organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

N,P,P-Triisopropylphosphinic amide

Normen Peulecke,* Bhaskar R. Aluri, Bernd H. Müller, Anke Spannenberg and Uwe Rosenthal

Leibniz-Institut für Katalyse e. V. an der Universität Rostock, Albert-Einstein-Strasse 29A, 18059 Rostock, Germany Correspondence e-mail: normen.peulecke@catalysis.de

Received 4 May 2011; accepted 16 May 2011

Key indicators: single-crystal X-ray study; T = 195 K; mean σ (C–C) = 0.003 Å; R factor = 0.039; wR factor = 0.091; data-to-parameter ratio = 24.4.

The title compound, C9H22NOP, was obtained by slow diffusion of oxygen into a toluene solution of ¹Pr₂PNHⁱPr. In the crystal, an intermolecular N-H···O hydrogen bond occurs.

Related literature

For the synthesis of the starting compound $({}^{1}Pr)_{2}PNH^{i}Pr$, see: Kuchen et al. (1990). For a similar synthesis of the title compound, see: Brück et al. (1995). For similar structures of $R_2P(O)NHR$ in which the P atom has at least one attached alkyl substituent, see: Burns et al. (1997); Denmark & Dorow (2002); Kolodiazhnyi et al. (2003); Francesco et al. (2010).

Experimental

Crystal data C₉H₂₂NOP

 $M_r = 191.25$

Monoclinic, $P2_1/c$ a = 15.030 (3) Å b = 8.4813 (17) Å c = 10.071 (2) Å $\beta = 107.36$ (3)° V = 1225.3 (4) Å ³	Z = 4 Mo K α radiation $\mu = 0.19 \text{ mm}^{-1}$ T = 195 K $0.42 \times 0.26 \times 0.20 \text{ mm}$
Data collection Stoe IPDS II diffractometer 19581 measured reflections 2807 independent reflections	2012 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.035$
Refinement	
$R[F^2 > 2\sigma(F^2)] = 0.039$ $wR(F^2) = 0.091$ S = 0.89 2807 reflections	115 parameters H-atom parameters constrained $\Delta \rho_{max} = 0.39 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{max} = -0.16 \text{ e} \text{ Å}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

2807 reflections

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$N1 - H1A \cdots O1^i$	0.88	1.98	2.8344 (17)	165

 $\Delta \rho_{\rm min} = -0.16~{\rm e}~{\rm \AA}^{-3}$

Symmetry code: (i) $x, -y + \frac{1}{2}, z + \frac{1}{2}$.

Data collection: X-AREA (Stoe & Cie, 2005); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

This work was supported by the Leibniz-Institut für Katalyse e. V. an der Universität Rostock.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: YK2008).

References

- Brück, A., Kuchen, W. & Peters, W. (1995). Phosphorus Sulfur Silicon Relat. Elem. 107, 129-133.
- Burns, B., Gamble, M. P., Simm, A. R. C., Studley, J. R., Alcock, N. W. & Wills, M. (1997). Tetrahedron Asymmetry, 8, 73-78.
- Denmark, S. E. & Dorow, R. L. (2002). Chirality, 14, 241-257.
- Francesco, I. N., Wagner, A. & Colobert, F. (2010). Chem. Commun. 46, 2139-2141.
- Kolodiazhnvi, O. I., Gryshkun, E. V., Andrushko, N. V., Freytag, M., Jones, P. G. & Schmutzler, R. (2003). Tetrahedron Asymmetry, 14, 181-183.
- Kuchen, W., Langsch, D. & Peters, W. (1990). Phosphorus Sulfur Silicon Relat. Elem. 54, 55-61.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Stoe & Cie (2005). X-AREA. Stoe & Cie, Darmstadt, Germany.

supporting information

Acta Cryst. (2011). E67, o1474 [doi:10.1107/S1600536811018551]

N,P,P-Triisopropylphosphinic amide

Normen Peulecke, Bhaskar R. Aluri, Bernd H. Müller, Anke Spannenberg and Uwe Rosenthal

S1. Comment

Aminophosphines with alkyl-substituents undergo oxidation very easily compared to their analogue aryl-substituted species. Most of the structurally characterized *P*,*P*-diorganylphosphinic amides $R^1R^2P(O)NHR^3$ have a sterogenic phosphorus or nitrogen centre (Burns *et al.*, 1997, Denmark *et al.*, 2002, Kolodiazhnyi *et al.*, 2003 and Francesco *et al.*, 2010). Here we report about the structural characterization of the known compound (${}^{i}Pr_{2}P(O)N(H){}^{i}Pr$ (Fig. 1). The P1—O1 distance is with 1.4799 (11) Å in the range of a P=O double bond. A strong intermolecular hydrogen bond N1—H1A…O1 (N1…O1 2.834 (2), H1A…O1 1.98 Å and N1—H1A…O1 165°) was observed.

S2. Experimental

A toluene solution (20 mL) of 0.4 g (2.3 mmol) (^{i}Pr)₂PN(H) ^{i}Pr (Kuchen *et al.*, 1990) was exposed to dry air over a period of 48 h. After evaporation of the solvent, the oily residue was dissolved in n-hexane, filtrated and stored at -40°C for crystallization. After 3 days colourless crystals were formed, which were suitable for X-ray analysis. The analytical data of C₉H₂₂NOP correlated with those in the literature (Brück *et al.*, 1995).

S3. Refinement

H atoms were placed in idealized positions with d(N-H) = 0.88, d(C-H) = 0.98 (CH₃) and 1.00 Å (CH) and refined using a riding model with $U_{iso}(H)$ fixed at 1.5 $U_{eq}(C)$ for CH₃ and 1.2 $U_{eq}(C)$ for NH and CH.

Figure 1

The molecular structure of the title compound showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

N,P,P-Triisopropylphosphinic amide

Crystal data	
C ₉ H ₂₂ NOP	F(000) = 424
$M_r = 191.25$	$D_{\rm x} = 1.037 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $P2_1/c$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 5563 reflections
a = 15.030 (3) Å	$\theta = 2.1 - 29.2^{\circ}$
b = 8.4813 (17) Å	$\mu = 0.19 \text{ mm}^{-1}$
c = 10.071 (2) Å	T = 195 K
$\beta = 107.36 \ (3)^{\circ}$	Prism, colourless
V = 1225.3 (4) Å ³	$0.42 \times 0.26 \times 0.20 \text{ mm}$
Z = 4	
Data collection	
Stoe IPDS II	2012 reflections with $I > 2\sigma(I)$
diffractometer	$R_{\rm int} = 0.035$
Radiation source: fine-focus sealed tube	$\theta_{\rm max} = 27.5^{\circ}, \ \theta_{\rm min} = 2.8^{\circ}$
Graphite monochromator	$h = -19 \rightarrow 19$
ωscans	$k = -11 \rightarrow 11$
19581 measured reflections	$l = -13 \rightarrow 13$
2807 independent reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.039$	Hydrogen site location: inferred from
$wR(F^2) = 0.091$	neighbouring sites
S = 0.89	H-atom parameters constrained
2807 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0547P)^2]$
115 parameters	where $P = (F_0^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.39 \ {\rm e} \ {\rm \AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.16 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
C1	0.70679 (12)	0.5276 (2)	0.6731 (2)	0.0525 (4)
H1B	0.6513	0.5582	0.5941	0.063*
C2	0.68976 (19)	0.5848 (2)	0.8073 (3)	0.0830 (7)
H2A	0.7434	0.5574	0.8868	0.125*
H2B	0.6336	0.5342	0.8178	0.125*
H2C	0.6813	0.6995	0.8034	0.125*
C3	0.79173 (16)	0.6067 (3)	0.6497 (3)	0.0802 (7)
H3A	0.7812	0.7207	0.6396	0.120*
H3B	0.8021	0.5645	0.5650	0.120*
H3C	0.8466	0.5858	0.7294	0.120*
C4	0.61524 (11)	0.22776 (19)	0.69367 (17)	0.0418 (4)
H4	0.6119	0.2607	0.7874	0.050*
C5	0.52745 (12)	0.2872 (3)	0.5848 (2)	0.0653 (6)
H5A	0.5320	0.2652	0.4915	0.098*
H5B	0.5213	0.4010	0.5960	0.098*
H5C	0.4727	0.2333	0.5971	0.098*
C6	0.62213 (15)	0.0496 (2)	0.6924 (2)	0.0692 (6)
H6A	0.5651	0.0034	0.7039	0.104*
H6B	0.6759	0.0151	0.7689	0.104*
H6C	0.6298	0.0150	0.6037	0.104*
C7	0.89734 (10)	0.2189 (2)	0.79953 (16)	0.0427 (4)
H7	0.9106	0.2800	0.7226	0.051*
C8	0.96785 (13)	0.2667 (3)	0.9330 (2)	0.0733 (6)
H8A	0.9625	0.3801	0.9478	0.110*
H8B	1.0306	0.2429	0.9282	0.110*

H8C	0.9566	0.2083	1.0104	0.110*	
C9	0.90379 (17)	0.0463 (3)	0.7687 (3)	0.0834 (7)	
H9A	0.8915	-0.0166	0.8429	0.125*	
H9B	0.9664	0.0226	0.7633	0.125*	
H9C	0.8576	0.0206	0.6797	0.125*	
N1	0.80376 (9)	0.26201 (16)	0.80317 (13)	0.0398 (3)	
H1A	0.7925	0.2590	0.8840	0.048*	
01	0.73426 (8)	0.26804 (15)	0.53446 (11)	0.0531 (3)	
P1	0.71920 (3)	0.31507 (5)	0.66763 (4)	0.03470 (12)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0490 (10)	0.0468 (9)	0.0619 (11)	0.0063 (8)	0.0167 (9)	0.0155 (9)
C2	0.1089 (19)	0.0465 (12)	0.1096 (19)	0.0121 (12)	0.0570 (16)	-0.0108 (12)
C3	0.0785 (15)	0.0565 (13)	0.112 (2)	-0.0137 (11)	0.0373 (14)	0.0151 (12)
C4	0.0398 (8)	0.0532 (10)	0.0348 (8)	-0.0039 (7)	0.0148 (7)	0.0047 (7)
C5	0.0366 (9)	0.0924 (16)	0.0629 (12)	-0.0074 (9)	0.0087 (8)	0.0160 (11)
C6	0.0697 (13)	0.0576 (12)	0.0814 (15)	-0.0150 (10)	0.0243 (12)	0.0030 (10)
C7	0.0377 (8)	0.0581 (11)	0.0365 (8)	0.0107 (7)	0.0174 (7)	0.0075 (7)
C8	0.0426 (10)	0.1149 (19)	0.0573 (12)	0.0060 (11)	0.0072 (9)	-0.0030 (12)
C9	0.0787 (15)	0.0704 (15)	0.1029 (19)	0.0283 (12)	0.0297 (14)	-0.0056 (13)
N1	0.0383 (7)	0.0593 (8)	0.0250 (6)	0.0094 (6)	0.0143 (5)	0.0085 (6)
01	0.0553 (7)	0.0817 (9)	0.0270 (6)	0.0022 (6)	0.0193 (5)	0.0009 (5)
P1	0.03607 (19)	0.0451 (2)	0.02528 (19)	0.00340 (18)	0.01274 (14)	0.00474 (18)

Geometric parameters (Å, °)

C1—C3	1.521 (3)	С6—Н6А	0.9800
C1—C2	1.528 (3)	C6—H6B	0.9800
C1—P1	1.8150 (18)	С6—Н6С	0.9800
C1—H1B	1.0000	C7—N1	1.4644 (19)
C2—H2A	0.9800	С7—С8	1.498 (3)
C2—H2B	0.9800	С7—С9	1.505 (3)
C2—H2C	0.9800	С7—Н7	1.0000
С3—НЗА	0.9800	C8—H8A	0.9800
С3—Н3В	0.9800	C8—H8B	0.9800
С3—Н3С	0.9800	C8—H8C	0.9800
C4—C6	1.515 (3)	С9—Н9А	0.9800
C4—C5	1.527 (2)	С9—Н9В	0.9800
C4—P1	1.8175 (16)	С9—Н9С	0.9800
C4—H4	1.0000	N1—P1	1.6265 (14)
С5—Н5А	0.9800	N1—H1A	0.8800
С5—Н5В	0.9800	O1—P1	1.4799 (11)
С5—Н5С	0.9800		
C3—C1—C2	111.54 (18)	H6A—C6—H6B	109.5
C3—C1—P1	109.54 (13)	С4—С6—Н6С	109.5

C2—C1—P1	112.84 (13)	Н6А—С6—Н6С	109.5
C3—C1—H1B	107.6	H6B—C6—H6C	109.5
C2—C1—H1B	107.6	N1—C7—C8	109.72 (14)
P1—C1—H1B	107.6	N1—C7—C9	111.68 (15)
C1—C2—H2A	109.5	C8—C7—C9	112.11 (17)
C1—C2—H2B	109.5	N1—C7—H7	107.7
H2A—C2—H2B	109.5	С8—С7—Н7	107.7
C1—C2—H2C	109.5	С9—С7—Н7	107.7
H2A—C2—H2C	109.5	С7—С8—Н8А	109.5
H2B—C2—H2C	109.5	С7—С8—Н8В	109.5
С1—С3—НЗА	109.5	H8A—C8—H8B	109.5
С1—С3—Н3В	109.5	С7—С8—Н8С	109.5
НЗА—СЗ—НЗВ	109.5	H8A—C8—H8C	109.5
C1—C3—H3C	109.5	H8B—C8—H8C	109.5
НЗА—СЗ—НЗС	109.5	С7—С9—Н9А	109.5
НЗВ—СЗ—НЗС	109.5	С7—С9—Н9В	109.5
C6—C4—C5	111.69 (16)	Н9А—С9—Н9В	109.5
C6—C4—P1	109.96 (12)	С7—С9—Н9С	109.5
C5—C4—P1	110.96 (11)	Н9А—С9—Н9С	109.5
C6—C4—H4	108.0	Н9В—С9—Н9С	109.5
C5—C4—H4	108.0	C7—N1—P1	124.33 (10)
P1—C4—H4	108.0	C7—N1—H1A	117.8
C4—C5—H5A	109.5	P1—N1—H1A	117.8
C4—C5—H5B	109.5	O1—P1—N1	113.17 (7)
H5A—C5—H5B	109.5	O1—P1—C1	109.89 (8)
C4—C5—H5C	109.5	N1—P1—C1	108.11 (8)
H5A—C5—H5C	109.5	O1—P1—C4	113.05 (8)
H5B—C5—H5C	109.5	N1—P1—C4	104.85 (7)
C4—C6—H6A	109.5	C1—P1—C4	107.44 (8)
C4—C6—H6B	109.5		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
N1—H1A····O1 ⁱ	0.88	1.98	2.8344 (17)	165

Symmetry code: (i) x, -y+1/2, z+1/2.