

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

N-(Pyridin-2-ylmethyl)pyridin-2-amine

Suk-Hee Moon,^a Tae Ho Kim^{b*} and Ki-Min Park^{b*}

^aDepartment of Food & Nutrition, Kyungnam College of Information and Technology, Busan 616-701, Republic of Korea, and ^bDepartment of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University, Jinju 660-701, Republic of Korea

Correspondence e-mail: thkim@gnu.ac.kr, kmpark@gnu.ac.kr

Received 3 May 2011; accepted 4 May 2011

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.006 Å; R factor = 0.054; wR factor = 0.124; data-to-parameter ratio = 8.6.

The title compound, $C_{11}H_{11}N_3$, crystallizes with two molecules (*A* and *B*) in the asymmetric unit. The geometries of both molecules are very similar, with the exception of the torsion angles of the inter-ring chains; the values for C-N-C-C are 67.4 (5) and -69.3 (5)° for molecules *A* and *B*, respectively. The dihedral angles between the pyridyl ring planes are 84.0 (2) and 83.2 (2)° for molecules *A* and *B*, respectively. In the crystal, weak intermolecular $N-H\cdots N$ hydrogen bonds and $C-H\cdots\pi$ interactions contribute to the stabilization of the packing.

Related literature

For details of the synthesis, see: Foxon *et al.* (2002). For the crystal structures of Cu complexes of the title compound, see: Lee *et al.* (2008).

Experimental

Crystal data $C_{11}H_{11}N_3$ $M_r = 185.23$

Orthorhombic, $Pca2_1$ a = 14.5434 (14) Å b = 5.8198 (6) Åc = 23.045 (2) Å $V = 1950.5 (3) \text{ Å}^3$ Z = 8

Data collection

Bruker APEXII CCD diffractometer 11034 measured reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.054$ $wR(F^2) = 0.124$ S = 1.102182 reflections 253 parameters 1814 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.060$

 $\begin{array}{l} 1 \mbox{ restraint} \\ H\mbox{-atom parameters constrained} \\ \Delta \rho_{max} = 0.20 \mbox{ e } \mbox{ } \mbox{A}^{-3} \\ \Delta \rho_{min} = -0.26 \mbox{ e } \mbox{ } \mbox{A}^{-3} \end{array}$

Table 1

Hydrogen-bond geometry (Å, °).

Cg1, Cg2 and Cg3 are the centroids of the N4/C12–C16, N2/C7–C11 and N5/C18–C22 rings, respectively.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
N3−H3 <i>N</i> ···N4	0.89	2.14	3.019 (5)	172
N6−H6 <i>N</i> ···N1	0.93	2.10	3.012 (5)	168
$C1 - H1 \cdots Cg1^i$	0.95	2.77	3.53	137
$C3-H3\cdots Cg2^{ii}$	0.95	2.85	3.69	147
$C14-H14\cdots Cg3^{iii}$	0.95	2.65	3.51	149

Symmetry codes: (i) $x + \frac{1}{2}, -y + 2, z$; (ii) $x + \frac{1}{2}, -y + 1, z$; (iii) $x - \frac{1}{2}, -y + 2, z$.

Data collection: *APEX2* (Bruker, 2006); cell refinement: *SAINT* (Bruker, 2006); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL* and *DIAMOND* (Brandenburg, 1998); software used to prepare material for publication: *SHELXTL*.

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (No. 2010–0022675).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WN2432).

References

Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany. Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Foxon, S. P., Walter, O. & Schindler, S. (2002). Eur. J. Inorg. Chem. pp. 111-121.

Lee, S., Park, S., Kang, Y., Moon, S.-H., Lee, S. S. & Park, K.-M. (2008). Bull. Korean Chem. Soc. 29, 1811–1814.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

T = 173 K

Mo $K\alpha$ radiation $\mu = 0.08 \text{ mm}^{-1}$

 $0.45 \times 0.30 \times 0.30$ mm

2182 independent reflections

supporting information

Acta Cryst. (2011). E67, o1355 [doi:10.1107/S1600536811016874]

N-(Pyridin-2-ylmethyl)pyridin-2-amine

Suk-Hee Moon, Tae Ho Kim and Ki-Min Park

S1. Comment

The title compound was prepared for use as a multidentate ligand in the formation of metallosupramolecules according to a published literature procedure (Foxon *et al.*, 2002). The crystal structures of Cu complexes of the title compound have already been reported (Lee *et al.*, 2008). However the crystal structure of the free form has not yet been reported.

The title compound (Scheme, Fig. 1) crystallized in the non-centrosymmetric space group $Pca2_1$. The asymmetric unit contains two crystallographically independent molecules (A and B). The geometries of both molecules are very similar, with the exception of the torsion angles of the inter-ring chains; the value for C5—N3—C6—C7 is 67.4 (5) ° and for C16 —N6—C17—C18 is -69.3 (5) °. The dihedral angles between the pyridyl ring planes are 84.0 (2)° and 83.2 (2) ° for molecules A and B, respectively.

In the crystal structure, the amine groups of both molecules are involved in pair-wise intermolecular N—H···N interactions, leading to the formation of dimers (Table 1, Fig. 1, Fig. 2). Weak intermolecular C—H··· π interactions are also present (Fig. 2). These intermolecular interactions contribute to the stabilization of the packing.

S2. Experimental

The title compound was synthesized according to a literature procedure (Foxon *et al.*, 2002). Slow evaporation of a solution in CH₃OH gave single crystals suitable for X-ray analysis.

S3. Refinement

All H atoms except those of the amine groups were positioned geometrically and refined using a riding model, with d(C --H) = 0.95 Å for Csp²---H and 0.99 Å for methylene C---H. H atoms of the amine groups were located in difference electron density maps and then refined using a riding model with N---H = 0.89 Å and 0.93 Å. For all H atoms $U_{iso}(H) = 1.2U_{eq}(C,N)$. In the absence of significant anomalous scattering effects, Friedel pairs were merged.

Figure 1

The structure of the asymmetric unit of the title compound, showing displacement ellipsoids drawn at the 50% probability level. Dashed lines indicate hydrogen bonds

Figure 2

Crystal packing of the title compound with intermolecular N—H···N hydrogen bonds and C—H··· π interactions shown as dashed lines. H atoms not involved in intermolecular interactions have been omitted for clarity. *Cg*1 *Cg*2 and *Cg*3 are the centroids of the N4/C12–C16, N2/C7–C11 and N5/C18–C22 rings, respectively. (Symmetry codes: i) x + 1/2, -y + 2, z; ii) x + 1/2, -y + 1, z; iii) x - 1/2, -y + 2, z; iv) x - 1/2, -y + 1, z)

N-(Pyridin-2-ylmethyl)pyridin-2-amine

Crystal data $C_{11}H_{11}N_3$ $M_r = 185.23$ Orthorhombic, $Pca2_1$ Hall symbol: P 2c -2ac a = 14.5434 (14) Å b = 5.8198 (6) Å c = 23.045 (2) Å V = 1950.5 (3) Å³ Z = 8

F(000) = 784 $D_x = 1.262 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 4097 reflections $\theta = 2.3-27.2^{\circ}$ $\mu = 0.08 \text{ mm}^{-1}$ T = 173 KBlock, colorless $0.45 \times 0.30 \times 0.30 \text{ mm}$ Data collection

Bruker APEXII CCD diffractometer	1814 reflections with $I > 2\sigma(I)$ $R_{int} = 0.060$
Radiation source: fine-focus sealed tube	$\theta_{\rm max} = 27.0^\circ, \ \theta_{\rm min} = 2.8^\circ$
Graphite monochromator	$h = -18 \rightarrow 18$
φ and ω scans	$k = -7 \rightarrow 7$
11034 measured reflections	$l = -21 \rightarrow 29$
2182 independent reflections	
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.054$	Hydrogen site location: inferred from
$wR(F^2) = 0.124$	neighbouring sites
S = 1.10	H-atom parameters constrained

where $P = (F_0^2 + 2F_c^2)/3$ 253 parameters $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.20 \text{ e } \text{\AA}^{-3}$ Primary atom site location: structure-invariant direct methods $\Delta \rho_{\rm min} = -0.26 \ {\rm e} \ {\rm \AA}^{-3}$

Special details

2182 reflections

1 restraint

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

 $w = 1/[\sigma^2(F_o^2) + (0.0449P)^2 + 1.1368P]$

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	y	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
N1	0.4906 (2)	0.8350 (5)	0.22165 (14)	0.0310 (7)	
N2	0.3345 (2)	0.2870 (6)	0.38908 (15)	0.0372 (8)	
N3	0.4145 (3)	0.5075 (5)	0.24813 (15)	0.0324 (8)	
H3N	0.3691	0.5445	0.2242	0.039*	
C1	0.5596 (3)	0.9839 (7)	0.2290 (2)	0.0361 (10)	
H1	0.5633	1.1100	0.2029	0.043*	
C2	0.6248 (3)	0.9682 (8)	0.2711 (2)	0.0416 (12)	
H2	0.6728	1.0781	0.2741	0.050*	
C3	0.6183 (3)	0.7845 (8)	0.30973 (18)	0.0398 (10)	
Н3	0.6617	0.7693	0.3403	0.048*	
C4	0.5493 (3)	0.6254 (7)	0.30356 (17)	0.0346 (9)	
H4	0.5449	0.4978	0.3291	0.041*	
C5	0.4854 (2)	0.6557 (6)	0.25870 (16)	0.0273 (8)	
C6	0.3857 (3)	0.3394 (6)	0.29081 (18)	0.0332 (9)	
H6A	0.4400	0.2470	0.3021	0.040*	
H6B	0.3411	0.2340	0.2723	0.040*	
C7	0.3424 (2)	0.4366 (6)	0.34538 (18)	0.0256 (8)	

C8	0.3101 (3)	0.6580 (6)	0.3489 (2)	0.0435 (11)
H8	0.3184	0.7623	0.3176	0.052*
C9	0.2650 (4)	0.7265 (7)	0.3993 (2)	0.0528 (13)
H9	0.2412	0.8779	0.4026	0.063*
C10	0.2553 (3)	0.5742 (7)	0.4439 (2)	0.0421 (11)
H10	0.2245	0.6160	0.4787	0.050*
C11	0.2916 (3)	0.3591 (8)	0.43671 (19)	0.0424 (10)
H11	0.2857	0.2537	0.4680	0.051*
N4	0.2551 (2)	0.6738 (5)	0.17549 (13)	0.0287 (7)
N5	0.4108 (2)	1.2720 (5)	0.01448 (14)	0.0331 (7)
N6	0.3312 (3)	1.0014 (5)	0.14957 (16)	0.0347 (9)
H6N	0.3770	0.9641	0.1761	0.042*
C12	0.1866 (3)	0.5246 (7)	0.1674 (2)	0.0336 (10)
H12	0.1807	0.4016	0.1943	0.040*
C13	0.1236 (3)	0.5373 (7)	0.1227 (2)	0.0396 (11)
H13	0.0763	0.4260	0.1184	0.048*
C14	0.1323 (3)	0.7189 (8)	0.08444 (18)	0.0417 (10)
H14	0.0906	0.7338	0.0529	0.050*
C15	0.2011 (3)	0.8777 (7)	0.09179 (17)	0.0359 (9)
H15	0.2072	1.0033	0.0657	0.043*
C16	0.2625 (2)	0.8514 (6)	0.13870 (17)	0.0282 (8)
C17	0.3582 (3)	1.1827 (6)	0.11029 (17)	0.0323 (8)
H17A	0.4007	1.2869	0.1311	0.039*
H17B	0.3027	1.2728	0.1001	0.039*
C18	0.4040 (2)	1.1067 (6)	0.05466 (17)	0.0255 (8)
C19	0.4391 (3)	0.8888 (6)	0.0460 (2)	0.0381 (10)
H19	0.4316	0.7733	0.0747	0.046*
C20	0.4848 (3)	0.8417 (7)	-0.0045 (2)	0.0487 (12)
H20	0.5108	0.6939	-0.0106	0.058*
C21	0.4930 (4)	1.0085 (8)	-0.0462 (2)	0.0458 (12)
H21	0.5244	0.9797	-0.0816	0.055*
C22	0.4541 (3)	1.2192 (7)	-0.03478 (18)	0.0387 (9)
H22	0.4583	1.3345	-0.0639	0.046*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0295 (17)	0.0376 (17)	0.0260 (17)	-0.0019 (14)	0.0012 (13)	0.0025 (14)
N2	0.043 (2)	0.0342 (17)	0.0342 (18)	0.0037 (15)	-0.0029 (16)	0.0128 (15)
N3	0.030 (2)	0.0433 (18)	0.024 (2)	-0.0028 (14)	0.0009 (17)	0.0062 (14)
C1	0.032 (2)	0.037 (2)	0.040 (3)	-0.0005 (16)	0.005 (2)	-0.0010 (18)
C2	0.028 (2)	0.053 (3)	0.044 (3)	-0.0048 (19)	0.002 (2)	-0.008(2)
C3	0.024 (2)	0.061 (3)	0.034 (2)	0.0052 (18)	-0.0063 (17)	-0.005 (2)
C4	0.0283 (19)	0.050 (2)	0.025 (2)	0.0041 (18)	0.0005 (16)	0.0060 (18)
C5	0.0246 (18)	0.0343 (18)	0.0230 (18)	0.0020 (15)	0.0050 (15)	-0.0028 (16)
C6	0.035 (2)	0.0266 (17)	0.038 (2)	-0.0008 (16)	-0.0008 (18)	0.0007 (18)
C7	0.0192 (17)	0.0283 (17)	0.0292 (19)	-0.0044 (14)	-0.0030 (16)	0.0050 (15)
C8	0.047 (3)	0.0277 (19)	0.056 (3)	0.0024 (18)	0.016 (2)	0.014 (2)

С9	0.056 (3)	0.033 (2)	0.069 (3)	0.000 (2)	0.026 (3)	-0.003 (2)
C10	0.039 (2)	0.052 (2)	0.036 (3)	-0.008 (2)	0.009 (2)	-0.008 (2)
C11	0.043 (2)	0.055 (2)	0.029 (2)	0.001 (2)	0.0033 (19)	0.011 (2)
N4	0.0276 (17)	0.0320 (15)	0.0265 (17)	0.0025 (13)	0.0021 (13)	0.0006 (13)
N5	0.0383 (18)	0.0299 (16)	0.0310 (17)	0.0081 (14)	-0.0028 (15)	0.0027 (15)
N6	0.032 (2)	0.0382 (18)	0.034 (2)	-0.0037 (14)	-0.0074 (19)	0.0087 (15)
C12	0.028 (2)	0.0363 (19)	0.037 (2)	0.0048 (16)	0.009 (2)	-0.0018 (17)
C13	0.025 (2)	0.051 (2)	0.044 (3)	0.0010 (18)	0.001 (2)	-0.012 (2)
C14	0.027 (2)	0.067 (3)	0.031 (2)	0.0088 (19)	-0.0016 (17)	-0.004 (2)
C15	0.0261 (19)	0.048 (2)	0.033 (2)	0.0044 (17)	-0.0009 (17)	0.0066 (19)
C16	0.0249 (18)	0.0361 (18)	0.0237 (18)	0.0085 (15)	0.0019 (15)	0.0006 (16)
C17	0.035 (2)	0.0317 (19)	0.0303 (19)	0.0053 (16)	0.0031 (17)	0.0011 (17)
C18	0.0223 (16)	0.0235 (16)	0.0306 (19)	-0.0014 (15)	-0.0085 (16)	0.0005 (16)
C19	0.034 (2)	0.0250 (18)	0.055 (3)	0.0012 (16)	0.011 (2)	0.0082 (19)
C20	0.047 (3)	0.0262 (19)	0.073 (3)	0.0009 (18)	0.022 (2)	-0.008 (2)
C21	0.042 (3)	0.052 (2)	0.043 (3)	-0.0035 (19)	0.012 (2)	-0.014 (2)
C22	0.045 (2)	0.046 (2)	0.0252 (19)	-0.0010 (19)	-0.0057 (19)	0.0028 (18)

Geometric parameters (Å, °)

1.336 (5)	N4—C12	1.335 (5)
1.350 (5)	N4—C16	1.341 (5)
1.331 (6)	N5	1.334 (5)
1.337 (5)	N5	1.339 (5)
1.365 (5)	N6C16	1.351 (5)
1.449 (5)	N6—C17	1.445 (5)
0.8867	N6—H6N	0.9301
1.360 (7)	C12—C13	1.382 (6)
0.9500	C12—H12	0.9500
1.394 (7)	C13—C14	1.382 (6)
0.9500	C13—H13	0.9500
1.373 (6)	C14—C15	1.373 (6)
0.9500	C14—H14	0.9500
1.401 (5)	C15—C16	1.410 (5)
0.9500	C15—H15	0.9500
1.516 (6)	C17—C18	1.511 (6)
0.9900	C17—H17A	0.9900
0.9900	C17—H17B	0.9900
1.374 (5)	C18—C19	1.381 (5)
1.391 (7)	C19—C20	1.367 (6)
0.9500	C19—H19	0.9500
1.365 (7)	C20—C21	1.372 (7)
0.9500	C20—H20	0.9500
1.368 (6)	C21—C22	1.376 (6)
0.9500	C21—H21	0.9500
0.9500	C22—H22	0.9500
117.6 (3)	C12—N4—C16	118.2 (3)
	$\begin{array}{c} 1.336 (5) \\ 1.350 (5) \\ 1.350 (5) \\ 1.331 (6) \\ 1.337 (5) \\ 1.365 (5) \\ 1.449 (5) \\ 0.8867 \\ 1.360 (7) \\ 0.9500 \\ 1.394 (7) \\ 0.9500 \\ 1.373 (6) \\ 0.9500 \\ 1.401 (5) \\ 0.9500 \\ 1.516 (6) \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 1.374 (5) \\ 1.391 (7) \\ 0.9500 \\ 1.365 (7) \\ 0.9500 \\ 1.368 (6) \\ 0.9500 \\ 1.368$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

C11—N2—C7	117.2 (3)	C22—N5—C18	117.2 (3)
C5—N3—C6	121.6 (3)	C16—N6—C17	123.8 (4)
C5—N3—H3N	121.3	C16—N6—H6N	120.1
C6—N3—H3N	111.7	C17—N6—H6N	112.9
N1—C1—C2	124.8 (4)	N4—C12—C13	124.4 (4)
N1-C1-H1	117.6	N4—C12—H12	117.8
C2-C1-H1	117.6	C13—C12—H12	117.8
C1 - C2 - C3	117.4 (4)	C_{12} C_{13} C_{14}	117.1 (4)
C1 - C2 - H2	121.3	C_{12} C_{13} H_{13}	121.4
C_{3} C_{2} H_{2}	121.3	C_{14} C_{13} H_{13}	121.4
C_{1} C_{2} C_{2} C_{2}	121.3 120.0(4)	C_{15} C_{14} C_{13}	121.4 120.2 (4)
$C_4 = C_3 = C_2$	120.0 (4)	$C_{15} = C_{14} = C_{15}$	120.2 (4)
$C_{1} = C_{2} = H_{2}$	120.0	C_{13} C_{14} U_{14}	119.9
$C_2 = C_3 = H_3$	120.0	C13 - C14 - H14	119.9
$C_3 = C_4 = C_3$	110.3 (4)	C14 - C15 - C16	118.9 (4)
C3—C4—H4	120.8	C14—C15—H15	120.6
C5—C4—H4	120.8	C16—C15—H15	120.6
N1—C5—N3	114.7 (3)	N4—C16—N6	116.1 (3)
N1—C5—C4	121.7 (3)	N4—C16—C15	121.2 (3)
N3—C5—C4	123.5 (3)	N6—C16—C15	122.7 (4)
N3—C6—C7	115.5 (3)	N6—C17—C18	115.9 (3)
N3—C6—H6A	108.4	N6—C17—H17A	108.3
С7—С6—Н6А	108.4	C18—C17—H17A	108.3
N3—C6—H6B	108.4	N6—C17—H17B	108.3
С7—С6—Н6В	108.4	C18—C17—H17B	108.3
H6A—C6—H6B	107.5	H17A—C17—H17B	107.4
N2—C7—C8	122.5 (4)	N5-C18-C19	122.2 (4)
N2—C7—C6	114.7 (3)	N5-C18-C17	114.1 (3)
C8—C7—C6	122.8 (4)	C19—C18—C17	123.7 (3)
С7—С8—С9	118.6 (4)	C20-C19-C18	119.1 (4)
С7—С8—Н8	120.7	С20—С19—Н19	120.5
С9—С8—Н8	120.7	С18—С19—Н19	120.5
C10—C9—C8	119.4 (4)	C19—C20—C21	119.8 (4)
С10—С9—Н9	120.3	С19—С20—Н20	120.1
С8—С9—Н9	120.3	C21—C20—H20	120.1
C9-C10-C11	1176(4)	C_{20} C_{21} C_{22}	117 4 (4)
C9—C10—H10	121.2	C_{20} C_{21} H_{21}	121.3
C11—C10—H10	121.2	C^{22} C^{21} H^{21}	121.3
N_{2} C_{11} C_{10}	121.2 124.7(4)	N5-C22-C21	121.3 124.2(4)
N2 C11 H11	124.7 (4)	N5 C22 H22	117.0
C_{10} C_{11} H_{11}	117.7	C_{21} C_{22} H_{22}	117.9
	11/./	021-022-1122	11/.9
C5 N1 C1 C2	0.0 (6)	N4 C12 C12 C14	-0.8(6)
$\begin{array}{c} \text{C}_{3} \\ \text{N1} \\ \text{C1} \\ \text{C2} \\ \text{C3} \\ \text{C4} \\ \text{C4} \\ \text{C5} \\ C5$	-0.8(7)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-0.2(6)
111 - 01 - 02 - 03	0.0(7)	$C_{12} = C_{13} = C_{14} = C_{15}$	0.2(0)
$C_1 - C_2 - C_3 - C_4$	1.3 (0)	$C12 \qquad N4 \qquad C14 \qquad N6$	0.3(0)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-1.3(0)	C12 = N4 = C16 = C15	$1/\delta.1(4)$
C1 = N1 = C5 = C4	-1/8.8(4)	C12—N4— $C10$ — $C15$	-1.0(3)
CI - NI - C5 - C4	0.2 (5)	C1/-N6-C16-N4	1/0.6 (3)
C6-N3-C5-N1	-165.2(3)	CT/N6C16C15	-9.7 (6)

C6—N3—C5—C4	15.8 (6)	C14—C15—C16—N4	0.6 (6)
C3—C4—C5—N1	0.5 (6)	C14—C15—C16—N6	-179.0 (4)
C3—C4—C5—N3	179.3 (4)	C16—N6—C17—C18	-69.3 (5)
C5—N3—C6—C7	67.4 (5)	C22-N5-C18-C19	-0.7 (6)
C11—N2—C7—C8	1.5 (6)	C22—N5—C18—C17	177.2 (3)
C11—N2—C7—C6	-175.8 (3)	N6-C17-C18-N5	166.9 (3)
N3—C6—C7—N2	-166.2 (3)	N6-C17-C18-C19	-15.2 (5)
N3—C6—C7—C8	16.5 (5)	N5-C18-C19-C20	2.1 (6)
N2—C7—C8—C9	-2.0(7)	C17—C18—C19—C20	-175.6 (4)
C6—C7—C8—C9	175.1 (4)	C18—C19—C20—C21	-1.7 (7)
C7—C8—C9—C10	1.0 (8)	C19—C20—C21—C22	0.1 (7)
C8—C9—C10—C11	0.4 (7)	C18—N5—C22—C21	-1.1 (6)
C7—N2—C11—C10	0.0 (7)	C20-C21-C22-N5	1.4 (7)
C9—C10—C11—N2	-1.0 (7)	C5—N3—C6—C7	67.4 (5)
C16—N4—C12—C13	1.7 (6)	C16—N6—C17—C18	-69.3 (5)

Hydrogen-bond geometry (Å, °)

Cg1, Cg2 and Cg3 are the centroids of the N4/C12–C16, N2/C7–C11 and N5/C18–C22 rings, respectively.

D—H···A	<i>D</i> —Н	H···A	$D^{\dots}A$	D—H··· A
N3—H3 <i>N</i> ···N4	0.89	2.14	3.019 (5)	172
N6—H6 <i>N</i> ···N1	0.93	2.10	3.012 (5)	168
$C1$ — $H1$ ··· $Cg1^i$	0.95	2.77	3.53	137
С3—Н3…Сg2 ^{іі}	0.95	2.85	3.69	147
C14—H14…Cg3 ⁱⁱⁱ	0.95	2.65	3.51	149

Symmetry codes: (i) *x*+1/2, -*y*+2, *z*; (ii) *x*+1/2, -*y*+1, *z*; (iii) *x*-1/2, -*y*+2, *z*.