metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 6| June 2011| Pages m807-m808

catena-Poly[[cobalt(II)-μ-aqua-di-μ-butano­ato-κ2O:O′;κ2O:O] 0.7-hydrate]

aSt Petersburg State Institute of Technology, Moskovsky pr. 26, 190013 St Petersburg, Russian Federation, and bSt Petersburg State University, Universitetskaya nab. 7/9, 199034 St Petersburg, Russian Federation
*Correspondence e-mail: andreasfischer@mail.ru

(Received 8 April 2011; accepted 20 May 2011; online 28 May 2011)

In the title coordination polymer, {[Co(C3H7COO)2(H2O)]·0.7H2O}n, the Co2+ cation is coordinated by four bridging butano­ate anions and two bridging water mol­ecules in a severely distorted octa­hedral geometry. The Co2+ cations are linked by means of bridging ligands into polymeric chains along [010]. These chains are further connected to each other through hydrogen bonds involving partially occupied disordered water mol­ecules; thus, sheets parallel to (001) are formed. One of the positions of disordered water O atom lies on a twofold axis. Two atoms of the aliphatic chain of one of the butanoate anions are disordered over two positions each.

Related literature

For properties and applications of cobalt carboxyl­ates, see: Eremenko et al. (2009[Eremenko, I. L., Sidorov, A. A. & Kiskin, M. A. (2009). Magnetic nanoparticles, edited by S. P. Gubin, pp. 349-391. Weinheim: Wiley-VCH.]); Gates (1992[Gates, B. C. (1992). Catalytic Chemistry. New York: Wiley-Interscience.]); Parshall & Ittel (1992[Parshall, G. W. & Ittel, S. D. (1992). Homogenous Catalysis. New York: Wiley-Interscience.]); Partenheimer (1995[Partenheimer, W. (1995). Catal. Today, 23, 69-158.]). For related structures, see: Jiao et al. (2000[Jiao, X.-D., Guzei, I. A. & Espenson, J. H. (2000). Z. Kristallogr. New Cryst. Struct. 215, 173-174.]); Fischer et al. (2010[Fischer, A. I., Gurzhiy, V. V. & Belyaev, A. N. (2010). Acta Cryst. E66, m1498.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C4H7O2)2(H2O)]·0.7H2O

  • Mr = 263.75

  • Monoclinic, C 2/c

  • a = 14.8377 (13) Å

  • b = 6.2597 (7) Å

  • c = 25.743 (3) Å

  • β = 104.900 (3)°

  • V = 2310.6 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.49 mm−1

  • T = 210 K

  • 0.10 × 0.08 × 0.03 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker, (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.301, Tmax = 0.351

  • 12584 measured reflections

  • 2731 independent reflections

  • 1752 reflections with I > 2σ(I)

  • Rint = 0.096

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.096

  • S = 0.82

  • 2731 reflections

  • 156 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.62 e Å−3

  • Δρmin = −0.58 e Å−3

Table 1
Selected bond lengths (Å)

Co1—O3 2.027 (2)
Co1—O5 2.049 (2)
Co1—O4 2.074 (2)
Co1—O4i 2.105 (2)
Co1—O2 2.163 (2)
Co1—O2ii 2.217 (2)
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker, (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker, (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2008[Brandenburg, K. (2008). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Cobalt carboxylates are of great importance because of their application in homogeneous oxidation catalysis (Gates, 1992; Parshall & Ittel, 1992; Partenheimer, 1995), and their interesting magnetic properties (Eremenko et al., 2009). Recently, we have reported on the crystal structure of the polymeric cobalt(II) propionate dihydrate, which was prepared by the reaction of cobalt(II) carbonate hydrate with aqueous propionic acid (Fischer et al., 2010). We found that the use of butyric acid instead of propionic acid leads to an analogous product, {[Co(C3H7COO)2(H2O)].0.7H2O}n (I). This salt, named as cobalt(II) butyrate 1.7-hydrate, is interesting for us as a starting reagent for the preparation of the mixed-valence cobalt carboxylates.

The crystal structure of the title compound contains one independent Co2+ cation coordinated by four O atoms of four bridging butyrates and two O atoms of bridging water molecules in a severely distorted octahedral coordination (Fig. 1). The cis-angles about the Co atom range from 80.77 (9) to 106.47 (9)°, the Co—O bond lengths are in the range of 2.027 (2) – 2.217 (2) Å; this data correlates with the angles and the distances in cobalt(II) acetate dihydrate with similar structure (Jiao et al., 2000) as well as isostructural cobalt(II) propionate dihydrate (Fischer et al., 2010). The structure of the title compound features infinite chains with composition [Co(C3H7COO)4/2(H2O)2/2] running along [010]. The Co···Co minimum distance in the chain is equal to 3.1436 (7) Å. The bridging butyrate groups adopt two coordination modes, monodentate and syn-syn bidentate. The bidentate group has C—O bonds of practically equal length, 1.253 (4) and 1.254 (4) Å, whereas monodentate group has different C—O bond lengths, 1.231 (4) and 1.293 (4) Å. The chains are connected to each other through O—H···O hydrogen bonds involving partially occupied disordered water molecules; as a result, the sheets parallel to the (001) plane are produced (Fig. 2). The O61 atom of disordered solvate water molecule occupies a special position on the twofold axis.

Related literature top

For properties and applications of cobalt carboxylates, see: Eremenko et al. (2009); Gates (1992); Parshall & Ittel (1992); Partenheimer (1995). For related structures, see: Jiao et al. (2000); Fischer et al. (2010).

Experimental top

To a solution of butyric acid (8.8 g, 100 mmol) in water (50 ml), an excess of fresh cobalt(II) carbonate hydrate, CoCO3.xH2O (x=0.35–1.00), (8.0 g, approximately 60 mmol) was added. The reaction mixture was periodically stirred in ultrasonic bath at room temperature until the liberation of carbon dioxide ceased. The unreacted CoCO3.xH2O was removed by filtration, and the filtrate was allowed to stand at room temperature for slow evaporation. After a few days, red single crystals of the title compound suitable for X-ray diffraction study precipitated. Yield 82%.

Refinement top

The propyl group of the bidentate carboxylate ligand is disordered over two positions in a 65:35 ratio. The solvate water molecule is disordered over two noneqivalent positions (O61—O62 = 0.76 (1) Å) with the total s.o.f. equal to 0.7 (Fig. 2); positions O61 and O62 were refined isotropically. The H atoms bound to O2 where located in the difference map and refined with O—H distances restrained to 0.95 (1) Å and Uiso(H) set to 1.5Ueq(O); other oxygen-bound H atoms where not included in refinement. Carbon-bound H-atoms were placed in calculated positions and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.5Ueq(C) and C—H 0.96Å for the methyl groups and 1.2Ueq(C) and C—H 0.97 Å for the methylene groups.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The structure of the title complex. Displacement ellipsoids of the non H-atoms are drawn at the 35% probability level. The bonds in minor component of the disordered propyl group are drawn as hollow sticks. H atoms are shown as spheres of arbitrary radius. Symmetry codes: (i) = -x + 3/2, y - 1/2, -z + 1/2; (ii) = -x + 3/2, y + 1/2, -z + 1/2.
[Figure 2] Fig. 2. The packing diagram for the crystal of the title complex viewed down the c axis; hydrogen bonds are shown as green dashed lines. Oxygen atoms of the disordered solvate water molecules are shown as red dots. The minor components of the disordered propyl group and H atoms are omitted for clarity.
catena-Poly[[cobalt(II)-µ-aqua-di-µ-butanoato- κ2O:O';κ2O:O] 0.7-hydrate] top
Crystal data top
[Co(C4H7O2)2(H2O)]·0.7H2OF(000) = 1104
Mr = 263.75Dx = 1.516 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 1731 reflections
a = 14.8377 (13) Åθ = 2.7–23.0°
b = 6.2597 (7) ŵ = 1.49 mm1
c = 25.743 (3) ÅT = 210 K
β = 104.900 (3)°Plate, red
V = 2310.6 (4) Å30.10 × 0.08 × 0.03 mm
Z = 8
Data collection top
Bruker APEXII CCD
diffractometer
2731 independent reflections
Radiation source: fine-focus sealed tube1752 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.096
ϕ and ω scansθmax = 27.7°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1919
Tmin = 0.301, Tmax = 0.351k = 88
12584 measured reflectionsl = 3333
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H atoms treated by a mixture of independent and constrained refinement
S = 0.82 w = 1/[σ2(Fo2) + (0.0493P)2]
where P = (Fo2 + 2Fc2)/3
2731 reflections(Δ/σ)max < 0.001
156 parametersΔρmax = 0.62 e Å3
2 restraintsΔρmin = 0.58 e Å3
Crystal data top
[Co(C4H7O2)2(H2O)]·0.7H2OV = 2310.6 (4) Å3
Mr = 263.75Z = 8
Monoclinic, C2/cMo Kα radiation
a = 14.8377 (13) ŵ = 1.49 mm1
b = 6.2597 (7) ÅT = 210 K
c = 25.743 (3) Å0.10 × 0.08 × 0.03 mm
β = 104.900 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
2731 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
1752 reflections with I > 2σ(I)
Tmin = 0.301, Tmax = 0.351Rint = 0.096
12584 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0422 restraints
wR(F2) = 0.096H atoms treated by a mixture of independent and constrained refinement
S = 0.82Δρmax = 0.62 e Å3
2731 reflectionsΔρmin = 0.58 e Å3
156 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Co10.75276 (3)0.06070 (7)0.255905 (16)0.02732 (14)
O10.75332 (18)0.4281 (4)0.37058 (9)0.0446 (6)
O20.69231 (15)0.3197 (3)0.29117 (9)0.0306 (5)
HO2A0.6277 (13)0.294 (6)0.2786 (13)0.046*
HO2B0.715 (2)0.410 (5)0.3222 (10)0.046*
O30.88459 (16)0.1401 (3)0.29628 (9)0.0383 (6)
O40.75018 (16)0.2058 (3)0.30335 (8)0.0330 (5)
O50.61852 (16)0.0070 (3)0.21419 (9)0.0382 (6)
O610.50000.3285 (15)0.25000.073 (3)*0.60
O620.4987 (6)0.3237 (17)0.2794 (4)0.083 (2)*0.40
C10.7659 (2)0.2489 (5)0.35404 (13)0.0318 (8)
C20.8038 (3)0.0718 (6)0.39244 (13)0.0452 (9)
H2A0.76510.05350.38140.054*
H2B0.86590.03730.38930.054*
C30.8095 (4)0.1141 (7)0.45058 (15)0.0655 (13)
H3A0.84760.23990.46190.079*
H3B0.74740.14500.45430.079*
C40.8496 (4)0.0687 (9)0.48730 (18)0.0932 (18)
H4A0.91310.09230.48640.140*
H4B0.84740.03490.52330.140*
H4C0.81370.19560.47560.140*
C50.9218 (2)0.3213 (6)0.30284 (12)0.0318 (7)
C61.0235 (2)0.3339 (7)0.33334 (17)0.0537 (11)
H6A1.06150.35400.30820.064*0.65
H6B1.04210.20100.35240.064*0.65
H6C1.04760.46890.32410.064*0.35
H6D1.05440.21490.32100.064*0.35
C711.0404 (5)0.5282 (15)0.3753 (3)0.079 (3)0.65
H71A1.10630.56200.38740.095*0.65
H71B1.00700.65460.35900.095*0.65
C811.0027 (8)0.450 (3)0.4231 (4)0.092 (4)0.65
H81A1.01020.56160.44950.138*0.65
H81B1.03690.32620.43900.138*0.65
H81C0.93780.41500.41030.138*0.65
C721.0412 (9)0.272 (3)0.3901 (5)0.072 (4)0.35
H72A1.10540.22950.40550.087*0.35
H72B0.99910.16160.39600.087*0.35
C821.014 (3)0.536 (5)0.4137 (14)0.128 (16)*0.35
H82A0.94830.54810.40910.192*0.35
H82B1.03490.64520.39330.192*0.35
H82C1.04590.55170.45100.192*0.35
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0312 (2)0.0181 (2)0.0311 (2)0.0017 (2)0.00511 (17)0.00010 (19)
O10.0666 (17)0.0335 (14)0.0332 (13)0.0048 (14)0.0119 (11)0.0038 (12)
O20.0299 (12)0.0232 (11)0.0383 (13)0.0021 (11)0.0079 (10)0.0033 (10)
O30.0349 (13)0.0251 (12)0.0491 (15)0.0021 (10)0.0005 (11)0.0009 (10)
O40.0445 (14)0.0238 (11)0.0284 (13)0.0018 (11)0.0054 (10)0.0019 (9)
O50.0379 (13)0.0244 (13)0.0465 (14)0.0047 (10)0.0002 (11)0.0018 (9)
C10.0345 (19)0.0289 (18)0.0308 (19)0.0022 (14)0.0062 (15)0.0002 (13)
C20.059 (2)0.041 (2)0.0350 (19)0.006 (2)0.0108 (17)0.0055 (17)
C30.091 (3)0.065 (3)0.035 (2)0.005 (3)0.006 (2)0.0091 (19)
C40.134 (5)0.090 (4)0.049 (3)0.013 (4)0.013 (3)0.028 (3)
C50.0287 (17)0.0374 (19)0.0292 (18)0.0027 (16)0.0070 (14)0.0018 (14)
C60.030 (2)0.064 (3)0.062 (3)0.001 (2)0.0039 (18)0.002 (2)
C710.040 (4)0.106 (7)0.080 (6)0.007 (4)0.004 (4)0.036 (5)
C810.072 (6)0.142 (14)0.053 (5)0.003 (8)0.004 (5)0.029 (8)
C720.040 (7)0.113 (14)0.051 (8)0.006 (7)0.010 (6)0.015 (8)
Geometric parameters (Å, º) top
Co1—O32.027 (2)C4—H4A0.9599
Co1—O52.049 (2)C4—H4B0.9599
Co1—O42.074 (2)C4—H4C0.9599
Co1—O4i2.105 (2)C5—O5i1.253 (4)
Co1—O22.163 (2)C5—C61.512 (5)
Co1—O2ii2.217 (2)C6—C721.468 (13)
O1—C11.231 (4)C6—C711.604 (8)
O2—Co1i2.217 (2)C6—H6A0.9700
O2—HO2A0.943 (18)C6—H6B0.9700
O2—HO2B0.966 (18)C6—H6C0.9702
O3—C51.254 (4)C6—H6D0.9699
O4—C11.293 (4)C71—C811.555 (17)
O4—Co1ii2.105 (2)C71—H71A0.9700
O5—C5ii1.253 (4)C71—H71B0.9700
O61—O62iii0.763 (10)C81—H81A0.9599
O61—O620.763 (10)C81—H81B0.9599
O62—O62iii1.53 (2)C81—H81C0.9599
C1—C21.496 (4)C72—C821.84 (4)
C2—C31.501 (5)C72—H72A0.9700
C2—H2A0.9700C72—H72B0.9700
C2—H2B0.9700C82—H82A0.9599
C3—C41.506 (6)C82—H82B0.9599
C3—H3A0.9700C82—H82C0.9599
C3—H3B0.9700
O3—Co1—O5177.71 (9)H4B—C4—H4C109.5
O3—Co1—O493.25 (9)O5i—C5—O3125.0 (3)
O5—Co1—O488.83 (9)O5i—C5—C6117.4 (3)
O3—Co1—O4i92.23 (9)O3—C5—C6117.6 (3)
O5—Co1—O4i85.85 (9)C72—C6—C5113.7 (6)
O4—Co1—O4i170.17 (8)C72—C6—C7164.7 (7)
O3—Co1—O292.90 (9)C5—C6—C71110.6 (4)
O5—Co1—O285.58 (9)C72—C6—H6A135.4
O4—Co1—O2106.47 (9)C5—C6—H6A109.5
O4i—Co1—O281.38 (9)C71—C6—H6A109.5
O3—Co1—O2ii90.30 (9)C72—C6—H6B46.7
O5—Co1—O2ii90.99 (9)C5—C6—H6B109.5
O4—Co1—O2ii80.77 (9)C71—C6—H6B109.5
O4i—Co1—O2ii91.05 (8)H6A—C6—H6B108.1
O2—Co1—O2ii171.88 (6)C72—C6—H6C119.3
Co1—O2—Co1i91.73 (8)C5—C6—H6C107.5
Co1—O2—HO2A103 (2)C71—C6—H6C60.0
Co1i—O2—HO2A114 (2)H6A—C6—H6C53.8
Co1—O2—HO2B134 (2)H6B—C6—H6C142.7
Co1i—O2—HO2B87 (2)C72—C6—H6D98.2
HO2A—O2—HO2B119 (3)C5—C6—H6D106.4
C5—O3—Co1128.7 (2)C71—C6—H6D142.9
C1—O4—Co1137.4 (2)H6A—C6—H6D58.5
C1—O4—Co1ii123.4 (2)H6B—C6—H6D53.8
Co1—O4—Co1ii97.58 (9)H6C—C6—H6D110.7
C5ii—O5—Co1132.3 (2)C81—C71—C6105.6 (8)
O62iii—O61—O62175 (3)C81—C71—H6C142.4
O61—O62—O62iii2.3 (13)C6—C71—H6C36.9
O1—C1—O4122.3 (3)C81—C71—H71A110.6
O1—C1—C2120.8 (3)C6—C71—H71A110.6
O4—C1—C2116.9 (3)H6C—C71—H71A92.6
C1—C2—C3116.3 (3)C81—C71—H71B110.6
C1—C2—H2A108.2C6—C71—H71B110.6
C3—C2—H2A108.2H6C—C71—H71B87.8
C1—C2—H2B108.2H71A—C71—H71B108.7
C3—C2—H2B108.2C6—C72—C8295.4 (14)
H2A—C2—H2B107.4C6—C72—H72A112.7
C2—C3—C4113.8 (4)C82—C72—H72A112.7
C2—C3—H3A108.8C6—C72—H72B112.7
C4—C3—H3A108.8C82—C72—H72B112.7
C2—C3—H3B108.8H72A—C72—H72B110.2
C4—C3—H3B108.8C72—C82—H82A109.5
H3A—C3—H3B107.7C72—C82—H82B109.5
C3—C4—H4A109.5H82A—C82—H82B109.5
C3—C4—H4B109.5C72—C82—H82C109.5
H4A—C4—H4B109.5H82A—C82—H82C109.5
C3—C4—H4C109.5H82B—C82—H82C109.5
H4A—C4—H4C109.5
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x+3/2, y1/2, z+1/2; (iii) x+1, y, z+1/2.

Experimental details

Crystal data
Chemical formula[Co(C4H7O2)2(H2O)]·0.7H2O
Mr263.75
Crystal system, space groupMonoclinic, C2/c
Temperature (K)210
a, b, c (Å)14.8377 (13), 6.2597 (7), 25.743 (3)
β (°) 104.900 (3)
V3)2310.6 (4)
Z8
Radiation typeMo Kα
µ (mm1)1.49
Crystal size (mm)0.10 × 0.08 × 0.03
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.301, 0.351
No. of measured, independent and
observed [I > 2σ(I)] reflections
12584, 2731, 1752
Rint0.096
(sin θ/λ)max1)0.654
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.096, 0.82
No. of reflections2731
No. of parameters156
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.62, 0.58

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2008), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Co1—O32.027 (2)Co1—O4i2.105 (2)
Co1—O52.049 (2)Co1—O22.163 (2)
Co1—O42.074 (2)Co1—O2ii2.217 (2)
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x+3/2, y1/2, z+1/2.
 

Footnotes

Additional correspondence author, e-mail: vladgeo17@mail.ru.

References

First citationBrandenburg, K. (2008). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker, (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker, (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEremenko, I. L., Sidorov, A. A. & Kiskin, M. A. (2009). Magnetic nanoparticles, edited by S. P. Gubin, pp. 349–391. Weinheim: Wiley-VCH.  Google Scholar
First citationFischer, A. I., Gurzhiy, V. V. & Belyaev, A. N. (2010). Acta Cryst. E66, m1498.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGates, B. C. (1992). Catalytic Chemistry. New York: Wiley-Interscience.  Google Scholar
First citationJiao, X.-D., Guzei, I. A. & Espenson, J. H. (2000). Z. Kristallogr. New Cryst. Struct. 215, 173–174.  CAS Google Scholar
First citationParshall, G. W. & Ittel, S. D. (1992). Homogenous Catalysis. New York: Wiley-Interscience.  Google Scholar
First citationPartenheimer, W. (1995). Catal. Today, 23, 69–158.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 6| June 2011| Pages m807-m808
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds