metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Aqua­(2,2′-di­amino-4,4′-bi-1,3-thia­zole-κ2N3,N3′)(thio­di­acetato-κ3O,S,O′)nickel(II) monohydrate

aDepartment of Chemistry, Shanghai University, People's Republic of China
*Correspondence e-mail: r5744011@yahoo.com.cn

(Received 10 April 2011; accepted 21 April 2011; online 7 May 2011)

In the title compound, [Ni(C4H4O4S)(C6H6N4S2)(H2O)]·H2O, the NiII cation assumes a distorted octa­hedral coordination geometry formed by a diamino­bithia­zole (DABT) ligand, a thio­diacetate (TDA) dianion and a coordinated water mol­ecule. The tridentate TDA chelates to the Ni cation in a facial configuration, and both chelating rings display the envelope conformations. The two thia­zole rings of the DABT ligand are twisted with respect to each other, making a dihedral angle of 9.96 (9)°. Extensive O—H⋯O, N—H⋯O and weak C—H⋯O hydrogen bonding is present in the crystal structure.

Related literature

For general background to diamino­bithia­zole complexes, see: Waring (1981[Waring, M. J. (1981). Annu. Rev. Biochem. 50, 159-192.]); Fisher et al. (1985[Fisher, L. M., Kurod, R. & Sakai, T. (1985). Biochemistry, 24, 3199-3207.]). For the synthesis, see: Erlenmeyer (1948[Erlenmeyer, H. (1948). Helv. Chim. Acta, 31, 206-210.]). For related structures, see: Liu et al. (2002[Liu, J.-G., Xu, D.-J., Xu, Y.-Z., Wu, J.-Y. & Chiang, M. Y. (2002). Acta Cryst. E58, o929-o930.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C4H4O4S)(C6H6N4S2)(H2O)]·H2O

  • Mr = 441.14

  • Monoclinic, P 21 /c

  • a = 11.856 (4) Å

  • b = 12.197 (4) Å

  • c = 12.507 (4) Å

  • β = 114.622 (3)°

  • V = 1644.3 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.60 mm−1

  • T = 295 K

  • 0.30 × 0.24 × 0.18 mm

Data collection
  • Bruker SMART 1000 diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.638, Tmax = 0.750

  • 8263 measured reflections

  • 2888 independent reflections

  • 2627 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.022

  • wR(F2) = 0.061

  • S = 1.06

  • 2888 reflections

  • 217 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Selected bond lengths (Å)

Ni—O1 2.0763 (14)
Ni—O21 2.0944 (14)
Ni—O23 2.0357 (14)
Ni—N11 2.0634 (15)
Ni—N13 2.1094 (16)
Ni—S21 2.4461 (7)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O1W 0.85 1.91 2.7540 173
O1—H1B⋯O22i 0.79 1.97 2.7399 162
N12—H12A⋯O24ii 0.81 2.09 2.8785 166
N12—H12B⋯O23 0.87 2.09 2.8807 152
N14—H14A⋯O21i 0.83 2.20 2.9378 149
O1W—H1WA⋯O24i 0.85 2.01 2.8616 177
O1W—H1WB⋯O22iii 0.84 1.91 2.7493 173
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) -x+1, -y, -z; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2004[Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Winsonsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Winsonsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Transition metal complexes of DABT have shown potential application in some fields, such as the effective inhibitors of DNA synthesis of the tumor cells (Waring, 1981; Fisher et al., 1985). As part of a series of investigations of metal complexes of DABT, the title NiII complex, (I), was prepared in the laboratory and its X-ray structure is reported here.

The molecular structure of the title compound is shown in Fig. 1. The complex has a distorted octahedral coordination geometry formed by one of DABT, one of TDA and one of coordinated water.

The tridentate TDA chelates to NiII atom in an envelope configuration. Two carboxyl groups of TDA monodentately coordinate to the NiII atom. Uncoordinated carboxyl oxygen atoms O22 and O24 are hydrogen bonded to the hydrogen atoms of coordinated water of the neighboring complex molecule, as shown in Fig. 2 and Table 1. Othervize, coordinated carboxyl oxygen atom O1 is hydrogen bonded to the hydrogen atoms of lattice watter molecule of the neighboring complex molecule and within complex respectively. The atom O22 and O24 hydrogen bonnded to amino group of DABT of neighboring complex and lattice water within complex respectively.

The DABT chelates to the NiII atom with a near coplanar configuration, the angle of two thiazole rings being 9.96 (11) °. The bond distance 1.462 (3) Å of C13—C14 correspond to C—C single bonds between sp2-hybridized C atoms (C—C = 1.483 Å). The CN(amino) bond (C11—N12 = 1.323 (2) Å) distance is shorter than 1.354 (2) Å in free DABT and the other one (C16—N14 =1.353 (3) Å) distance is similar to 1.354 (2) Å in free DABT (Liu et al., 2002). The C—N bond within thiazole ring one distance (C11—N11 = 1.323 (2) Å) is longer than 1.309 (2) Å and the other one (C16—N13 = 1.313 (2) Å) is similar to 1.309 (2) Å in free DABT within thiazole rings (Liu et al., 2002), this suggests the existence of electron delocalization within one thiazole ring of DABT.

Related literature top

For general background to diaminobithiazole complexes, see: Waring (1981); Fisher et al. (1985). For the synthesis, see: Erlenmeyer (1948). For related structures, see: Liu et al. (2002).

Experimental top

The DABT was prepared according to the literature (Erlenmeyer, 1948). An aqueous solution (20 ml) containing DABT (1 mmol) and NiCl2 (1 mmol) was mixed with an aqueous solution (10 ml) of thiodiacetic acid (1 mmol) and NaOH (2 mmol). The mixture was refluxed for 5 h. The solution was filtered after cooling to room temperature. Green single crystals were obtained from the filtrate after 7 d.

Refinement top

H atoms on carbon atoms were placed in calculated positions, with C—H distances = 0.93 Å (thiazole ring), and were included in the final cycles of refinement in riding mode with Uiso(H) = 1.2Ueq(C). Amino H atoms and water H atoms were located in a difference Fourier map and included in the structure factor calculations with fixed positional, and Uiso(H) = 1.2Ueq(N) and 1.5Ueq(O).

Computing details top

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with 30% probability displacement ellipsoids, dashed lines showing hydrogen bonding.
[Figure 2] Fig. 2. A molecular packing diagram, dashed lines showing the hydrogen bonding between NiII complex molecules.
Aqua(2,2'-diamino-4,4'-bi-1,3-thiazole- κ2N3,N3')(thiodiacetato- κ3O,S,O')nickel(II) monohydrate top
Crystal data top
[Ni(C4H4O4S)(C6H6N4S2)(H2O)]·H2OF(000) = 904
Mr = 441.14Dx = 1.782 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2650 reflections
a = 11.856 (4) Åθ = 2.0–25.0°
b = 12.197 (4) ŵ = 1.60 mm1
c = 12.507 (4) ÅT = 295 K
β = 114.622 (3)°Prism, green
V = 1644.3 (9) Å30.30 × 0.24 × 0.18 mm
Z = 4
Data collection top
Bruker SMART 1000
diffractometer
2888 independent reflections
Radiation source: fine-focus sealed tube2627 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
ω scansθmax = 25.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1414
Tmin = 0.638, Tmax = 0.750k = 1014
8263 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.061H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0349P)2 + 0.4782P]
where P = (Fo2 + 2Fc2)/3
2888 reflections(Δ/σ)max = 0.001
217 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.38 e Å3
Crystal data top
[Ni(C4H4O4S)(C6H6N4S2)(H2O)]·H2OV = 1644.3 (9) Å3
Mr = 441.14Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.856 (4) ŵ = 1.60 mm1
b = 12.197 (4) ÅT = 295 K
c = 12.507 (4) Å0.30 × 0.24 × 0.18 mm
β = 114.622 (3)°
Data collection top
Bruker SMART 1000
diffractometer
2888 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2627 reflections with I > 2σ(I)
Tmin = 0.638, Tmax = 0.750Rint = 0.016
8263 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0220 restraints
wR(F2) = 0.061H-atom parameters constrained
S = 1.06Δρmax = 0.23 e Å3
2888 reflectionsΔρmin = 0.38 e Å3
217 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni0.70472 (2)0.163736 (19)0.32141 (2)0.02339 (9)
O210.74187 (13)0.28151 (11)0.21850 (12)0.0346 (3)
O220.73617 (12)0.45346 (12)0.16017 (12)0.0365 (3)
O230.53565 (12)0.13917 (11)0.18614 (12)0.0328 (3)
O240.37049 (13)0.21909 (12)0.04991 (12)0.0422 (4)
O10.64613 (13)0.06045 (11)0.42019 (12)0.0353 (3)
H1A0.57310.07820.40930.053*
H1B0.68620.06120.48940.053*
N110.79168 (13)0.04751 (12)0.26220 (13)0.0244 (3)
N120.63575 (15)0.03738 (15)0.09932 (14)0.0364 (4)
H12A0.62170.08520.05080.044*
H12B0.58220.00340.11110.044*
N130.88791 (14)0.17581 (12)0.45192 (13)0.0258 (3)
N140.88728 (17)0.30143 (15)0.59448 (16)0.0419 (4)
H14A0.82660.27530.60180.050*
H14B0.93320.34060.65120.050*
S110.87354 (5)0.09125 (4)0.15646 (5)0.03800 (14)
S121.10452 (5)0.24840 (5)0.58486 (5)0.03957 (14)
S210.60333 (4)0.32092 (4)0.36574 (4)0.02772 (12)
O1W0.41649 (16)0.13394 (15)0.39419 (16)0.0567 (5)
H1WA0.40000.17750.43910.085*
H1WB0.36480.08230.37520.085*
C110.75308 (18)0.02181 (15)0.17266 (16)0.0271 (4)
C120.97924 (18)0.02114 (17)0.27670 (17)0.0340 (5)
H121.06490.02970.30710.041*
C130.91989 (16)0.04749 (15)0.31994 (16)0.0260 (4)
C140.97254 (16)0.12436 (16)0.41806 (16)0.0258 (4)
C151.09151 (19)0.15449 (17)0.47761 (19)0.0357 (5)
H151.15740.12840.46300.043*
C160.94546 (18)0.24140 (16)0.54155 (16)0.0297 (4)
C210.72366 (16)0.38186 (16)0.22579 (16)0.0283 (4)
C220.68729 (19)0.42159 (17)0.32255 (18)0.0351 (5)
H22A0.63650.48680.29550.042*
H22B0.76180.44180.39080.042*
C230.45736 (17)0.21590 (16)0.14957 (16)0.0281 (4)
C240.46281 (18)0.31021 (17)0.23123 (18)0.0331 (4)
H24A0.39310.30320.25220.040*
H24B0.45210.37820.18790.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni0.02234 (14)0.02582 (15)0.02243 (14)0.00214 (9)0.00973 (10)0.00135 (9)
O210.0427 (8)0.0327 (8)0.0364 (8)0.0069 (6)0.0245 (7)0.0029 (6)
O220.0365 (7)0.0379 (8)0.0385 (8)0.0002 (6)0.0191 (6)0.0072 (7)
O230.0279 (7)0.0337 (8)0.0318 (7)0.0052 (6)0.0074 (6)0.0068 (6)
O240.0369 (8)0.0446 (9)0.0313 (8)0.0066 (7)0.0005 (7)0.0055 (7)
O10.0366 (7)0.0374 (8)0.0335 (8)0.0030 (6)0.0162 (6)0.0014 (6)
N110.0262 (8)0.0248 (8)0.0228 (8)0.0027 (6)0.0109 (6)0.0005 (6)
N120.0359 (9)0.0368 (10)0.0322 (9)0.0008 (8)0.0100 (8)0.0114 (7)
N130.0250 (8)0.0302 (9)0.0223 (8)0.0005 (6)0.0100 (7)0.0013 (6)
N140.0450 (10)0.0488 (11)0.0376 (10)0.0144 (9)0.0229 (9)0.0197 (9)
S110.0450 (3)0.0377 (3)0.0358 (3)0.0105 (2)0.0213 (2)0.0049 (2)
S120.0302 (3)0.0519 (3)0.0318 (3)0.0123 (2)0.0082 (2)0.0044 (2)
S210.0294 (3)0.0303 (3)0.0257 (2)0.00101 (19)0.0137 (2)0.00348 (19)
O1W0.0560 (10)0.0546 (10)0.0718 (12)0.0176 (9)0.0388 (10)0.0175 (9)
C110.0357 (10)0.0229 (10)0.0255 (9)0.0026 (8)0.0157 (8)0.0020 (7)
C120.0307 (10)0.0388 (11)0.0338 (11)0.0095 (9)0.0147 (8)0.0016 (9)
C130.0265 (9)0.0284 (10)0.0240 (9)0.0044 (8)0.0113 (8)0.0057 (8)
C140.0237 (9)0.0295 (10)0.0252 (9)0.0028 (7)0.0113 (8)0.0063 (8)
C150.0281 (10)0.0443 (13)0.0348 (11)0.0006 (9)0.0132 (9)0.0017 (9)
C160.0326 (10)0.0332 (11)0.0232 (10)0.0061 (8)0.0117 (8)0.0004 (8)
C210.0195 (9)0.0342 (11)0.0289 (10)0.0007 (8)0.0078 (8)0.0019 (8)
C220.0404 (11)0.0297 (11)0.0383 (12)0.0026 (9)0.0194 (9)0.0029 (9)
C230.0247 (9)0.0308 (11)0.0293 (10)0.0009 (8)0.0118 (8)0.0012 (8)
C240.0280 (10)0.0344 (11)0.0334 (11)0.0056 (8)0.0091 (9)0.0039 (9)
Geometric parameters (Å, º) top
Ni—O12.0763 (14)N14—H14B0.8401
Ni—O212.0944 (14)S11—C121.730 (2)
Ni—O232.0357 (14)S11—C111.7434 (19)
Ni—N112.0634 (15)S12—C151.721 (2)
Ni—N132.1094 (16)S12—C161.734 (2)
Ni—S212.4461 (7)S21—C221.800 (2)
O21—C211.253 (2)S21—C241.813 (2)
O22—C211.249 (2)O1W—H1WA0.8530
O23—C231.262 (2)O1W—H1WB0.8413
O24—C231.244 (2)C12—C131.344 (3)
O1—H1A0.8465C12—H120.9300
O1—H1B0.7947C13—C141.462 (3)
N11—C111.323 (2)C14—C151.343 (3)
N11—C131.385 (2)C15—H150.9300
N12—C111.323 (2)C21—C221.523 (3)
N12—H12A0.8078C22—H22A0.9700
N12—H12B0.8657C22—H22B0.9700
N13—C161.313 (2)C23—C241.522 (3)
N13—C141.391 (2)C24—H24A0.9700
N14—C161.353 (3)C24—H24B0.9700
N14—H14A0.8259
O23—Ni—N1193.83 (6)H1WA—O1W—H1WB108.2
O23—Ni—O186.99 (6)N12—C11—N11124.86 (17)
N11—Ni—O197.92 (6)N12—C11—S11121.70 (15)
O23—Ni—O2188.66 (6)N11—C11—S11113.42 (14)
N11—Ni—O2189.21 (6)C13—C12—S11110.28 (15)
O1—Ni—O21171.88 (5)C13—C12—H12124.9
O23—Ni—N13173.36 (6)S11—C12—H12124.9
N11—Ni—N1379.53 (6)C12—C13—N11115.81 (17)
O1—Ni—N1394.23 (6)C12—C13—C14128.72 (17)
O21—Ni—N1390.88 (6)N11—C13—C14115.46 (15)
O23—Ni—S2184.09 (4)C15—C14—N13115.59 (18)
N11—Ni—S21170.43 (4)C15—C14—C13128.58 (18)
O1—Ni—S2191.31 (4)N13—C14—C13115.80 (15)
O21—Ni—S2181.42 (4)C14—C15—S12110.29 (16)
N13—Ni—S21102.40 (5)C14—C15—H15124.9
C21—O21—Ni122.59 (12)S12—C15—H15124.9
C23—O23—Ni120.86 (12)N13—C16—N14123.90 (18)
Ni—O1—H1A108.8N13—C16—S12114.04 (14)
Ni—O1—H1B116.4N14—C16—S12122.03 (15)
H1A—O1—H1B106.3O22—C21—O21124.33 (18)
C11—N11—C13111.02 (15)O22—C21—C22116.75 (18)
C11—N11—Ni133.97 (12)O21—C21—C22118.89 (17)
C13—N11—Ni114.65 (12)C21—C22—S21113.36 (14)
C11—N12—H12A116.9C21—C22—H22A108.9
C11—N12—H12B115.7S21—C22—H22A108.9
H12A—N12—H12B127.3C21—C22—H22B108.9
C16—N13—C14110.52 (16)S21—C22—H22B108.9
C16—N13—Ni134.78 (13)H22A—C22—H22B107.7
C14—N13—Ni111.95 (12)O24—C23—O23124.30 (18)
C16—N14—H14A119.4O24—C23—C24115.78 (17)
C16—N14—H14B115.9O23—C23—C24119.87 (16)
H14A—N14—H14B114.5C23—C24—S21116.29 (13)
C12—S11—C1189.46 (9)C23—C24—H24A108.2
C15—S12—C1689.49 (10)S21—C24—H24A108.2
C22—S21—C24100.37 (10)C23—C24—H24B108.2
C22—S21—Ni94.66 (7)S21—C24—H24B108.2
C24—S21—Ni94.68 (7)H24A—C24—H24B107.4
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O1W0.851.912.7540173
O1—H1B···O22i0.791.972.7399162
N12—H12A···O24ii0.812.092.8785166
N12—H12B···O230.872.092.8807152
N14—H14A···O21i0.832.202.9378149
O1W—H1WA···O24i0.852.012.8616177
O1W—H1WB···O22iii0.841.912.7493173
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y, z; (iii) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Ni(C4H4O4S)(C6H6N4S2)(H2O)]·H2O
Mr441.14
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)11.856 (4), 12.197 (4), 12.507 (4)
β (°) 114.622 (3)
V3)1644.3 (9)
Z4
Radiation typeMo Kα
µ (mm1)1.60
Crystal size (mm)0.30 × 0.24 × 0.18
Data collection
DiffractometerBruker SMART 1000
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.638, 0.750
No. of measured, independent and
observed [I > 2σ(I)] reflections
8263, 2888, 2627
Rint0.016
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.061, 1.06
No. of reflections2888
No. of parameters217
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.38

Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected bond lengths (Å) top
Ni—O12.0763 (14)Ni—N112.0634 (15)
Ni—O212.0944 (14)Ni—N132.1094 (16)
Ni—O232.0357 (14)Ni—S212.4461 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O1W0.851.912.7540173
O1—H1B···O22i0.791.972.7399162
N12—H12A···O24ii0.812.092.8785166
N12—H12B···O230.872.092.8807152
N14—H14A···O21i0.832.202.9378149
O1W—H1WA···O24i0.852.012.8616177
O1W—H1WB···O22iii0.841.912.7493173
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y, z; (iii) x+1, y1/2, z+1/2.
 

Acknowledgements

The project was supported by the Foundation of Shanghai University, China.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Winsonsin, USA.  Google Scholar
First citationErlenmeyer, H. (1948). Helv. Chim. Acta, 31, 206–210.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFisher, L. M., Kurod, R. & Sakai, T. (1985). Biochemistry, 24, 3199–3207.  CrossRef CAS PubMed Web of Science Google Scholar
First citationLiu, J.-G., Xu, D.-J., Xu, Y.-Z., Wu, J.-Y. & Chiang, M. Y. (2002). Acta Cryst. E58, o929–o930.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWaring, M. J. (1981). Annu. Rev. Biochem. 50, 159–192.  CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds