}$	128 967 (13)	H16A C16 H16B	110.0(10) 110.4(13)
$C_{11}^{12} = C_{11}^{11} = C_{13}^{12}$	128.907 (13) 135.003 (13)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	110.4(13) 110.98(10)
C_{12} $-C_{u1}$ C_{13}	100.840(12)	$C_{21} = N_{21} = C_{22}$	111.69 (10)
C_{12} C_{u1} C_{14}	100.840(12) 07.568(12)	$C_{21} = N_{21} = C_{20}$	111.09(10) 111.15(10)
C_{11} N_{11} C_{16}	97.508 (12) 110.68 (10)	C_{22} N21 H21	105.7(10)
$C_{11} = N_{11} = C_{10}$	110.03(10) 111.41(10)	$C_{21} = N_{21} = H_{21}$ $C_{22} = N_{21} = H_{21}$	105.7(11) 105.7(11)
C16 N11 $C12$	111.41(10) 111.37(10)	$C_{22} = N_{21} = M_{21}$	105.7(11) 111.4(11)
$C_{11} = N_{11} = C_{12}$	107.3(10)	$N_{21} = N_{21} = H_{21}$	111.4(11) 1004(11)
C16 N11 H11	107.3(10) 108.0(10)	N21—C21—H21R N21—C21—H21B	109.4(11) 108.1(11)
C12 N11 H11	103.0(10) 107.9(10)	$H_{21} = C_{21} = H_{21B}$	108.1(11) 109.0(15)
N11 C11 H11A	107.9(10) 107.3(11)	$\frac{1121A}{C21} = \frac{1121D}{H21C}$	109.0(13) 108.8(11)
N11 C11 H11B	107.9(11) 107.9(10)	$H_{21} = C_{21} = H_{21}C$	106.0(11) 106.0(15)
H11A C11 H11B	107.9(10) 112.6(15)	H21R C21 H21C	100.9(15) 114.5(16)
N11_C11_H11C	108 3 (12)	N21_C22_C23	110.69 (10)
H11A_C11_H11C	100.3(12) 110.8(16)	N21_C22_U23	104.8 (10)
HIIR CII HIIC	100.0 (10)	1121 - C22 - 1122A C23 C22 H22A	113 6 (10)
$\frac{1110}{110} - \frac{11}{110} - \frac$	109.9 (13)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	115.0(10) 106.0(11)
N11-012-013	110.00 (10)	$n \ge 1 - C \ge 2 - \Pi \ge 2 D$	100.0 (11)

N11—C12—H12A	105.7 (11)	C23—C22—H22B	111.0 (11)
C13—C12—H12A	114.4 (11)	H22A—C22—H22B	110.3 (14)
N11—C12—H12B	106.7 (10)	C22—C23—C24	111.97 (12)
C13—C12—H12B	113.3 (10)	С22—С23—Н23А	107.8 (11)
H12A—C12—H12B	105.4 (15)	С24—С23—Н23А	112.2 (11)
C12—C13—C14	111.60 (11)	С22—С23—Н23В	107.6 (11)
C12—C13—H13A	109.2 (10)	С24—С23—Н23В	111.7 (10)
C14—C13—H13A	111.6 (10)	H23A—C23—H23B	105.3 (15)
C12—C13—H13B	107.7 (10)	C23—C24—C25	110.59 (12)
C14—C13—H13B	111.1 (10)	C23—C24—H24A	110.3 (11)
H13A—C13—H13B	105.4 (14)	C25—C24—H24A	106.9 (11)
C15—C14—C13	109.47 (11)	C23—C24—H24B	109.7 (12)
C15—C14—H14A	107.4 (11)	C25—C24—H24B	108.0 (12)
C13—C14—H14A	110.8 (11)	H24A—C24—H24B	111.3 (16)
C15—C14—H14B	111.1 (11)	C26—C25—C24	111.17 (11)
C13—C14—H14B	108.3 (11)	С26—С25—Н25А	107.1 (11)
H14A—C14—H14B	109.9 (15)	С24—С25—Н25А	112.2 (11)
C16—C15—C14	111.15 (12)	С26—С25—Н25В	108.9 (11)
C16—C15—H15A	107.8 (12)	C24—C25—H25B	111.3 (11)
C14—C15—H15A	111.8 (11)	H25A—C25—H25B	106.1 (15)
C16—C15—H15B	109.5 (12)	N21—C26—C25	109.82 (11)
C14—C15—H15B	110.5 (12)	N21—C26—H26A	105.2 (9)
H15A—C15—H15B	106.0 (16)	С25—С26—Н26А	112.5 (10)
N11—C16—C15	110.09 (10)	N21—C26—H26B	105.5 (9)
N11—C16—H16A	105.8 (9)	C25—C26—H26B	113.7 (9)
C15—C16—H16A	111.7 (9)	H26A—C26—H26B	109.5 (13)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D···A	D—H···A
N11—H11…Cl1	0.895 (16)	2.331 (16)	3.188 (1)	160 (1)
N21—H21···Cl3	0.833 (17)	2.508 (16)	3.280(1)	155 (1)
N21—H21····Cl4	0.833 (17)	2.821 (17)	3.364 (1)	125 (1)