Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Diaguabis(5-carboxy-2-ethyl-1Himidazole-5-carboxylato- $\kappa^2 N^3$, O⁴)zinc trihydrate

Gang Zhang

Department of Chemistry and Chemical Engineering, Henan University of Urban Construction, Pingdingshan, Henan 467044, People's Republic of China Correspondence e-mail: zhanghn1010@163.com

Received 23 April 2011; accepted 3 May 2011

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.006 Å; disorder in solvent or counterion; R factor = 0.041; wR factor = 0.119; data-toparameter ratio = 11.7.

the crystal structure of the title compound, In $[Zn(C_7H_7N_2O_4)_2(H_2O)_2]\cdot 3H_2O$, the Zn^{II} ion, located an inversion center, is N,O-chelated by two 5-carboxy-2-ethyl-1H-imidazole-4-carboxylate anions and further coordinated by two water molecules in a distorted octahedral geometry. The carboxy group links with the carboxylate group of the same ligand *via* an intramolecular $O-H \cdots O$ hydrogen bond. An extensive intermolecular $N-H\cdots O$ and $O-H\cdots O$ hydrogen-bonded network exists in the crystal structure. One disordered lattice water molecule is half-occupied and is located close to an inversion center.

Related literature

For coordination polymers built from 2-ethyl-4,5-imidazoledicarboxylate, see: Li et al. (2011); Wang et al. (2008); Zhang et al. (2010).

Experimental

Crystal data	
$[Zn(C_7H_7N_2O_4)_2(H_2O)_2]\cdot 3H_2O$	b = 8.8959 (12) Å
$M_r = 521.74$	c = 9.3541 (15) Å
Triclinic, $P\overline{1}$	$\alpha = 65.769 \ (1)^{\circ}$
a = 7.229 (1) Å	$\beta = 88.587 \ (2)^{\circ}$

 $\gamma = 70.676 \ (1)^{\circ}$ V = 513.31 (13) Å³ Z = 1Mo $K\alpha$ radiation

Data collection

Bruker SMART 1000 CCD areadetector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2004) $T_{\min} = 0.750, T_{\max} = 0.776$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.041$ 152 parameters $wR(F^2) = 0.119$ H-atom parameters constrained S = 1.09 $\Delta \rho_{\rm max} = 0.45 \ {\rm e} \ {\rm \AA}^ \Delta \rho_{\rm min} = -0.71 \text{ e } \text{\AA}^{-3}$ 1774 reflections

Table 1

Selected bond lengths (Å).

Zn1-N1	2.104 (3)	Zn1-O5	2.116 (3)
Zn1-O1	2.164 (3)		

Table 2 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-{\rm H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N2-H2\cdots O6^{i}$	0.86	1.95	2.778 (4)	161
O3-H3···O2	0.82	1.65	2.465 (4)	172
$O5-H5C\cdots O3^{ii}$	0.85	1.95	2.785 (4)	167
$O5-H5D\cdots O4^{iii}$	0.85	1.88	2.713 (4)	166
$O6-H6E\cdots O4^{iv}$	0.86	2.29	3.145 (5)	175
$O6 - H6F \cdots O7^{v}$	0.85	2.09	2.664 (17)	125

0.85

0.85

2 24 Symmetry codes: (i) x, y, z + 1; (ii) -x + 1, -y + 2, -z + 1; (iii) x + 1, y - 1, z; (iv) -x, -y + 2, -z + 1; (v) x, y, z - 1.

2.12

2.93 (3)

3.06 (3)

160

160

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004): data reduction: SAINT: program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

The author thanks Henan University of Urban Construction for supporting this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5200).

References

 $O7 - H7F \cdot \cdot \cdot O1^{i}$

 $O7 - H7G \cdot \cdot \cdot O2^{ii}$

- Bruker (2004). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin USA
- Li, S.-J., Ma, X.-T., Song, W.-D., Li, X.-F. & Liu, J.-H. (2011). Acta Cryst. E67, m295-m296.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Wang, S., Zhang, L.-R., Li, G.-H., Huo, Q.-S. & Liu, Y.-L. (2008). CrystEngComm, 10, 1662-1666.
- Zhang, F.-W., Li, Z.-F., Ge, T.-Z., Yao, H.-C., Li, G., Lu, H.-J. & Zhu, Y.-Y. (2010). Inorg. Chem. 49, 3776-3788.

 $\mu = 1.27 \text{ mm}^{-1}$

 $0.24 \times 0.22 \times 0.21 \text{ mm}$

2676 measured reflections

1774 independent reflections

1532 reflections with $I > 2\sigma(I)$

T = 298 K

 $R_{\rm int} = 0.015$

supporting information

Acta Cryst. (2011). E67, m717 [doi:10.1107/S160053681101676X]

Diaquabis(5-carboxy-2-ethyl-1*H*-imidazole-5-carboxylato- $\kappa^2 N^3$, O^4) zinc trihydrate

Gang Zhang

S1. Comment

Self-assembly of supramolecular architectures based on imidazole carboxylate ligands has draw much attention during recent decades. To the best of our knowledge, coordination polymers based on 2-ethyl-4,5-imidazoledicarboxylate has been rarely reported so far (Wang *et al.*, 2008; Zhang *et al.*, 2010; Li *et al.*, 2011). Herein we report the title compound by the reaction of zinc nitrate with 2-ethyl-4,5-imidazoledicarboxylate (H₃EIDC) in an aqueous solution under hydrothermal condition.

The title compound, $[Zn(C_7H_7N_2O_4)_2(H_2O)_2].3H_2O$, depicted in Fig. 1, has two symmetrical coordination water molecules, three free water molecules and two 2-ethyl-4,5-imidazoledicarboxylate ligands. the Zn^{II} ion, lying on a center of inversion, is surrounded by two terminal water molecules, two nitrogen atoms and two oxygen atoms from two different 2-ethyl-4,5-imidazoledicarboxylate ligands in a slightly distorted octahedral coordination environment. Three solvent water molecules exist *via* hydrogen bonding among the imidazole N atom, the carboxylate O atom and the O atom from water molecule, whose distances and angles are shown in Tab. 1, Each H₂EIDC is bonded to Zn^{II} ion in a μ_{2} mode. A three-dimensional supramolecular structure is consolidated by hydrogen-bonding interactions (N—H…O and O —H…O).

S2. Experimental

A mixture of $Zn(NO_3)_2$ (0.5 mmol, 0.110 g) and 2-ethyl-1*H*-imidazole-4,5-dicarboxylic acid (0.5 mmol, 0.95 g) in an aqueous solution (15 ml) was placed in a 23 ml Teflon-lined reactor, which was heated at 423 K for 2 d, and then cooled to room temperature at a rate of 10 K h⁻¹. Crystals of the title compound were obtained by slow evaporation of the solvent at room temperature.

S3. Refinement

Carboxy H atom was located in a difference map and refined with distance constraint of O—H = 0.82 Å, $U_{iso}(H) = 1.5U_{eq}(O)$. Carbon and nitrogen bound H atoms were placed at calculated positions and were treated as riding on the parent C or N atoms with C—H = 0.96 (methyl), 0.97 (methylene) and N—H = 0.86 Å, $U_{iso}(H) = 1.2$ or $1.5U_{eq}(C,N)$. H atoms of the O6 water molecule were located in a difference Fourier map and refined as riding in as-found relative positions with $U_{iso}(H) = 1.2U_{eq}(O)$. The O7 atom is located close to an inversion center and is half-occupied in the crystal structure; its H atoms were placed in calculated positions and refined in a riding mode with $U_{iso}(H) = 1.2U_{eq}(O)$.

Figure 1

The structure of the title compound, showing the atomic numbering scheme with 30% probability displacement ellipsoids [symmetry codes: i: 1 - x, 1 - y, 1 - z.]

Diaquabis(5-carboxy-2-ethyl-1*H*-imidazole-5-carboxylato- $\kappa^2 N^3$, O^4) zinc trihydrate

Crystal data	
$[Zn(C_7H_7N_2O_4)_2(H_2O)_2] \cdot 3H_2O$ $M_r = 521.74$ Triclinic, <i>P</i> 1 Hall symbol: -P 1 a = 7.229 (1) Å b = 8.8959 (12) Å c = 9.3541 (15) Å a = 65.769 (1)° $\beta = 88.587$ (2)°	Z = 1 F(000) = 270 $D_x = 1.688 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 1329 reflections $\theta = 2.4-26.5^{\circ}$ $\mu = 1.27 \text{ mm}^{-1}$ T = 298 K Plack colorlass
p = 86.387 (2) $v = 70.676 (1)^{\circ}$	$0.24 \times 0.22 \times 0.21$ mm
$V = 513.31 (13) Å^3$	
Data collection	
Bruker SMART 1000 CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2004) $T_{\min} = 0.750, T_{\max} = 0.776$	2676 measured reflections 1774 independent reflections 1532 reflections with $I > 2\sigma(I)$ $R_{int} = 0.015$ $\theta_{max} = 25.0^{\circ}, \ \theta_{min} = 2.4^{\circ}$ $h = -8 \rightarrow 8$ $k = -8 \rightarrow 10$ $l = -10 \rightarrow 11$
Refinement	
Refinement on F^2	1774 reflections
Least-squares matrix: full	152 parameters

152 parameters0 restraintsPrimary atom site location: structure-invariant direct methods

 $R[F^2 > 2\sigma(F^2)] = 0.041$

 $wR(F^2) = 0.119$

S = 1.09

Secondary atom site location: difference Fourier	$w = 1/[\sigma^2(F_o^2) + (0.0572P)^2 + 0.7163P]$ where $P = (F_o^2 + 2F_o^2)/3$
Hydrogen site location: inferred from	$(\Delta/\sigma)_{\text{max}} = 0.001$ $\Delta c_{\text{max}} = 0.45 \text{ cm}^{3/2}$
H-atom parameters constrained	$\Delta \rho_{\rm min} = -0.71 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
Zn1	0.5000	0.5000	0.5000	0.0323 (2)	
N1	0.3641 (4)	0.6476 (4)	0.6256 (3)	0.0279 (7)	
N2	0.2272 (4)	0.7940 (4)	0.7637 (4)	0.0323 (7)	
H2	0.1798	0.8155	0.8413	0.039*	
01	0.4472 (4)	0.7653 (3)	0.3230 (3)	0.0387 (6)	
O2	0.3323 (5)	1.0446 (4)	0.2846 (3)	0.0471 (8)	
O3	0.1810 (4)	1.2103 (3)	0.4395 (3)	0.0459 (7)	
H3	0.2405	1.1501	0.3944	0.069*	
O4	0.0686 (4)	1.1604 (4)	0.6715 (4)	0.0461 (7)	
05	0.7784 (4)	0.4784 (4)	0.5890 (4)	0.0511 (8)	
H5C	0.8109	0.5636	0.5848	0.061*	
H5D	0.8821	0.3872	0.6159	0.061*	
O6	0.1656 (5)	0.8359 (5)	0.0415 (4)	0.0734 (11)	
H6E	0.1063	0.8394	0.1212	0.088*	
H6F	0.1745	0.9376	-0.0026	0.088*	
07	0.439 (3)	0.987 (4)	0.987 (3)	0.169 (9)	0.50
H7F	0.4629	0.9037	1.0795	0.202*	0.50
H7G	0.5168	0.9516	0.9288	0.202*	0.50
C1	0.3691 (5)	0.8809 (5)	0.3702 (4)	0.0310 (8)	
C2	0.3209 (5)	0.8245 (4)	0.5336 (4)	0.0274 (8)	
C3	0.2351 (5)	0.9175 (5)	0.6180 (4)	0.0290 (8)	
C4	0.1541 (6)	1.1095 (5)	0.5770 (5)	0.0343 (9)	
C5	0.3068 (5)	0.6320 (5)	0.7650 (4)	0.0304 (8)	
C6	0.3164 (6)	0.4663 (5)	0.9015 (5)	0.0386 (9)	
H6A	0.2978	0.4874	0.9956	0.046*	
H6B	0.4466	0.3783	0.9188	0.046*	
C7	0.1624 (8)	0.3961 (7)	0.8768 (6)	0.0579 (13)	
H7A	0.1874	0.3649	0.7895	0.087*	
H7B	0.0336	0.4849	0.8544	0.087*	
H7C	0.1681	0.2938	0.9706	0.087*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Zn1	0.0374 (4)	0.0234 (3)	0.0368 (4)	-0.0042 (3)	0.0041 (3)	-0.0184 (3)
N1	0.0294 (16)	0.0241 (15)	0.0311 (16)	-0.0060 (12)	0.0031 (12)	-0.0152 (13)
N2	0.0336 (17)	0.0309 (17)	0.0357 (17)	-0.0051 (14)	0.0058 (13)	-0.0222 (14)
01	0.0490 (17)	0.0309 (14)	0.0351 (15)	-0.0090 (12)	0.0111 (12)	-0.0174 (12)
O2	0.072 (2)	0.0276 (15)	0.0381 (16)	-0.0160 (14)	0.0135 (15)	-0.0120 (13)
O3	0.0598 (19)	0.0240 (14)	0.0548 (19)	-0.0083 (13)	0.0056 (15)	-0.0226 (14)
O4	0.0492 (18)	0.0328 (15)	0.0566 (18)	-0.0010 (13)	0.0059 (14)	-0.0298 (14)
O5	0.0344 (16)	0.0329 (16)	0.090 (2)	-0.0026 (12)	-0.0071 (15)	-0.0364 (17)
O6	0.073 (2)	0.095 (3)	0.055 (2)	-0.014 (2)	0.0122 (18)	-0.047 (2)
O7	0.15 (2)	0.154 (14)	0.125 (11)	-0.022 (16)	0.017 (16)	-0.013 (10)
C1	0.034 (2)	0.0264 (19)	0.034 (2)	-0.0091 (16)	0.0034 (16)	-0.0152 (16)
C2	0.0266 (18)	0.0230 (18)	0.0333 (19)	-0.0067 (14)	-0.0006 (14)	-0.0139 (15)
C3	0.0283 (19)	0.0248 (18)	0.0352 (19)	-0.0064 (15)	0.0006 (15)	-0.0162 (16)
C4	0.032 (2)	0.0264 (19)	0.046 (2)	-0.0056 (16)	-0.0028 (17)	-0.0206 (19)
C5	0.0291 (19)	0.0295 (19)	0.034 (2)	-0.0064 (15)	0.0017 (15)	-0.0170 (16)
C6	0.045 (2)	0.033 (2)	0.033 (2)	-0.0097 (18)	0.0042 (18)	-0.0130 (17)
C7	0.069 (3)	0.058 (3)	0.048 (3)	-0.034 (3)	0.004 (2)	-0.014 (2)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

Zn1—N1	2.104 (3)	O5—H5D	0.8499	
Zn1—N1 ⁱ	2.104 (3)	O6—H6E	0.8578	
Zn1—O1	2.164 (3)	O6—H6F	0.8502	
Zn1—O1 ⁱ	2.164 (3)	O7—O7 ⁱⁱ	1.05 (3)	
Zn1—O5	2.116 (3)	O7—H7F	0.8500	
Zn1—O5 ⁱ	2.116 (3)	O7—H7G	0.8500	
N1—C5	1.324 (5)	C1—C2	1.473 (5)	
N1—C2	1.375 (4)	C2—C3	1.366 (5)	
N2—C5	1.358 (5)	C3—C4	1.490 (5)	
N2—C3	1.369 (5)	С5—С6	1.483 (5)	
N2—H2	0.8600	C6—C7	1.509 (6)	
01—C1	1.243 (4)	С6—Н6А	0.9700	
O2—C1	1.277 (4)	С6—Н6В	0.9700	
O3—C4	1.286 (5)	С7—Н7А	0.9600	
O3—H3	0.8200	С7—Н7В	0.9600	
O4—C4	1.218 (5)	С7—Н7С	0.9600	
О5—Н5С	0.8501			
N1—Zn1—N1 ⁱ	180.0	H7F—O7—H7G	108.8	
N1—Zn1—O5	88.97 (11)	O1—C1—O2	123.1 (3)	
N1 ⁱ —Zn1—O5	91.03 (11)	O1—C1—C2	118.0 (3)	
N1-Zn1-O5 ⁱ	91.03 (11)	O2—C1—C2	118.9 (3)	
$N1^{i}$ —Zn1—O5 ⁱ	88.97 (11)	C3—C2—N1	109.7 (3)	
$O5$ —Zn1— $O5^{i}$	180.00 (16)	C3—C2—C1	131.9 (3)	
N1—Zn1—O1	78.99 (10)	N1—C2—C1	118.5 (3)	

N1 ⁱ —Zn1—O1	101.01 (10)	C2—C3—N2	105.4 (3)
O5—Zn1—O1	91.97 (11)	C2—C3—C4	132.7 (4)
O5 ⁱ —Zn1—O1	88.03 (11)	N2—C3—C4	121.8 (3)
N1—Zn1—O1 ⁱ	101.01 (10)	O4—C4—O3	124.9 (4)
N1 ⁱ —Zn1—O1 ⁱ	78.99 (10)	O4—C4—C3	119.8 (4)
$O5$ — $Zn1$ — $O1^{i}$	88.03 (11)	O3—C4—C3	115.4 (3)
$O5^{i}$ —Zn1—O1 ⁱ	91.97 (11)	N1—C5—N2	109.7 (3)
O1—Zn1—O1 ⁱ	180.00 (11)	N1—C5—C6	126.4 (3)
C5—N1—C2	106.7 (3)	N2—C5—C6	123.8 (3)
C5—N1—Zn1	142.7 (3)	C5—C6—C7	112.4 (3)
C2—N1—Zn1	110.7 (2)	С5—С6—Н6А	109.1
C5—N2—C3	108.6 (3)	С7—С6—Н6А	109.1
C5—N2—H2	125.7	С5—С6—Н6В	109.1
C3—N2—H2	125.7	С7—С6—Н6В	109.1
C1—O1—Zn1	113.8 (2)	H6A—C6—H6B	107.9
С4—О3—Н3	109.5	С6—С7—Н7А	109.5
Zn1—O5—H5C	125.6	С6—С7—Н7В	109.5
Zn1—O5—H5D	124.4	H7A—C7—H7B	109.5
H5C—O5—H5D	108.7	С6—С7—Н7С	109.5
H6E—O6—H6F	102.5	H7A—C7—H7C	109.5
O7 ⁱⁱ —O7—H7F	88.8	H7B—C7—H7C	109.5
07 ⁱⁱ —07—H7G	79.9		
N1 ⁱ —Zn1—N1—C5	55 (100)	O2—C1—C2—C3	1.8 (6)
O5—Zn1—N1—C5	-87.4 (4)	O1—C1—C2—N1	-0.1(5)
$O5^{i}$ —Zn1—N1—C5	92.6 (4)	O2—C1—C2—N1	-178.9(3)
O1—Zn1—N1—C5	-179.6 (4)	N1—C2—C3—N2	0.2 (4)
$O1^{i}$ —Zn1—N1—C5	0.4 (4)	C1—C2—C3—N2	179.6 (4)
N1 ⁱ —Zn1—N1—C2	-127 (100)	N1—C2—C3—C4	-177.8 (4)
O5—Zn1—N1—C2	90.9 (2)	C1—C2—C3—C4	1.5 (7)
$O5^{i}$ —Zn1—N1—C2	-89.1 (2)	C5—N2—C3—C2	0.0 (4)
O1—Zn1—N1—C2	-1.3 (2)	C5—N2—C3—C4	178.3 (3)
Ol ⁱ —Zn1—N1—C2	178.7 (2)	C2—C3—C4—O4	173.7 (4)
N1—Zn1—O1—C1	1.4 (3)	N2-C3-C4-O4	-4.1 (5)
N1 ⁱ —Zn1—O1—C1	-178.6 (3)	C2—C3—C4—O3	-5.9 (6)
O5—Zn1—O1—C1	-87.2 (3)	N2-C3-C4-O3	176.3 (3)
O5 ⁱ —Zn1—O1—C1	92.8 (3)	C2—N1—C5—N2	0.4 (4)
O1 ⁱ —Zn1—O1—C1	168 (100)	Zn1—N1—C5—N2	178.7 (3)
Zn1—O1—C1—O2	177.7 (3)	C2—N1—C5—C6	177.6 (3)
Zn1—O1—C1—C2	-1.1 (4)	Zn1—N1—C5—C6	-4.1 (6)
C5—N1—C2—C3	-0.4 (4)	C3—N2—C5—N1	-0.3 (4)
Zn1—N1—C2—C3	-179.3 (2)	C3—N2—C5—C6	-177.5 (3)
C5—N1—C2—C1	-179.8 (3)	N1—C5—C6—C7	-73.4 (5)
Zn1—N1—C2—C1	1.3 (4)	N2—C5—C6—C7	103.4 (4)
O1—C1—C2—C3	-179.4 (4)		× /

Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+1, -y+2, -z+2.

D—H···A	<i>D</i> —Н	$H \cdots A$	D··· A	D—H··· A
N2—H2…O6 ⁱⁱⁱ	0.86	1.95	2.778 (4)	161
O3—H3…O2	0.82	1.65	2.465 (4)	172
O5—H5 <i>C</i> ···O3 ^{iv}	0.85	1.95	2.785 (4)	167
$O5-H5D\cdots O4^{v}$	0.85	1.88	2.713 (4)	166
O6—H6 <i>E</i> ···O4 ^{vi}	0.86	2.29	3.145 (5)	175
O6—H6F···O7 ^{vii}	0.85	2.09	2.664 (17)	125
O7—H7F…O1 ⁱⁱⁱ	0.85	2.12	2.93 (3)	160
O7— $H7G$ ···O2 ^{iv}	0.85	2.24	3.06 (3)	160

Hydrogen-bond geometry (Å, °)

Symmetry codes: (iii) *x*, *y*, *z*+1; (iv) -*x*+1, -*y*+2, -*z*+1; (v) *x*+1, *y*-1, *z*; (vi) -*x*, -*y*+2, -*z*+1; (vii) *x*, *y*, *z*-1.