organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-{2-[2-(4-Formyl­phen­­oxy)eth­­oxy]eth­­oxy}benzaldehyde

aSchool of Chemistry and Chemical Engeneering, Guangxi University, Guangxi 530004, People's Republic of China
*Correspondence e-mail: mzmz2009@sohu.com

(Received 19 April 2011; accepted 13 May 2011; online 25 May 2011)

The title compound, C18H18O5, was obtained by the reaction of 4-hy­droxy­benzaldehyde with bis­(2,2-dichloro­eth­yl) ether in dimethyl­formamide. In the crystal, the mol­ecule lies on a twofold rotation axis that passes through the central O atom of the aliphatic chain, thus leading to one half-mol­ecule being present per asymmetric unit. The carbonyl, aryl and O—CH2—CH2 groups are almost coplanar, with an r.m.s. deviation of 0.030 Å. The aromatic rings are approximately perpendicular to each other, forming a dihedral angle of 78.31 sh;H⋯O hydrogen bonds and C—H⋯π inter­actions help to consolidate the three-dimensional network.

Related literature

For the synthesis and structures of dialdehydes, see Aravindan et al. (2003[Aravindan, P. G., Yogavel, M., Thirumavalavan, M., Akilan, P., Velmurugan, D., Kandaswamy, M., Shanmuga Sundara Raj, S. & Fun, H.-K. (2003). Acta Cryst. E59, o806-o807.]); Han & Zhen (2005[Han, J.-R. & Zhen, X.-L. (2005). Acta Cryst. E61, o4069-o4070.]); Ma & Liu (2002[Ma, Z. & Liu, S.-X. (2002). Chin. J. Struct. Chem. 21, 533-537.]), Qi et al. (2005[Qi, A.-D., Zhu, Q.-H., He, Y.-Z. & Ren, X.-L. (2005). Acta Cryst. E61, o3784-o3785.]). For properties and applications of dialdehydes, see: Ma & Liu (2003a[Ma, Z. & Liu, S.-X. (2003a). Chin. J. Struct. Chem, 22, 553-557.],b[Ma, Z. & Liu, S.-X. (2003b). J. Coord. Chem. 56, 655-659.]); Ma & Cao (2005[Ma, Z. & Cao, R. (2005). J. Mol. Struct. 738, 137-142.]); Ragunathan & Bharadwaj (1992[Ragunathan, K. G. & Bharadwaj, P. K. (1992). Tetrahedron Lett. 33, 7581-7584.]); Ray & Bharadwaj (2006[Ray, D. & Bharadwaj, P. K. (2006). Eur. J. Inorg. Chem. pp. 1771-1776.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C18H18O5

  • Mr = 314.32

  • Monoclinic, C 2

  • a = 15.309 (2) Å

  • b = 4.5653 (6) Å

  • c = 11.8332 (15) Å

  • β = 113.253 (7)°

  • V = 759.85 (17) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 298 K

  • 0.32 × 0.26 × 0.23 mm

Data collection
  • Bruekr SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.969, Tmax = 0.977

  • 8239 measured reflections

  • 1566 independent reflections

  • 1374 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.101

  • S = 1.07

  • 1566 reflections

  • 105 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C2–C7 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9B⋯O1i 0.97 2.58 3.3772 (18) 139
C4—H4A⋯O2ii 0.93 2.59 3.3434 (16) 139
C8—H8BCgiii 0.97 3.14 3.7172 (14) 129
Symmetry codes: (i) [x-{\script{1\over 2}}, y+{\script{3\over 2}}, z]; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+1]; (iii) x, y+1, z.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

There has been, in recent years, a considerable interest in the study of aldehydes (Aravindan et al., 2003; Han & Zhen 2005; Qi et al., 2005), since these compounds are commodity chemicals used as intermediates in the manufacture of acids or alcohols, and to produce many important industrial products. Aldehydes are also used as important precusors in the synthesis of macrocyclic or/and macrobicyclic compounds by [1 + 1], [2 + 2] or [2 + 3] condensation with polyamines (Ma & Liu, 2003a; Ma & Liu, 2003b; Ma & Cao, 2005; Ragunathan & Bharadwaj, 1992; Ray & Bharadwaj, 2006). Hence, the current work aims to prepare dialdehydes and trialdehydes, to investigate their condensation behaviors with oligo-amines and synthesize macrocyclic and/or macrobicyclic compounds. Herein, we report a new dialdehyde which was obtained by reaction of 4-hydroxybenzaldehyde with bis(2,2'-dichloroethyl)ether in DMF and its structure was confirmed by elemental analysis, IR, NMR spectra and X-ray crystal analysis.

The structure consists of a neutral molecular unit (Fig. 1). A crystallographic twofold rotation axis passes through the central O atom of the aliphatic chain and there is thus one half molecule in the asymmetric unit. All bond lengths and angles are within normal ranges (Allen et al., 1987). The two aromatic rings are approximately perpendicular to each other with the dihedral angle being 78.31 (2) °. The aryl, carbonyl and the O—CH2—CH2 groups of one half molecule are coplanar to form one plane with an r.m.s. deviation of 0.030 Å. The planes of the two halves of the molecule are bent at the C—O—C atoms with angles of 109.2 (1) [for C8—C9—O3], 110.3 (2) [for C9—O3—C9i], and 109.2 (1) ° [for O3—C9i—C8i, symmetry code: (i) -x, y, 1-z], respectively, forming a "w" structure for the whole molecule (see Fig 2). Two weak hydrogen bonds are present in the structure between two hydrogen atoms and two oxygen atoms of neighboring molecules: H9B at C9 and O1ii [symmetry code: (ii) x-1/2, y+3/2, z], and H4A at C4 and O2iii,[symmetry code: (iii) -x+1/2, y-1/2, -z+1], respectively (Table 1). The molecules display two kinds of intermolecular CH-π interactions. One is between the aldehyde C—H group of C1 and the π system of the same aldehyde in a neighboring molecule [H1A···C1iv = 2.827 Å, C1···C1iv = 3.454 (2) Å, symmetry code: (iv) -x+1/2, y+1/2, -z]. The other is between the –CH2- group of C8 and a neighboring aryl group [H8B···Cgv = 3.139 Å, Cg is the centroid of the six membered ring of C2-C7, symmetry code: (v) x, y+1, z].

Related literature top

For the synthesis and structures of dialdehydes, see Aravindan et al. (2003); Han & Zhen (2005); Ma & Liu (2002), Qi et al. (2005). For properties and applications of dialdehydes, see: Ma & Liu (2003a,b); Ma & Cao (2005); Ragunathan & Bharadwaj (1992); Ray & Bharadwaj (2006). For standard bond lengths, see: Allen et al. (1987).

Experimental top

All synthetic processes were undertaken under dinitrogen gas. The title compound was obtained by the reaction of 4-hydroxybenzaldehyde with bis(2,2'-dichloroethyl)ether in N,N'-dimethylformamide (DMF). In a 100 cm3 flask fitted with a funnel, 4-hydroxy-benzaldehyde (6.1 g, 50 mM) and potassium carbonate were mixed in 50 cm3 of DMF. To this solution was added dropwise a stoichiometric quantity of bis(2,2'-dichloroethyl)ether (3.6 g, 25 mM) dissolved in 20 cm3 of DMF for a period of an hour with stirring. The mixture was then stirred for 24 h at 353 K. The solution was concentrated under reduced pressure and the white solid formed by adding a large quantity of water (200 cm3) was filtered off and recrystallized from ethanol and decolored with activated carbon. A colorless solid was obtained (Yield 81%, m.p: 363–365 K). Slow evaporation of a solution of the title compound in ethanol and dichloromethane (1:1) led to the formation of colorless crystals, which were suitable for X-ray characterization. Anal. Calcd. for [C18H18O5] (%): C, 68.78; H, 5.77; found: C, 68.49; H, 5.93; IR (KBr), (cm-1): 3100 (C—H of aryl), 2730 (C—H of –CHO), 1695 (C=O), 1500, 1490 (C=C of aryl), 1150, 1176, 1260 (CH2—O—CH2), 985, 860–705 (Ar—H). 1H NMR (CDCl3): 9.87 (s, 2H, CHO), 7.81 (d, 4H, J = 8.4 Hz, aryl, c), 7.02 (d, 4H, J = 8.8 Hz, aryl, d), 4.22 (d, 4H, J = 4.8 Hz, O—CH2CH2, f), 3.97 (d, 4H, J = 4.8 Hz, –CH2, g). 13C NMR: 191.09 (–CHO,a), 164.04 (aryl, b), 132.29 (aryl, c), 130.51 (aryl, d), 115.20 (aryl, e), 70.10 (–CH2CH2, f), 68.08 (–CH2CH2, g) (see figure 3 for the NMR atom number assignment).

Refinement top

All H atoms were positioned geometrically and refined using a riding model with C—H = 0.93 - 0.97 Å and with Uiso(H) = 1.2 times Ueq(C). In the absence of significant anomalous scatterers 1085 Friedel pairs were merged prior to refinement.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius. [symmetry code: (i) -x, y, 1-z]
[Figure 2] Fig. 2. A view of the crystal packing along the b axis. Some H atoms were omitted for clarity. The thin dashed lines are used to show the hydrogen bonds and the intermolecular CH-π interactions of the two carbonyl groups. The thick dashed line is used to show the intermolecular CH-π interactions of –CH2-(C8) and the neighboring aryl groups, from their H atoms to the centroids of the rings of the aryl groups.
[Figure 3] Fig. 3. An additional scheme with the numbering scheme used for the NMR spectra.
4-{2-[2-(4-Formylphenoxy)ethoxy]ethoxy}benzaldehyde top
Crystal data top
C18H18O5F(000) = 332
Mr = 314.32Dx = 1.374 Mg m3
Monoclinic, C2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C2yCell parameters from 8239 reflections
a = 15.309 (2) Åθ = 2.8–33.2°
b = 4.5653 (6) ŵ = 0.10 mm1
c = 11.8332 (15) ÅT = 298 K
β = 113.253 (7)°Prism, colorless
V = 759.85 (17) Å30.32 × 0.26 × 0.23 mm
Z = 2
Data collection top
Bruekr SMART CCD area-detector
diffractometer
1566 independent reflections
Radiation source: fine-focus sealed tube1374 reflections with I > 2σ(I)
Graphite Monochromator monochromatorRint = 0.026
Detector resolution: 0 pixels mm-1θmax = 33.2°, θmin = 2.8°
ϕ and ω scansh = 2222
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 66
Tmin = 0.969, Tmax = 0.977l = 1817
8239 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0634P)2 + 0.1116P]
where P = (Fo2 + 2Fc2)/3
1566 reflections(Δ/σ)max < 0.001
105 parametersΔρmax = 0.35 e Å3
1 restraintΔρmin = 0.19 e Å3
Crystal data top
C18H18O5V = 759.85 (17) Å3
Mr = 314.32Z = 2
Monoclinic, C2Mo Kα radiation
a = 15.309 (2) ŵ = 0.10 mm1
b = 4.5653 (6) ÅT = 298 K
c = 11.8332 (15) Å0.32 × 0.26 × 0.23 mm
β = 113.253 (7)°
Data collection top
Bruekr SMART CCD area-detector
diffractometer
1566 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1374 reflections with I > 2σ(I)
Tmin = 0.969, Tmax = 0.977Rint = 0.026
8239 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0361 restraint
wR(F2) = 0.101H-atom parameters constrained
S = 1.07Δρmax = 0.35 e Å3
1566 reflectionsΔρmin = 0.19 e Å3
105 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O20.11077 (6)0.9413 (2)0.36300 (8)0.0224 (2)
O30.00001.0762 (3)0.50000.0188 (3)
C80.01664 (9)1.0616 (3)0.30796 (12)0.0202 (2)
H8A0.03030.90590.28370.024*
H8B0.00951.17510.23560.024*
C20.21612 (9)0.3700 (3)0.17623 (12)0.0196 (3)
C50.14083 (9)0.7593 (3)0.29553 (11)0.0180 (2)
C40.23027 (9)0.6328 (3)0.35916 (12)0.0214 (3)
H4A0.26460.67910.44140.026*
C70.12779 (9)0.4969 (3)0.11397 (12)0.0219 (3)
H7A0.09360.45030.03170.026*
C10.25348 (10)0.1644 (3)0.11128 (13)0.0246 (3)
H1A0.21360.11440.03130.029*
C60.08902 (9)0.6923 (3)0.17174 (11)0.0207 (3)
H6A0.02980.77670.12880.025*
O10.33176 (7)0.0537 (3)0.15259 (10)0.0313 (3)
C90.00335 (10)1.2542 (3)0.40302 (12)0.0215 (3)
H9A0.05561.39200.43530.026*
H9B0.05531.36450.36590.026*
C30.26761 (9)0.4399 (3)0.30040 (12)0.0211 (3)
H3A0.32700.35610.34310.025*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0160 (4)0.0308 (5)0.0187 (4)0.0001 (4)0.0050 (3)0.0039 (4)
O30.0237 (6)0.0179 (6)0.0170 (6)0.0000.0105 (5)0.000
C80.0179 (5)0.0244 (6)0.0173 (5)0.0009 (5)0.0060 (4)0.0024 (5)
C20.0208 (6)0.0204 (6)0.0186 (6)0.0009 (5)0.0088 (5)0.0009 (5)
C50.0167 (5)0.0210 (6)0.0168 (5)0.0032 (5)0.0073 (4)0.0003 (5)
C40.0173 (5)0.0288 (7)0.0159 (5)0.0016 (5)0.0040 (4)0.0003 (5)
C70.0221 (6)0.0264 (7)0.0152 (6)0.0008 (5)0.0051 (5)0.0001 (5)
C10.0291 (6)0.0239 (6)0.0212 (6)0.0019 (5)0.0105 (5)0.0006 (5)
C60.0169 (5)0.0264 (7)0.0158 (5)0.0005 (5)0.0033 (4)0.0002 (5)
O10.0307 (5)0.0330 (6)0.0315 (6)0.0073 (5)0.0136 (4)0.0004 (5)
C90.0250 (6)0.0191 (6)0.0222 (6)0.0013 (5)0.0112 (5)0.0029 (5)
C30.0165 (5)0.0257 (6)0.0195 (6)0.0003 (5)0.0055 (4)0.0025 (5)
Geometric parameters (Å, º) top
O2—C51.3528 (16)C5—C41.4004 (18)
O2—C81.4357 (15)C4—C31.378 (2)
O3—C9i1.4235 (16)C4—H4A0.9300
O3—C91.4235 (16)C7—C61.3915 (19)
C8—C91.504 (2)C7—H7A0.9300
C8—H8A0.9700C1—O11.2114 (17)
C8—H8B0.9700C1—H1A0.9300
C2—C71.3857 (18)C6—H6A0.9300
C2—C31.4027 (18)C9—H9A0.9700
C2—C11.465 (2)C9—H9B0.9700
C5—C61.3967 (17)C3—H3A0.9300
C5—O2—C8118.79 (10)C2—C7—H7A119.2
C9i—O3—C9110.38 (15)C6—C7—H7A119.2
O2—C8—C9107.00 (11)O1—C1—C2125.76 (13)
O2—C8—H8A110.3O1—C1—H1A117.1
C9—C8—H8A110.3C2—C1—H1A117.1
O2—C8—H8B110.3C7—C6—C5118.66 (12)
C9—C8—H8B110.3C7—C6—H6A120.7
H8A—C8—H8B108.6C5—C6—H6A120.7
C7—C2—C3119.25 (12)O3—C9—C8109.13 (12)
C7—C2—C1119.35 (12)O3—C9—H9A109.9
C3—C2—C1121.40 (12)C8—C9—H9A109.9
O2—C5—C6124.66 (12)O3—C9—H9B109.9
O2—C5—C4115.10 (11)C8—C9—H9B109.9
C6—C5—C4120.24 (12)H9A—C9—H9B108.3
C3—C4—C5120.29 (12)C4—C3—C2120.03 (12)
C3—C4—H4A119.9C4—C3—H3A120.0
C5—C4—H4A119.9C2—C3—H3A120.0
C2—C7—C6121.53 (12)
C5—O2—C8—C9179.71 (11)C2—C7—C6—C50.3 (2)
C8—O2—C5—C64.4 (2)O2—C5—C6—C7178.83 (13)
C8—O2—C5—C4174.93 (12)C4—C5—C6—C70.5 (2)
O2—C5—C4—C3178.97 (12)C9i—O3—C9—C8174.42 (13)
C6—C5—C4—C30.4 (2)O2—C8—C9—O368.53 (13)
C3—C2—C7—C60.1 (2)C5—C4—C3—C20.2 (2)
C1—C2—C7—C6179.68 (12)C7—C2—C3—C40.0 (2)
C7—C2—C1—O1174.98 (15)C1—C2—C3—C4179.59 (13)
C3—C2—C1—O15.4 (2)
Symmetry code: (i) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C2–C7 ring.
D—H···AD—HH···AD···AD—H···A
C9—H9B···O1ii0.972.583.3772 (18)139
C4—H4A···O2iii0.932.593.3434 (16)139
C8—H8B···Cgiv0.973.143.7172 (14)129
Symmetry codes: (ii) x1/2, y+3/2, z; (iii) x+1/2, y1/2, z+1; (iv) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC18H18O5
Mr314.32
Crystal system, space groupMonoclinic, C2
Temperature (K)298
a, b, c (Å)15.309 (2), 4.5653 (6), 11.8332 (15)
β (°) 113.253 (7)
V3)759.85 (17)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.32 × 0.26 × 0.23
Data collection
DiffractometerBruekr SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.969, 0.977
No. of measured, independent and
observed [I > 2σ(I)] reflections
8239, 1566, 1374
Rint0.026
(sin θ/λ)max1)0.770
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.101, 1.07
No. of reflections1566
No. of parameters105
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.19

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C2–C7 ring.
D—H···AD—HH···AD···AD—H···A
C9—H9B···O1i0.972.583.3772 (18)139
C4—H4A···O2ii0.932.593.3434 (16)139
C8—H8B···Cgiii0.973.143.7172 (14)129
Symmetry codes: (i) x1/2, y+3/2, z; (ii) x+1/2, y1/2, z+1; (iii) x, y+1, z.
 

Acknowledgements

The authors are grateful for financial support from the Scientific Fund of Guangxi University (X061144).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAravindan, P. G., Yogavel, M., Thirumavalavan, M., Akilan, P., Velmurugan, D., Kandaswamy, M., Shanmuga Sundara Raj, S. & Fun, H.-K. (2003). Acta Cryst. E59, o806–o807.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2002). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHan, J.-R. & Zhen, X.-L. (2005). Acta Cryst. E61, o4069–o4070.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMa, Z. & Cao, R. (2005). J. Mol. Struct. 738, 137–142.  CrossRef CAS Google Scholar
First citationMa, Z. & Liu, S.-X. (2002). Chin. J. Struct. Chem. 21, 533–537.  CAS Google Scholar
First citationMa, Z. & Liu, S.-X. (2003a). Chin. J. Struct. Chem, 22, 553–557.  CAS Google Scholar
First citationMa, Z. & Liu, S.-X. (2003b). J. Coord. Chem. 56, 655–659.  CrossRef CAS Google Scholar
First citationQi, A.-D., Zhu, Q.-H., He, Y.-Z. & Ren, X.-L. (2005). Acta Cryst. E61, o3784–o3785.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRagunathan, K. G. & Bharadwaj, P. K. (1992). Tetrahedron Lett. 33, 7581–7584.  CrossRef CAS Google Scholar
First citationRay, D. & Bharadwaj, P. K. (2006). Eur. J. Inorg. Chem. pp. 1771–1776.  CrossRef Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds