

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

5-Chloro-2-hydroxybenzaldehyde 4-ethylthiosemicarbazone

Kong Mun Lo and Seik Weng Ng*

Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: seikweng@um.edu.my

Received 9 May 2011; accepted 12 May 2011

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.002 Å; R factor = 0.029; wR factor = 0.085; data-to-parameter ratio = 19.0.

In the title compound, $C_{10}H_{12}ClN_3OS$, the -C = N-N-C- chain bridging the ethylimino group and the benzene ring adopts an extended conformation with a C-N-N-C torsion angle of -171.98 (11)°. The imino H atom of the chain is a hydrogenbond donor to the S atom of an inversion-related molecule, forming a supramolecular dimer. The hydroxy H atom is intramolecularly hydrogen bonded to the azomethine N atom.

Related literature

For the salicylaldehyde 4-methylthiosemicarbazone homolog, see: Vrdoljak *et al.* (2005).

Experimental

Crystal data

 $\begin{array}{l} C_{10}H_{12}\text{ClN}_3\text{OS} \\ M_r = 257.74 \\ \text{Monoclinic, } C2/c \\ a = 21.7956 \ (3) \text{ \AA} \\ b = 11.8536 \ (2) \text{ \AA} \end{array}$

c = 9.4155 (1) Å $\beta = 101.6870 (9)^{\circ}$ $V = 2382.12 (6) \text{ Å}^{3}$ Z = 8Mo K α radiation organic compounds

H atoms treated by a mixture of

refinement

 $\Delta \rho_{\rm max} = 0.33 \ {\rm e} \ {\rm \AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.28~{\rm e}~{\rm \AA}^{-3}$

independent and constrained

 $0.40 \times 0.40 \times 0.40 \; \text{mm}$

 $\mu = 0.48 \text{ mm}^{-1}$ T = 100 K

Data collection

Bruker SMART APEX	11204 measured reflections
diffractometer	2985 independent reflections
Absorption correction: multi-scan	2582 reflections with $I > 2\sigma(I)$
(SADABS; Sheldrick, 1996)	$R_{\rm int} = 0.022$
$T_{\min} = 0.832, T_{\max} = 0.832$	

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.029$ $wR(F^2) = 0.085$ S = 1.022985 reflections 157 parameters 3 restraints

Table 1Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$O1 - H1o \cdots N1$ $N2 - H2n \cdots S1^{i}$	0.84 (1) 0.87 (1)	1.92 (1) 2.48 (1)	2.670 (2) 3.308 (1)	149 (2) 159 (1)
Symmetry code: (i) .	$-r \pm \frac{3}{2} - v \pm \frac{3}{2} - v$.7		

Symmetry code: (i) $-x + \frac{3}{2}, -y + \frac{3}{2}, -z$.

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *X-SEED* (Barbour, 2001); software used to prepare material for publication: *publCIF* (Westrip, 2010).

We thank the University of Malaya (gant No. RG020/ 09AFR) for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5210).

References

- Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.
- Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Vrdoljak, V., Cindrić, M., Milić, D., Matković-Čalogović, D., Novak, P. & Kamenar, B. (2005). Polyhedron, 24, 1717–1726.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2011). E67, o1453 [doi:10.1107/S160053681101796X]

5-Chloro-2-hydroxybenzaldehyde 4-ethylthiosemicarbazone

Kong Mun Lo and Seik Weng Ng

S1. Comment

Salicylaldehyde condenses with a large number of 4-alkyl/aryl-3-thiosemicarbazide to yield the corresponding thiosemicarbazone Schiff-bases. These compounds are used as chelating ligands to a range of metal ions. The semicarbazones, as exemplified by the salicylaldehyde 4-methyl-3-thiosemicarbazone homolog (Vrdoljak *et al.*, 2005), feature an N–H···S hydrogen bond that connects two molecules into a hydrogen-bonded dimer. In $C_{10}H_{12}CIN_3OS$, the – C=N-N-C- chain separating the double-bond S atom and the benzene ring adopts an extended zigzag conformation (Fig.1). The amino H atom of the chain is hydrogen-bond donor to the S atom of an inversion-related molecule to form a dimer. The H atom of the hydroxy unit is hydrogen bond donor to the azomethine N atom. The other amino H atom is only weakly involved in hydrogen bonding (Table 1).

S2. Experimental

5-Chloro-2-hydroxybenzaldehyde (3.1 g, 20 mol) and of 4-ethyl-3-thiosemicarbazide (2.4 g, 20 mmol) were heated in ethanol (100 ml) for an hour. The solution was filtered and colorless crystals were obtained upon slow evaporation of the solvent.

S3. Refinement

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 to 0.99 Å) and were included in the refinement in the riding model approximation, with $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl H atoms and $1.2U_{eq}(C)$ for the others. The hydroxy and amino H atoms were located in a difference Fourier map, and were refined with distance restraints of O—H 0.84±0.01 and N—H 0.88±0.01 Å; their temperature factors were freely refined.

Figure 1

Thermal ellipsoid plot (Barbour, 2001) of $C_{10}H_{12}CIN_3OS$ at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.

5-Chloro-2-hydroxybenzaldehyde 4-ethylthiosemicarbazone

Crystal data

C₁₀H₁₂ClN₃OS $M_r = 257.74$ Monoclinic, C2/c Hall symbol: -C 2yc a = 21.7956 (3) Å b = 11.8536 (2) Å c = 9.4155 (1) Å $\beta = 101.6870$ (9)° V = 2382.12 (6) Å³ Z = 8

Data collection

Bruker SMART APEX diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\min} = 0.832, T_{\max} = 0.832$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.029$ $wR(F^2) = 0.085$ S = 1.022985 reflections 157 parameters 3 restraints F(000) = 1072 $D_x = 1.437 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 6011 reflections $\theta = 2.8-28.3^{\circ}$ $\mu = 0.48 \text{ mm}^{-1}$ T = 100 KBlock, colorless $0.40 \times 0.40 \times 0.40 \text{ mm}$

11204 measured reflections 2985 independent reflections 2582 reflections with $I > 2\sigma(I)$ $R_{int} = 0.022$ $\theta_{max} = 28.4^\circ, \theta_{min} = 1.9^\circ$ $h = -29 \rightarrow 29$ $k = -15 \rightarrow 15$ $l = -12 \rightarrow 12$

Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier

map Hydrogen site location: inferred from neighbouring sites

H atoms treated by a mixture of independent and constrained refinement

 $w = 1/[\sigma^2(F_o^2) + (0.0483P)^2 + 1.7745P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\text{max}} = 0.001$ $\begin{array}{l} \Delta \rho_{\rm max} = 0.33 \ {\rm e} \ {\rm \AA}^{-3} \\ \Delta \rho_{\rm min} = -0.28 \ {\rm e} \ {\rm \AA}^{-3} \end{array}$

	X	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Cl1	0.485785 (16)	0.65980 (4)	0.51634 (4)	0.03990 (13)	
S1	0.835591 (14)	0.65767 (3)	-0.01381 (3)	0.01821 (10)	
01	0.75861 (4)	0.62629 (8)	0.57947 (10)	0.01950 (19)	
N1	0.73919 (5)	0.61554 (8)	0.29057 (11)	0.0159 (2)	
N2	0.75536 (5)	0.63100 (9)	0.15711 (11)	0.0167 (2)	
N3	0.85219 (5)	0.55435 (9)	0.24435 (11)	0.0169 (2)	
C1	0.69537 (6)	0.62896 (10)	0.56025 (13)	0.0160 (2)	
C2	0.66935 (6)	0.63906 (10)	0.68348 (14)	0.0189 (2)	
H2	0.6959	0.6406	0.7769	0.023*	
C3	0.60511 (6)	0.64685 (11)	0.67054 (14)	0.0215 (3)	
H3	0.5875	0.6549	0.7544	0.026*	
C4	0.56661 (6)	0.64280 (12)	0.53368 (15)	0.0230 (3)	
C5	0.59099 (6)	0.63056 (11)	0.41045 (14)	0.0203 (3)	
Н5	0.5638	0.6262	0.3180	0.024*	
C6	0.65605 (5)	0.62453 (10)	0.42189 (13)	0.0160 (2)	
C7	0.68017 (5)	0.62429 (10)	0.28864 (13)	0.0166 (2)	
H7	0.6517	0.6307	0.1982	0.020*	
C8	0.81461 (5)	0.61070 (10)	0.14031 (12)	0.0152 (2)	
C9	0.91574 (5)	0.51980 (11)	0.23606 (13)	0.0199 (2)	
H9A	0.9414	0.5132	0.3353	0.024*	
H9B	0.9350	0.5783	0.1840	0.024*	
C10	0.91595 (6)	0.40780 (12)	0.15821 (14)	0.0235 (3)	
H10A	0.9591	0.3872	0.1542	0.035*	
H10B	0.8911	0.4144	0.0594	0.035*	
H10C	0.8977	0.3494	0.2107	0.035*	
H10	0.7673 (10)	0.6201 (18)	0.4975 (14)	0.057 (6)*	
H2N	0.7319 (6)	0.6770 (11)	0.0975 (14)	0.017 (4)*	
H3N	0.8351 (7)	0.5207 (13)	0.3075 (15)	0.026 (4)*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.01591 (17)	0.0783 (3)	0.0285 (2)	0.00085 (16)	0.01169 (14)	0.00069 (17)
S 1	0.01839 (16)	0.02150 (16)	0.01680 (15)	0.00297 (10)	0.00847 (12)	0.00232 (11)
01	0.0152 (4)	0.0239 (5)	0.0195 (4)	0.0018 (3)	0.0039 (3)	0.0007 (4)
N1	0.0165 (5)	0.0162 (5)	0.0165 (5)	0.0003 (4)	0.0072 (4)	0.0002 (4)
N2	0.0151 (5)	0.0210 (5)	0.0152 (5)	0.0030 (4)	0.0061 (4)	0.0030 (4)
N3	0.0144 (4)	0.0207 (5)	0.0166 (5)	0.0012 (4)	0.0055 (4)	0.0015 (4)
C1	0.0163 (5)	0.0135 (5)	0.0189 (5)	0.0006 (4)	0.0054 (4)	0.0010 (4)
C2	0.0218 (6)	0.0191 (6)	0.0163 (5)	-0.0002 (4)	0.0047 (5)	-0.0004 (4)
C3	0.0241 (6)	0.0238 (6)	0.0193 (6)	-0.0001 (5)	0.0106 (5)	0.0001 (5)

supporting information

C4	0.0152 (6)	0.0318 (7)	0.0241 (6)	-0.0007 (5)	0.0092 (5)	0.0011 (5)
C5	0.0172 (6)	0.0263 (6)	0.0183 (6)	-0.0019 (5)	0.0053 (5)	0.0013 (5)
C6	0.0163 (5)	0.0162 (5)	0.0170 (5)	-0.0007 (4)	0.0070 (4)	0.0003 (4)
C7	0.0164 (5)	0.0175 (5)	0.0167 (5)	-0.0009 (4)	0.0053 (4)	0.0006 (4)
C8	0.0148 (5)	0.0157 (5)	0.0159 (5)	-0.0010 (4)	0.0047 (4)	-0.0031 (4)
C9	0.0127 (5)	0.0251 (6)	0.0217 (6)	0.0022 (4)	0.0031 (4)	0.0000 (5)
C10	0.0185 (6)	0.0273 (7)	0.0248 (6)	0.0043 (5)	0.0046 (5)	-0.0015 (5)

Geometric parameters (Å, °)

C11—C4	1.7476 (13)	C2—H2	0.9500
S1—C8	1.7011 (12)	C3—C4	1.3889 (19)
01—C1	1.3539 (14)	С3—Н3	0.9500
01—H10	0.835 (9)	C4—C5	1.3782 (18)
N1—C7	1.2870 (15)	C5—C6	1.4020 (16)
N1—N2	1.3842 (13)	С5—Н5	0.9500
N2—C8	1.3541 (14)	C6—C7	1.4552 (16)
N2—H2N	0.870 (9)	С7—Н7	0.9500
N3—C8	1.3234 (15)	C9—C10	1.5169 (18)
N3—C9	1.4615 (14)	С9—Н9А	0.9900
N3—H3N	0.860 (9)	С9—Н9В	0.9900
C1—C2	1.3959 (17)	C10—H10A	0.9800
C1—C6	1.4078 (17)	C10—H10B	0.9800
C2—C3	1.3837 (17)	C10—H10C	0.9800
C1	107.2 (15)	С6—С5—Н5	120.1
C7—N1—N2	114.46 (10)	C5—C6—C1	119.07 (11)
C8—N2—N1	120.45 (10)	C5—C6—C7	118.05 (11)
C8—N2—H2N	119.1 (10)	C1—C6—C7	122.65 (11)
N1—N2—H2N	116.3 (10)	N1—C7—C6	121.50 (11)
C8—N3—C9	123.58 (10)	N1—C7—H7	119.2
C8—N3—H3N	117.1 (11)	С6—С7—Н7	119.2
C9—N3—H3N	117.0 (11)	N3—C8—N2	117.72 (10)
01—C1—C2	117.70 (11)	N3—C8—S1	124.30 (9)
01—C1—C6	122.36 (11)	N2	117.97 (9)
C2-C1-C6	119.92 (11)	N3—C9—C10	111.51 (10)
C3—C2—C1	120.44 (12)	N3—C9—H9A	109.3
С3—С2—Н2	119.8	С10—С9—Н9А	109.3
C1—C2—H2	119.8	N3—C9—H9B	109.3
C2—C3—C4	119.33 (12)	С10—С9—Н9В	109.3
С2—С3—Н3	120.3	Н9А—С9—Н9В	108.0
С4—С3—Н3	120.3	C9—C10—H10A	109.5
C5—C4—C3	121.41 (12)	C9—C10—H10B	109.5
C5-C4-Cl1	119.13 (10)	H10A—C10—H10B	109.5
C3—C4—Cl1	119.40 (10)	C9—C10—H10C	109.5
C4—C5—C6	119.81 (12)	H10A—C10—H10C	109.5
С4—С5—Н5	120.1	H10B—C10—H10C	109.5

C7—N1—N2—C8	-171.98 (11)	C2—C1—C6—C5	0.09 (17)
O1—C1—C2—C3	177.38 (11)	O1—C1—C6—C7	-4.18 (17)
C6—C1—C2—C3	-1.19 (18)	C2-C1-C6-C7	174.32 (12)
C1—C2—C3—C4	0.97 (19)	N2—N1—C7—C6	-172.18 (10)
C2—C3—C4—C5	0.4 (2)	C5—C6—C7—N1	-177.90 (11)
C2-C3-C4-Cl1	-176.77 (10)	C1—C6—C7—N1	7.82 (18)
C3—C4—C5—C6	-1.5 (2)	C9—N3—C8—N2	175.63 (11)
Cl1—C4—C5—C6	175.68 (10)	C9—N3—C8—S1	-3.54 (17)
C4—C5—C6—C1	1.21 (18)	N1—N2—C8—N3	13.77 (17)
C4—C5—C6—C7	-173.28 (12)	N1—N2—C8—S1	-167.01 (8)
O1—C1—C6—C5	-178.40 (11)	C8—N3—C9—C10	-85.80 (14)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D····A	D—H···A
01—H10…N1	0.84 (1)	1.92 (1)	2.670 (2)	149 (2)
N2— $H2n$ ···S1 ⁱ	0.87 (1)	2.48 (1)	3.308 (1)	159 (1)

Symmetry code: (i) -*x*+3/2, -*y*+3/2, -*z*.