metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(*N*,*N*-Diethylnicotinamide- κN^1)bis[4,4,4trifluoro-1-(thien-2-yl)butane-1,3dionato- $\kappa^2 O$,*O*']copper(II)

Abel M. Maharramov,^a Vusala I. Mardanova,^a Famil Chyraqov,^a Atash V. Gurbanov^a and Seik Weng Ng^b*

^aDepartment of Organic Chemistry, Baku State University, Baku, Azerbaijan, and ^bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: seikweng@um.edu.my

Received 14 April 2011; accepted 17 April 2011

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.007 Å; disorder in main residue; R factor = 0.048; wR factor = 0.152; data-to-parameter ratio = 17.5.

In the title compound, $[Cu(C_8H_4F_3O_2S)_2(C_{10}H_{14}N_2O)]$, the Cu^{II} atom exists in a distorted CuNO₄ square-pyramidal geometry; the metal atom lies above a square plane defined by four O atoms of the two chelating anionic ligands, displaced in the direction of the axial occupant, the pyridine N atom, by 0.179 (1) Å. Weak intermolecular C-H···O and C-H···F hydrogen bonding is present in the crystal structure. One thienyl ring is disordered over two orientations in an occupancy ratio of 0.69 (1):0.31.

Related literature

For the related crystal structure of bis[4,4,4-trifluoro-1-(thien-2-yl)butane-1,3-dionato]copper(II), see: Lecomte *et al.* (1988); Wang *et al.* (1996); Xu *et al.* (2010). For some adducts with *N*-heterocycles, see: Gou *et al.* (1991); Li *et al.* (1994); Liu *et al.* (1986); Yu *et al.* (1988).

Experimental

Crystal data

 $\begin{bmatrix} Cu(C_8H_4F_3O_2S)_2(C_{10}H_{14}N_2O) \end{bmatrix}$ $M_r = 684.12$ Triclinic, $P\overline{1}$ a = 11.4324 (5) Å b = 12.8606 (5) Å c = 13.0104 (5) Å $\alpha = 62.837$ (1)° $\beta = 64.110$ (1)°

Data collection

Bruker APEXII diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\rm min} = 0.618, T_{\rm max} = 0.746$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.048$	80 restraints
$vR(F^2) = 0.152$	H-atom parameters constrained
S = 1.05	$\Delta \rho_{\rm max} = 0.80 \ {\rm e} \ {\rm \AA}^{-3}$
5849 reflections	$\Delta \rho_{\rm min} = -0.48 \text{ e } \text{\AA}^{-3}$
392 parameters	

 $\gamma = 88.783 \ (1)^{\circ}$

Z = 2

V = 1492.72 (10) Å³

 $0.30 \times 0.30 \times 0.30$ mm

16434 measured reflections 6849 independent reflections

5423 reflections with $I > 2\sigma(I)$

Mo $K\alpha$ radiation

 $\mu = 0.95 \text{ mm}^{-1}$

T = 293 K

 $R_{\rm int} = 0.021$

Table 1

Selected bond lengths (Å).

Cu1-O1	1.9432 (19)	Cu1-O4	1.934 (2)
Cu1-O2	1.942 (2)	Cu1-N1	2.262 (2)
Cu1-O3	1.944 (2)		

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$C1-H1\cdots O5^{i}$ $C19-H19\cdots O5^{ii}$ $C24-H24C\cdots F1^{iii}$	0.93 0.93 0.96	2.49 2.56 2.36	3.358 (7) 3.338 (6) 3.233 (13)	156 141 151
Symmetry codes: (i) -x, -y + 1, -z + 2.	i) $-x + 1, -y$	v+2, -z+1;	(ii) $-x, -y+2$	z, -z + 1; (iii)

Data collection: *APEX2* (Bruker, 2005); cell refinement: *SAINT* (Bruker, 2005); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *X-SEED* (Barbour, 2001); software used to prepare material for publication: *publCIF* (Westrip, 2010).

We thank Baku State University and the University of Malaya for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5194).

References

- Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.
- Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Gou, S.-H., You, X.-Z., Xu, Z., Zhou, Z.-Y., Yu, K.-B., Yu, Y.-P. & Zhu, D.-L. (1991). Acta Cryst. C47, 1303–1305.
- Lecomte, C., Bayeul, D., Senglet, N. & Guilard, R. (1988). *Polyhedron*, **7**, 303–306.

metal-organic compounds

- Li, M.-X., Xu, Z., You, X.-Z. & Chen, C.-G. (1994). Acta Cryst. C50, 1699– 1701.
- Liu, X.-S., Lin, C.-C., Xu, Z., Yu, Y.-P. & You, X.-Z. (1986). Chin. J. Struct. Chem. 5, 135–138.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

- Wang, D.-M., Yang, R.-N., Hu, Y.-M. & Jin, D.-M. (1996). Chin. J. Struct. Chem. 15, 3327–3329.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Xu, D.-F., Shen, Z.-H., Shi, Y., He, Q. & Xia, Q.-C. (2010). Russ. J. Coord. Chem. 36, 458–462.
- Yu, Y.-P., Xu, Z., You, X.-Z., Lu, J.-N., Shi, S., Liu, S.-X. & Lin, C.-C. (1988). Chin. J. Inorg. Chem. 4, 30–34.

supporting information

Acta Cryst. (2011). E67, m708-m709 [doi:10.1107/S1600536811014401]

$(N,N-Diethylnicotinamide-\kappa N^1)$ bis[4,4,4-trifluoro-1-(thien-2-yl)butane-1,3-dionato- $\kappa^2 O, O'$]copper(II)

Abel M. Maharramov, Vusala I. Mardanova, Famil Chyraqov, Atash V. Gurbanov and Seik Weng Ng

S1. Comment

Square-planar bis[4,4,4-trifluoro-1-(thien-2-yl)butane-1,3-dionato]copper is a Lewis acid that forms adducts with a number of *N*-heterocycles. The parent Lewis acid exists as a square-planar molecule; its crystal structure has been determined several times (Lecomte *et al.*, 1988; Wang *et al.*, 1996; Xu *et al.*, 2010). For most adducts, the Cu atom exists in a six-coordinate geometry, *e.g.*, the pyridine adduct (Liu *et al.*, 1986). The 4,4'-bipyridine adduct exists in two forms; in one form, the Cu atom is octahedrally coordinated (Gou *et al.*, 1991). The other is a dinuclear adduct in which the Cu atom shows the square-pyramidal coordination. In the title *N*,*N*-diethylbenzamide adduct (Scheme I), the Cu atom is similarly five-coordinate. The metal atom lies above the square plane defined by the O atoms of the two chelating anionic ligands in the direction of the axial occupant by 0.179 (1) Å.

S2. Experimental

Bis[4,4,4-trifluoro-1-(thien-2-yl)butane-1,3-dionato]copper was synthesized by using a literature procedure (Lecomte *et al.*, 1988; Wang *et al.*, 1996; Xu *et al.*, 2010). A solution of theonyltrifluoroacetylacetone (0.44 g, 0.002 mol) in ethanol (50 ml) and *N*,*N*-diethylnicotinamide (0.18 g, 0.001 mol) was added to a solution of copper sulfate pentahydrate (0.25 g, 0.001 mol) dissolved in water (50 ml). The resulting green solution has heated for a hour and then set aside for a week. The solid was filtered and recrystallized from ethanol (80%, m.p. 515 K); yield 65%. CHN&S elemental analysis. Found: C 45.69, H 3.31, S 9.48, F 16.75%; calculated for $C_{26}H_{22}N_2O_5CuF_6S_2$: C 45.61, H 3.22, S 9.36, F 16.67%.

S3. Refinement

Carbon-bound H-atoms were placed in calculated positions [C–H 0.93 to 0.97 Å; U(H) 1.2 to 1.5U(C)] and were included in the refinement in the riding model approximation.

One thienyl ring is disodered over two positions in a 69 (1): 31 ratio. The C–S distances were restrained to 1.70 ± 0.01 Å and the C–C distances to 1.35 ± 0.01 Å. The disordered rings were restrained to be nearly flat. The anisotropic temperature factors of S2 was set to those of C11', those of C9 to those of C10', those of C10 to that of C9' and those of C11 to those of S2'. The anisotropic temperature factors were restrained to be nearly isotropic.

The C-C distances of the ethyl chains were tightly restrained to 1.540±0.005 Å.

The anisotropic temperature factors of the fluorine atoms were also restrained to be nearly isotropic.

Figure 1

Thermal ellipsoid plot (Barbour, 2001) of $Cu(C_{10}H_{14}N_2O)(C_8H_4F_3O_2S)_2$ at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius. The disorder is not shown.

$(N,N-Diethylnicotinamide-\kappa N^1)$ bis[4,4,4-trifluoro-1- (thien-2-yl)butane-1,3-dionato- $\kappa^2 O,O'$] copper(II)

Crystal data	
Crystal data [Cu(C ₈ H ₄ F ₃ O ₂ S) ₂ (C ₁₀ H ₁₄ N ₂ O)] $M_r = 684.12$ Triclinic, $P\overline{1}$ Hall symbol: -P 1 a = 11.4324 (5) Å b = 12.8606 (5) Å c = 13.0104 (5) Å a = 62.837 (1)° B = 64.110 (1)°	Z = 2 F(000) = 694 $D_x = 1.522 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 5935 reflections $\theta = 2.4-27.9^{\circ}$ $\mu = 0.95 \text{ mm}^{-1}$ T = 293 K Prism, green
$\gamma = 88.783 (1)^{\circ}$	$0.30 \times 0.30 \times 0.30$ mm
$V = 1492.72 (10) Å^{3}$ Data collection	
Bruker APEXII diffractometer	Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
Radiation source: fine-focus sealed tube	$T_{\min} = 0.618, \ T_{\max} = 0.746$
Graphite monochromator	16434 measured reflections
φ and ω scans	5422 reflections with $L > 2\pi(l)$
	5425 reflections with $I \ge 2\sigma(I)$

$R_{\rm int} = 0.021$	$k = -16 \rightarrow 16$
$\theta_{\rm max} = 27.5^{\circ}, \theta_{\rm min} = 1.8^{\circ}$	$l = -16 \rightarrow 16$
$h = -14 \rightarrow 14$	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.048$	Hydrogen site location: inferred from
$wR(F^2) = 0.152$	neighbouring sites
S = 1.05	H-atom parameters constrained
6849 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0881P)^2 + 0.5656P]$
392 parameters	where $P = (F_o^2 + 2F_c^2)/3$
80 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.80 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta \rho_{\min} = -0.48 \text{ e} \text{ Å}^{-3}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Cu1	0.30419 (3)	0.56562 (3)	0.41193 (3)	0.04574 (14)	
S1	0.54183 (10)	0.72016 (9)	0.54939 (11)	0.0756 (3)	
S2	0.6254 (2)	0.8905 (2)	-0.13505 (17)	0.1145 (10)	0.690 (4)
S2′	0.6483 (8)	0.9072 (7)	0.0696 (9)	0.1087 (19)	0.310 (4)
F1	0.0837 (4)	0.2134 (3)	0.8976 (3)	0.1525 (16)	
F2	0.1339 (5)	0.1709 (2)	0.7503 (4)	0.176 (2)	
F3	-0.0184 (3)	0.2524 (3)	0.7936 (4)	0.1409 (14)	
F4	0.2363 (3)	0.4454 (3)	0.1471 (4)	0.1172 (10)	
F5	0.0665 (2)	0.5072 (3)	0.2318 (2)	0.0937 (8)	
F6	0.2142 (3)	0.6186 (3)	0.0325 (2)	0.1167 (11)	
01	0.39754 (19)	0.59008 (18)	0.4959 (2)	0.0488 (4)	
O2	0.1956 (2)	0.41288 (18)	0.5671 (2)	0.0517 (5)	
03	0.4426 (2)	0.69749 (19)	0.2487 (2)	0.0571 (5)	
O4	0.2310 (2)	0.5291 (2)	0.3203 (2)	0.0563 (5)	
05	0.2239 (4)	1.0114 (2)	0.4841 (4)	0.0956 (10)	
N1	0.1673 (2)	0.6845 (2)	0.4613 (2)	0.0492 (5)	
N2	0.1538 (5)	0.8623 (4)	0.6909 (4)	0.1059 (14)	
C1	0.5746 (4)	0.7210 (4)	0.6636 (5)	0.0816 (12)	
H1	0.6319	0.7840	0.6463	0.098*	
C2	0.5103 (4)	0.6226 (4)	0.7807 (5)	0.0777 (11)	
H2	0.5200	0.6105	0.8524	0.093*	
C3	0.4245 (3)	0.5360 (3)	0.7883 (4)	0.0575 (8)	
H3	0.3709	0.4635	0.8628	0.069*	
C4	0.4369 (3)	0.5821 (3)	0.6599 (3)	0.0504 (6)	
C5	0.3676 (3)	0.5306 (3)	0.6161 (3)	0.0451 (6)	
C6	0.2716 (3)	0.4211 (3)	0.7077 (3)	0.0548 (7)	
H6	0.2583	0.3806	0.7935	0.066*	
C7	0.1978 (3)	0.3724 (3)	0.6751 (3)	0.0490 (6)	
C8	0.1005 (4)	0.2514 (3)	0.7805 (3)	0.0661 (9)	
C9	0.7529 (7)	0.9912 (6)	-0.1766 (11)	0.122 (3)	0.690 (4)
H9	0.8160	1.0435	-0.2634	0.147*	0.690 (4)

					/
C10	0.7554 (10)	0.9894 (8)	-0.0739 (10)	0.122 (3)	0.690 (4)
H10	0.8190	1.0391	-0.0801	0.146*	0.690 (4)
C11	0.6508 (12)	0.9040 (9)	0.0415 (15)	0.1087 (19)	0.690 (4)
H11	0.6366	0.8905	0.1230	0.130*	0.690 (4)
C9′	0.734 (2)	1.0246 (18)	-0.0845 (17)	0.122 (3)	0.31
H9′	0.7950	1.0882	-0.1074	0.146*	0.310 (4)
C10′	0.7052 (18)	1.0171 (19)	-0.170 (3)	0.122 (3)	0.31
H10′	0.7414	1.0720	-0.2599	0.147*	0.310 (4)
C11′	0.6135 (16)	0.9143 (16)	-0.1017 (10)	0.1145 (10)	0.31
H11′	0.5798	0.8933	-0.1447	0.137*	0.310 (4)
C12	0.5686 (4)	0.8400 (3)	0.0299 (4)	0.0743 (10)	
C13	0.4566 (3)	0.7379 (3)	0.1354 (3)	0.0562 (7)	
C14	0.3739 (4)	0.6899 (3)	0.1052 (3)	0.0648 (9)	
H14	0.3900	0.7269	0.0185	0.078*	
C15	0.2713 (3)	0.5912 (3)	0.1982 (3)	0.0556 (7)	
C16	0.1958 (4)	0.5407 (4)	0.1521 (3)	0.0730 (10)	
C17	0.0474 (3)	0.6793 (3)	0.4681 (3)	0.0534 (7)	
H17	0.0212	0.6284	0.4456	0.064*	
C18	-0.0389(3)	0.7461 (3)	0.5069 (4)	0.0635 (8)	
H18	-0.1210	0.7415	0.5089	0.076*	
C19	-0.0020 (3)	0.8193 (3)	0.5426 (3)	0.0612 (8)	
H19	-0.0591	0.8649	0.5697	0.073*	
C20	0.1210 (3)	0.8250 (3)	0.5380 (3)	0.0523 (7)	
C21	0.2024 (3)	0.7576 (3)	0.4951 (3)	0.0523 (7)	
H21	0.2863	0.7629	0.4894	0.063*	
C22	0.1703 (4)	0.9079 (3)	0.5698 (4)	0.0650 (9)	
C23	0.0985 (10)	0.7336 (7)	0.7935 (6)	0.176 (4)	
H23A	0.1451	0.7088	0.8449	0.211*	
H23B	0.1097	0.6845	0.7526	0.211*	
C24	-0.0489(10)	0.7181 (11)	0.8820 (10)	0.280 (9)	
H24A	-0.0870	0.6352	0.9483	0.419*	
H24B	-0.0939	0.7437	0.8301	0.419*	
H24C	-0.0589	0.7656	0.9235	0.419*	
C25	0.1991 (7)	0.9431 (6)	0.7257 (7)	0.129 (2)	
H25A	0.1360	0.9222	0.8154	0.154*	
H25B	0.2010	1.0251	0.6680	0.154*	
C26	0.3380 (8)	0.9343 (6)	0.7135 (8)	0.159 (3)	
H26A	0.3657	0.9904	0.7325	0.238*	
H26B	0.4002	0.9527	0.6255	0.238*	
H26C	0.3351	0.8545	0.7748	0.238*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu1	0.0466 (2)	0.0444 (2)	0.0387 (2)	-0.00173 (14)	-0.01578 (15)	-0.01905 (15)
S1	0.0621 (5)	0.0736 (6)	0.0836 (7)	-0.0044 (4)	-0.0266 (5)	-0.0406 (5)
S2	0.1000 (14)	0.1279 (17)	0.0473 (9)	-0.0235 (11)	-0.0234 (9)	-0.0022 (9)
S2′	0.097 (2)	0.0894 (19)	0.091 (4)	-0.0344 (15)	-0.034 (2)	-0.0166 (19)

F1	0.195 (3)	0.123 (2)	0.0635 (16)	-0.084(2)	-0.056 (2)	0.0088 (16)
F2	0.219 (4)	0.0509 (15)	0.139 (3)	-0.0227 (19)	0.008 (3)	-0.0456 (17)
F3	0.0871 (19)	0.100 (2)	0.145 (3)	-0.0385 (16)	-0.046 (2)	-0.0009 (19)
F4	0.131 (2)	0.138 (2)	0.165 (3)	0.042 (2)	-0.093(2)	-0.116 (2)
F5	0.0675 (14)	0.127 (2)	0.0798 (15)	-0.0058 (13)	-0.0363 (12)	-0.0444 (15)
F6	0.117 (2)	0.148 (3)	0.0627 (14)	-0.0227 (18)	-0.0517 (15)	-0.0253 (15)
01	0.0455 (10)	0.0478 (10)	0.0471 (11)	0.0010 (8)	-0.0206 (9)	-0.0203 (9)
O2	0.0570 (12)	0.0456 (10)	0.0452 (11)	-0.0042 (9)	-0.0225 (9)	-0.0186 (9)
03	0.0571 (12)	0.0524 (11)	0.0442 (11)	-0.0072 (9)	-0.0162 (10)	-0.0178 (9)
O4	0.0608 (12)	0.0578 (12)	0.0423 (11)	-0.0058 (10)	-0.0194 (10)	-0.0234 (10)
05	0.123 (3)	0.0534 (15)	0.117 (3)	0.0057 (16)	-0.073 (2)	-0.0324 (16)
N1	0.0512 (13)	0.0482 (13)	0.0499 (13)	0.0069 (10)	-0.0247 (11)	-0.0251 (11)
N2	0.172 (4)	0.076 (2)	0.086 (3)	0.004 (2)	-0.062 (3)	-0.051 (2)
C1	0.061 (2)	0.093 (3)	0.120 (4)	0.013 (2)	-0.044 (2)	-0.074 (3)
C2	0.077 (3)	0.098 (3)	0.094 (3)	0.021 (2)	-0.054 (2)	-0.063 (3)
C3	0.0663 (19)	0.0606 (18)	0.071 (2)	0.0141 (15)	-0.0448 (17)	-0.0397 (16)
C4	0.0415 (14)	0.0540 (16)	0.0604 (17)	0.0091 (12)	-0.0245 (13)	-0.0317 (14)
C5	0.0410 (14)	0.0476 (14)	0.0485 (15)	0.0098 (11)	-0.0203 (12)	-0.0262 (12)
C6	0.0559 (17)	0.0551 (17)	0.0452 (15)	-0.0030 (13)	-0.0221 (14)	-0.0203 (13)
C7	0.0496 (15)	0.0436 (14)	0.0449 (15)	0.0010 (12)	-0.0174 (13)	-0.0200 (12)
C8	0.075 (2)	0.0557 (18)	0.0492 (17)	-0.0144 (16)	-0.0257 (16)	-0.0150 (15)
C9	0.078 (6)	0.105 (5)	0.082 (4)	-0.013 (4)	-0.024 (5)	0.017 (4)
C10	0.090 (4)	0.079 (6)	0.121 (5)	-0.026 (4)	-0.046 (4)	0.004 (4)
C11	0.097 (2)	0.0894 (19)	0.091 (4)	-0.0344 (15)	-0.034 (2)	-0.0166 (19)
C9′	0.090 (4)	0.079 (6)	0.121 (5)	-0.026 (4)	-0.046 (4)	0.004 (4)
C10′	0.078 (6)	0.105 (5)	0.082 (4)	-0.013 (4)	-0.024 (5)	0.017 (4)
C11′	0.1000 (14)	0.1279 (17)	0.0473 (9)	-0.0235 (11)	-0.0234 (9)	-0.0022 (9)
C12	0.067 (2)	0.064 (2)	0.0507 (19)	-0.0076 (17)	-0.0194 (17)	-0.0047 (16)
C13	0.0550 (17)	0.0488 (16)	0.0433 (15)	0.0010 (13)	-0.0152 (13)	-0.0144 (13)
C14	0.069 (2)	0.064 (2)	0.0433 (16)	-0.0022 (16)	-0.0234 (15)	-0.0156 (15)
C15	0.0583 (18)	0.0597 (18)	0.0472 (16)	0.0064 (14)	-0.0244 (14)	-0.0260 (14)
C16	0.074 (2)	0.088 (3)	0.057 (2)	0.002 (2)	-0.0340 (19)	-0.0326 (19)
C17	0.0526 (16)	0.0541 (16)	0.0524 (16)	0.0036 (13)	-0.0256 (14)	-0.0249 (14)
C18	0.0512 (18)	0.068 (2)	0.069 (2)	0.0117 (15)	-0.0291 (16)	-0.0324 (18)
C19	0.0613 (19)	0.0570 (18)	0.0599 (19)	0.0201 (15)	-0.0257 (16)	-0.0287 (16)
C20	0.0638 (18)	0.0424 (14)	0.0487 (16)	0.0109 (13)	-0.0266 (14)	-0.0214 (13)
C21	0.0568 (17)	0.0479 (15)	0.0616 (18)	0.0118 (13)	-0.0347 (15)	-0.0284 (14)
C22	0.081 (2)	0.0492 (18)	0.083 (2)	0.0232 (17)	-0.047 (2)	-0.0395 (18)
C23	0.298 (12)	0.133 (5)	0.088 (4)	-0.042 (6)	-0.093 (6)	-0.045 (4)
C24	0.330 (17)	0.313 (16)	0.147 (8)	-0.124 (13)	-0.039 (9)	-0.141 (10)
C25	0.192 (7)	0.111 (4)	0.128 (5)	0.015 (4)	-0.081 (5)	-0.089 (4)
C26	0.222 (9)	0.123 (5)	0.202 (8)	0.032 (6)	-0.136 (8)	-0.099 (6)

Geometric parameters (Å, °)

Cu1—O1	1.9432 (19)	C9—C10	1.339 (8)
Cu1—O2	1.942 (2)	С9—Н9	0.9300
Cu1—O3	1.944 (2)	C10—C11	1.369 (10)

Cu1—O4	1.934 (2)	C10—H10	0.9300
Cu1—N1	2.262 (2)	C11—C12	1.361 (10)
S1—C1	1.688 (4)	C11—H11	0.9300
S1—C4	1.707 (3)	C9′—C10′	1.338 (11)
S2—C9	1.687 (8)	С9′—Н9′	0.9300
S2—C12	1.725 (4)	C10′—C11′	1.344 (11)
S2′—C12	1.641 (9)	C10'—H10'	0.9300
S2′—C9′	1.686 (10)	C11′—C12	1.367 (10)
F1—C8	1.290 (4)	C11'—H11'	0.9300
F2—C8	1.264 (4)	C12—C13	1.463 (4)
F3—C8	1.295 (4)	C13—C14	1.414 (5)
F4—C16	1.321 (4)	C14—C15	1.369 (5)
F5—C16	1.315 (4)	C14—H14	0.9300
F6—C16	1.331 (4)	C15—C16	1.535 (5)
O1—C5	1.265 (3)	C17—C18	1.376 (5)
O2—C7	1.268 (3)	С17—Н17	0.9300
O3—C13	1.252 (4)	C18—C19	1.365 (5)
O4—C15	1.262 (4)	C18—H18	0.9300
O5—C22	1.214 (5)	C19—C20	1.383 (5)
N1—C17	1.335 (4)	С19—Н19	0.9300
N1—C21	1.337 (4)	C20—C21	1.373 (4)
N2—C22	1.329 (5)	C20—C22	1.502 (4)
N2—C23	1.487 (8)	C21—H21	0.9300
N2—C25	1.487 (5)	C23—C24	1.522 (5)
C1—C2	1.328 (6)	С23—Н23А	0.9700
C1—H1	0.9300	С23—Н23В	0.9700
C2—C3	1.440 (5)	C24—H24A	0.9600
C2—H2	0.9300	C24—H24B	0.9600
C3—C4	1.433 (5)	C24—H24C	0.9600
С3—Н3	0.9300	C25—C26	1.532 (5)
C4—C5	1.467 (4)	С25—Н25А	0.9700
C5—C6	1.414 (4)	С25—Н25В	0.9700
C6—C7	1.365 (4)	C26—H26A	0.9600
С6—Н6	0.9300	C26—H26B	0.9600
C7—C8	1.527 (4)	C26—H26C	0.9600
O4—Cu1—O1	171.65 (9)	C10'—C11'—H11'	119.2
O4—Cu1—O2	87.74 (9)	C12—C11′—H11′	119.2
O1—Cu1—O2	92.01 (8)	C11—C12—C13	127.8 (7)
O4—Cu1—O3	92.32 (9)	C11′—C12—C13	134.9 (10)
O1—Cu1—O3	86.06 (9)	C11′—C12—S2′	105.0 (10)
O2—Cu1—O3	167.13 (10)	C13—C12—S2'	118.7 (4)
O4—Cu1—N1	97.55 (9)	C11—C12—S2	108.8 (7)
O1—Cu1—N1	90.74 (8)	C13—C12—S2	123.2 (3)
O2—Cu1—N1	98.28 (9)	S2'—C12—S2	118.1 (4)
O3—Cu1—N1	94.47 (9)	O3—C13—C14	124.4 (3)
C1—S1—C4	91.7 (2)	O3—C13—C12	115.9 (3)
C9—S2—C12	90.7 (4)	C14—C13—C12	119.8 (3)

C12—S2′—C9′	94.1 (12)	C15—C14—C13	122.7 (3)
C5—O1—Cu1	127.36 (18)	C15—C14—H14	118.6
C7—O2—Cu1	123.57 (18)	C13—C14—H14	118.6
C13—O3—Cu1	127.3 (2)	O4—C15—C14	129.2 (3)
C15—O4—Cu1	123.9 (2)	O4—C15—C16	112.7 (3)
C17—N1—C21	117.6 (3)	C14—C15—C16	118.1 (3)
C17—N1—Cu1	123.2 (2)	F5—C16—F4	106.9 (3)
C_{21} N1—Cu1	119.0 (2)	F5-C16-F6	106.9 (3)
$C_{22} = N_{2} = C_{23}$	124 4 (4)	F4-C16-F6	106.7(3)
$C_{22} = N_{2} = C_{25}$	1185(4)	F5-C16-C15	112.5(3)
C_{23} N2 C_{25}	117.1 (4)	F4-C16-C15	112.5(3)
$C_2 - C_1 - S_1$	113 3 (3)	F6-C16-C15	113.1(3)
C2C1H1	123.4	N1 - C17 - C18	113.1(3) 122.8(3)
S1-C1-H1	123.4	N1-C17-H17	122.0 (5)
C1 - C2 - C3	125.4	C18 - C17 - H17	118.6
C1 C2 H2	122.5	$C_{10} = C_{17} = M_{17}$	118.0(3)
$C_1 = C_2 = H_2$	122.5	$C_{10} = C_{18} = C_{17}$	120.6
$C_3 = C_2 = H_2$	122.3 107.4(3)	$C_{17} = C_{18} = H_{18}$	120.0
C4 = C3 = C2	107.4 (3)	C18 C10 C20	120.0 110.4(2)
$C_4 = C_3 = H_3$	120.5	$C_{18} = C_{19} = C_{20}$	119.4 (5)
$C_2 = C_3 = H_3$	120.3 120.2(2)	С18—С19—Н19	120.5
$C_3 = C_4 = C_3$	129.2(3)	C21 C20 C10	120.3
$C_{5} = C_{4} = S_{1}$	112.3(2)	$C_{21} = C_{20} = C_{19}$	110.1(3)
$C_3 = C_4 = S_1$	118.2(2)	$C_{21} = C_{20} = C_{22}$	119.8(3)
01 - 05 - 06	123.8 (3)	C19 - C20 - C22	122.1(3)
01-05-04	116.4 (3)	NI-C2I-C20	123.3 (3)
C6—C5—C4	119.7 (3)	N1—C21—H21	118.4
C/C6C5	122.5 (3)	C20—C21—H21	118.4
С7—С6—Н6	118.7	O5—C22—N2	123.7 (4)
С5—С6—Н6	118.7	O5—C22—C20	118.8 (3)
O2—C7—C6	129.7 (3)	N2—C22—C20	117.4 (3)
O2—C7—C8	112.2 (2)	N2—C23—C24	108.1 (8)
C6—C7—C8	118.1 (3)	N2—C23—H23A	110.1
F2—C8—F3	103.8 (4)	C24—C23—H23A	110.1
F2—C8—F1	108.3 (4)	N2—C23—H23B	110.1
F3—C8—F1	104.5 (4)	C24—C23—H23B	110.1
F2—C8—C7	111.5 (3)	H23A—C23—H23B	108.4
F3—C8—C7	112.6 (3)	C23—C24—H24A	109.5
F1—C8—C7	115.2 (3)	C23—C24—H24B	109.5
C10—C9—S2	114.3 (8)	H24A—C24—H24B	109.5
С10—С9—Н9	122.8	C23—C24—H24C	109.5
S2—C9—H9	122.8	H24A—C24—H24C	109.5
C9—C10—C11	110.2 (12)	H24B—C24—H24C	109.5
С9—С10—Н10	124.9	N2—C25—C26	111.8 (5)
C11-C10-H10	124.9	N2—C25—H25A	109.3
C12—C11—C10	116.1 (12)	C26—C25—H25A	109.3
C12—C11—H11	122.0	N2—C25—H25B	109.3
C10-C11-H11	122.0	C26—C25—H25B	109.3
C10′—C9′—S2′	113 (2)	H25A—C25—H25B	107.9

С10′—С9′—Н9′	123.4	C25—C26—H26A	109.5
S2'—C9'—H9'	123.4	C25—C26—H26B	109.5
C9′—C10′—C11′	106 (2)	H26A—C26—H26B	109.5
C9′—C10′—H10′	126.9	С25—С26—Н26С	109.5
C11′—C10′—H10′	126.9	H26A—C26—H26C	109.5
C10'—C11'—C12	122 (2)	H26B—C26—H26C	109.5
O2—Cu1—O1—C5	-11.0 (2)	C10'—C11'—C12—C11	-3.7 (9)
O3—Cu1—O1—C5	-178.3 (2)	C10'—C11'—C12—C13	166.2 (9)
N1—Cu1—O1—C5	87.3 (2)	C10'—C11'—C12—S2'	0.7 (6)
O4—Cu1—O2—C7	177.2 (2)	C10'—C11'—C12—S2	-137(3)
O1—Cu1—O2—C7	5.6 (2)	C9′—S2′—C12—C11	27 (4)
O3—Cu1—O2—C7	86.7 (4)	C9′—S2′—C12—C11′	-0.4(4)
N1—Cu1—O2—C7	-85.5 (2)	C9′—S2′—C12—C13	-168.8(7)
O4—Cu1—O3—C13	5.1 (3)	C9′—S2′—C12—S2	13.4 (6)
O1—Cu1—O3—C13	176.9 (3)	C9—S2—C12—C11	0.3 (4)
O2—Cu1—O3—C13	95.1 (5)	C9—S2—C12—C11′	50 (2)
N1— $Cu1$ — $O3$ — $C13$	-92.7(3)	C9 = S2 = C12 = C13	-175.1(4)
02-Cu1-O4-C15	-172.3(3)	C9 = S2 = C12 = S2'	2.6 (5)
03-Cu1-04-C15	-52(3)	Cu1 - 03 - C13 - C14	-2.5(5)
N1 - Cu1 - O4 - C15	89.6 (3)	Cu1 - 03 - C13 - C12	1787(2)
04-Cu1-N1-C17	230(2)	$C_{11} - C_{12} - C_{13} - O_{3}$	-75(6)
01 - Cu1 - N1 - C17	-1580(2)	C11' - C12 - C13 - O3	-1747(9)
0^{2} - Cu1 - N1 - C17	-65.8(2)	S_{2}^{\prime} C_{12}^{\prime} C_{13}^{\prime} C_{13}^{\prime} C_{13}^{\prime}	-107(6)
$O_2 = Cu_1 = N_1 = C_{17}$	115.9(2)	$S_2 = C_{12} = C_{13} = C_{3}$	167.0(3)
04-Cu1-N1-C21	-1623(2)	C_{11} C_{12} C_{13} C_{14}	107.0(3) 173.7(5)
01 - Cu1 - N1 - C21	162.3(2)	C11' - C12 - C13 - C14	65(10)
O_{2}^{-} C_{11}^{-} N_{1}^{-} C_{21}^{-}	10.0(2) 108.9(2)	S_{2}^{\prime} C_{12}^{\prime} C_{13}^{\prime} C_{14}^{\prime}	170.5(10)
$O_2 = Cu_1 = N_1 = C_{21}$	-69.3(2)	$S_2 = C_{12} = C_{13} = C_{14}$	-11.8(5)
C4 = S1 = C1 = C2	-0.1(3)	03-C13-C14-C15	-1.8(6)
$C_1 = C_1 = C_2$ $S_1 = C_1 = C_2$	-0.9(5)	$C_{12} C_{13} C_{14} C_{15}$	1.0(0) 176 Q(4)
$C_1 - C_2 - C_3 - C_4$	16(5)	$C_{12} - C_{13} - C_{14} - C_{15}$	170.9(4)
$C_1 = C_2 = C_3 = C_4$	-177.9(3)	$C_{11} = 04 = C_{15} = C_{14}$	170.6(2)
$C_2 = C_3 = C_4 = C_3$	-16(4)	$C_{11} = 04 = C_{15} = C_{10}$	1/9.0(2) 1/1(6)
$C_2 = C_3 = C_4 = S_1$	1.0(4)	$C_{13}^{13} = C_{14}^{14} = C_{15}^{15} = C_{16}^{16}$	-174.0(3)
$C_1 = S_1 = C_4 = C_5$	1.0(3) 1777(3)	04 $C15$ $C16$ $F5$	174.9(3)
$C_{1} = 01 = 05 = 05$	177.7(5)	$C_{14} = C_{15} = C_{16} = C_{15}$	-1303(4)
Cu1 = 01 = C5 = C0	-167.50(18)	$C_{14} = C_{15} = C_{16} = C_{15}$	-75.6(4)
$C_{11} = 01 = 01 = 04$	-107.39(10)	$C_{14} = C_{15} = C_{16} = F_4$	-73.0(4)
C_{3} C_{4} C_{5} O_{1}	-1/9.8(3)	C14 - C15 - C16 - F4	101.5(4) 165.0(2)
S1 - C4 - C5 - C1	4.1 (4)	$C_{14} = C_{15} = C_{16} = F_{6}$	103.0(3)
$C_{3} - C_{4} - C_{5} - C_{6}$	1.5(3)	C14 - C13 - C10 - F0	-18.1(3)
SI = C4 = C5 = C6	-1/4.7(2)	$C_{21} = N_{1} = C_{17} = C_{18}$	0.0(5)
01 - 05 - 06 - 07	-3.1(5)	CuI = NI = CI7 = C18	1/5.4(2)
(4-(5-(0-(1)))	1/3./(3)	N1 - U1 / - U18 - U19	-1.5(5)
Cu1 - 02 - C7 - C6	-0.4 (5)	C17 - C18 - C19 - C20	0.4 (5)
Cu1 - O2 - C7 - C8	1/9.1 (2)	C18 - C19 - C20 - C21	1.1 (5)
$C_{0} = C_{0} = C_{0} = C_{0}$	-2.7(5)	C18 - C19 - C20 - C22	1//.1(3)
C5—C6—C7—C8	177.8 (3)	CT/—N1—C21—C20	1.1 (5)

$\begin{array}{c} 02 - C7 - C8 - F2 \\ C6 - C7 - C8 - F2 \\ 02 - C7 - C8 - F3 \\ C6 - C7 - C8 - F3 \\ 02 - C7 - C8 - F1 \\ C6 - C7 - C8 - F1 \\ C12 - S2 - C9 - C10 \\ S2 - C9 - C10 - C11 \\ C9 - C10 - C11 - C12 \\ C12 - S2' - C9' - C10' \\ S2' - C9' - C10' - C11' \\ \end{array}$	$\begin{array}{c} 65.6 \ (5) \\ -114.9 \ (4) \\ -50.6 \ (4) \\ 128.9 \ (4) \\ -170.4 \ (4) \\ 9.1 \ (5) \\ -0.12 \ (18) \\ -0.1 \ (2) \\ 0.3 \ (5) \\ 0.14 \ (19) \\ 0.2 \ (2) \end{array}$	Cu1—N1—C21—C20 C19—C20—C21—N1 C22—C20—C21—N1 C23—N2—C22—O5 C25—N2—C22—O5 C25—N2—C22—C20 C25—N2—C22—C20 C21—C20—C22—O5 C19—C20—C22—O5 C21—C20—C22—N2 C19—C20—C22—N2	-174.0(2) -1.9(5) -178.0(3) -174.8(6) 2.2(7) 4.3(8) -178.7(5) 92.2(4) -83.7(5) -86.9(5) 97.2(5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} -0.12 (18) \\ -0.1 (2) \\ 0.3 (5) \\ 0.14 (19) \\ 0.2 (2) \\ -0.6 (5) \\ -14.3 (9) \\ 174.7 (5) \end{array}$	C25—N2—C22—C20 C21—C20—C22—O5 C19—C20—C22—O5 C21—C20—C22—N2 C19—C20—C22—N2 C22—N2—C23—C24 C25—N2—C23—C24 C22—N2—C23—C24 C22—N2—C25—C26	-178.7 (5) 92.2 (4) -83.7 (5) -86.9 (5) 97.2 (5) -97.6 (7) 85.4 (7) -97.1 (7)
C10—C11—C12—S2' C10—C11—C12—S2	-168 (4) -0.4 (6)	C23—N2—C25—C26	80.1 (8)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D··· A	D—H··· A
C1—H1…O5 ⁱ	0.93	2.49	3.358 (7)	156
С19—Н19…О5"	0.93	2.56	3.338 (6)	141
C24—H24C…F1 ⁱⁱⁱ	0.96	2.36	3.233 (13)	151

Symmetry codes: (i) -*x*+1, -*y*+2, -*z*+1; (ii) -*x*, -*y*+2, -*z*+1; (iii) -*x*, -*y*+1, -*z*+2.