Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

trans-Dichloridobis[(6-nicotinoyl-2pyridyl- κN^6)(3-pyridyl- κN)methanone]copper(II)

Hong Qiang* and Fan Zhang

Department of Chemistry, Capital Normal University, Beijing 100048, People's Republic of China

Correspondence e-mail: qiang-hong@163.com

Received 6 May 2011; accepted 10 May 2011

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.029; wR factor = 0.084; data-to-parameter ratio = 18.3.

In the title complex, $[CuCl_2(C_{17}H_{11}N_3O_2)_2]$, the Cu^{II} ion is located on an inversion center. It exhibits a distorted octahedral coordination geometry defined by two chloride anions at *trans* sites and four 3-pyridyl N atoms at equatorial sites from two (6-nicotinoyl-2-pyridyl)(3-pyridyl)methanone ligands. The (6-nicotinoyl-2-pyridyl)(3-pyridyl)methanone ligand can be viewed as having two pendant 3-pyridyl rings attached to a central pyridyl skeleton *via* separate carbonyl bridges, acting in a $\kappa^2 N, N'$ -chelating mode with its 3-pyridyl N atoms bound to the Cu^{II} ion. The pendant 3-pyridyl rings make a dihedral angle of 80.76 (5)°. In the crystal, molecules are linked through intermolecular C-H··· π and C-H···O interactions, forming a three-dimentional framework.

Related literature

For transition metal complexes with di-pyrid-2-yl ketone, see: Papaefstathiou & Perlepes (2002); Efthymiou *et al.* (2006). For the crystal structure of an analogous Cu^{II} complex, see: Wan *et al.* (2008). For C-H··· π interactions, see: Umezawa *et al.* (1998).

Experimental

Crystal data

 $\begin{bmatrix} \text{CuCl}_2(\text{C}_{17}\text{H}_{11}\text{N}_3\text{O}_2)_2 \end{bmatrix}$ $M_r = 713.02$ Monoclinic, C2/c a = 18.728 (3) Å b = 11.8971 (18) Å c = 16.695 (3) Å $\beta = 121.522$ (3)°

Data collection

Bruker APEXII CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2007) $T_{\min} = 0.848, T_{\max} = 1.000$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.029$ 215 parameters $wR(F^2) = 0.084$ H-atom parameters constrainedS = 1.04 $\Delta \rho_{max} = 0.25$ e Å $^{-3}$ 3937 reflections $\Delta \rho_{min} = -0.21$ e Å $^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C13-C17,N3 ring.

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C13-H13A\cdotsO1^{i}$ $C2-H2A\cdots Cg1^{ii}$	0.93 0.93	2.61 2.73	3.418 (2) 3.621 (3)	146 162
	1 1 an		1	

Symmetry codes: (i) $x + \frac{1}{2}$, $y - \frac{1}{2}$, z; (ii) -x + 1, y, $-z + \frac{1}{2}$.

Data collection: *APEX2* (Bruker, 2007); cell refinement: *APEX2* and *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL* and *PLATON* (Spek, 2009).

The authors are grateful for financial support from the Science and Technology program, Beijing Municipal Education Commission.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZQ2102).

References

- Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Efthymiou, C. G., Raptopoulou, C. P., Terzis, A., Boca, R., Korabic, M., Mrozinski, J., Perlepes, S. P. & Bakalbassis, E. G. (2006). *Eur. J. Inorg. Chem.* 11, 2236–2252.
- Papaefstathiou, G. S. & Perlepes, S. P. (2002). Comments Inorg. Chem. 23, 249– 274.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Umezawa, Y., Tsuboyama, S., Honda, K., Uzawa, J. & Nishio, M. (1998). Bull. Chem. Soc. Jpn, 71, 1202–1213.

Wan, C. Q., Chen, X. D. & Mak, T. C. W. (2008). CrystEngComm, 10, 475-478.

Mo $K\alpha$ radiation $\mu = 0.91 \text{ mm}^{-1}$ T = 293 K $0.40 \times 0.30 \times 0.30 \text{ mm}$

11215 measured reflections

3937 independent reflections

3361 reflections with $I > 2\sigma(I)$

V = 3170.9 (8) Å³

Z = 4

 $R_{\rm int} = 0.020$

supporting information

Acta Cryst. (2011). E67, m758 [doi:10.1107/S1600536811017685]

trans-Dichloridobis[(6-nicotinoyl-2-pyridyl- κN^6)(3-pyridyl- κN)methanone]copper(II)

Hong Qiang and Fan Zhang

S1. Comment

Di-pyridin-2-yl-methanone (di-pyrid-2-yl ketone, DPK), $(C_5H_4N)_2CO$, is an extraordinarily versatile ligand among the thousands of basic building blocks that have been used in coordination chemistry and materials science (Papaefstathiou & Perlepes, 2002; Efthymiou *et al.*, 2006). Herein, we report the mononuclear Cu^{II} complex with the oligo-pyridyl ketone ligand (6-nicotinoyl-2-pyridyl)(3-pyridyl)methanone (abbreviated as L), a member of the pyridinylmethanone family.

In the crystal structure of the title complex, the center Cu^{II} adopts an octahedral coordination geometry with two chlorido depositing in trans to each other, and two 2,6-pyridinediylbis(3-pyridinyl)methanone ligands bound to the ion by four 3-pyridyl N atoms (Fig. 1). The Cu1—N3 and Cu1—Cl1 bond lengths equal 2.0412 (12) Å and 2.3087 (4) Å, respectively, while the Cu-N1 exhibits weak bonding with the Cu-N1 distance of 2.615 (1) Å. The latter Cu—N bonds are remarkably longer than that (about 2.03 Å) in the similar complex Cu(L)₂(BF₄)₂ (Wan *et al.* 2008). The pendant 3-pyridyl rings exhibit a dihedral angle of 80.76 (5)°. The mononuclear complex units link each other through the intermolecular C2—H2A···*π* and C13—H13A···O1ⁱⁱ interactions to form a three-dimentional framework, as shown in Fig. 2. For the C—H··*π* interaction (Umezawa *et al.* 1998), the C2···Cg1 distance (where Cg1 is the centroid of the ring containing N3ⁱ; i: - x+1, -y, 0.5-z) is 3.621 (3) Å, and the C2—H2A···Cg1 angle is 161.8°. For the C—H···O interaction, the C13···O1ⁱⁱ distance is 3.418 (2) Å, and the C13—H13A···O1ⁱⁱ angle is 146.2° (ii: x+0.5, y-0.5, z).

S2. Experimental

The (6-nicotinoyl-2-pyridyl)(3-pyridyl)methanone ligand was obtained following the reaction procedure as reported in literature (Wan *et al.*, 2008). Reaction of (6-nicotinoyl-2-pyridyl)(3-pyridyl)methanone (29 mg, 0.1 mmol) with CuCl₂ (7 mg, 0.05 mmol) in acetonitrile formed *trans*-[Cu(C₁₇H₁₁N₃O₂)₂Cl₂] as a blue solution, which was left stand in air for four days to obtain block-like crystals (yield 13.1mg, 61%).

S3. Refinement

The hydrogen atoms were placed in idealized positions and allowed to ride on the relevant carbon atoms, with C—H = 0.93 Å and $U_{iso}(H) = 1.2 U_{eq}(C)$.

Figure 1

The atom-numbering scheme of the title complex (symmetry code: (i) -x+1.5, -y+0.5, -z+1.5) with red-dashed lines indicating weak Cu1-N1 bonding. Displacement ellipsoids are drawn at the 50% probability level and H atoms are omitted for clarity.

Figure 2

View of the crystal packing of the title compound.

trans-Dichloridobis[(6-nicotinoyl-2-pyridyl-κN⁶)(3-pyridyl- κN)methanone]copper(II)

Crystal data	
$[CuCl_2(C_{17}H_{11}N_3O_2)_2]$	$\beta = 121.522 \ (3)^{\circ}$
$M_r = 713.02$	V = 3170.9 (8) Å ³
Monoclinic, $C2/c$	Z = 4
Hall symbol: -C 2yc	F(000) = 1452
a = 18.728 (3) Å	$D_{\rm x} = 1.494 {\rm ~Mg} {\rm ~m}^{-3}$
<i>b</i> = 11.8971 (18) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
c = 16.695 (3) Å	$\mu = 0.91 \text{ mm}^{-1}$

T = 293 KBlock, blue

Data collection

Dura concerton	
Bruker APEXII CCD area-detector diffractometer	11215 measured reflections 3937 independent reflections
Radiation source: fine-focus sealed tube	3361 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int}=0.020$
ω scans	$\theta_{\rm max} = 28.3^{\circ}, \theta_{\rm min} = 2.1^{\circ}$
Absorption correction: multi-scan	$h = -24 \rightarrow 24$
(SADABS; Bruker, 2007)	$k = -15 \rightarrow 15$
$T_{\min} = 0.848, \ T_{\max} = 1.000$	$l = -19 \rightarrow 22$
Refinement	
Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.029$	H-atom parameters constrained
$wR(F^2) = 0.084$	$w = 1/[\sigma^2(F_o^2) + (0.0423P)^2 + 2.1803P]$
S = 1.04	where $P = (F_o^2 + 2F_c^2)/3$
3937 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
215 parameters	$\Delta ho_{ m max} = 0.25 \ { m e} \ { m \AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.21 \text{ e} \text{ Å}^{-3}$
Primary atom site location: structure-invariant	Extinction correction: SHELXL97 (Sheldrich
direct methods	2008). Fc [*] =kFc[1+0.001xFc ^{2λ3/sin(2θ)]^{-1/4}}

Secondary atom site location: difference Fourier map

 $0.40 \times 0.30 \times 0.30$ mm

k, Extinction coefficient: 0.00079 (17)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F² against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F², conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Cul	0.7500	0.2500	0.5000	0.03142 (9)	
Cl1	0.69747 (3)	0.11938 (3)	0.38011 (3)	0.03905 (11)	
O2	0.77486 (11)	0.74717 (10)	0.35782 (15)	0.0670 (5)	
C12	0.73237 (11)	0.67642 (13)	0.36615 (13)	0.0423 (4)	
C1	0.45389 (14)	0.2790 (2)	0.33217 (19)	0.0666 (6)	
H1A	0.4120	0.2267	0.2971	0.080*	
C2	0.43565 (12)	0.39132 (18)	0.32729 (16)	0.0588 (5)	
H2A	0.3811	0.4166	0.2878	0.071*	
C3	0.49909 (10)	0.46676 (15)	0.38157 (12)	0.0404 (4)	
C4	0.57867 (10)	0.42349 (14)	0.44252 (12)	0.0386 (3)	
H4A	0.6207	0.4729	0.4830	0.046*	
N1	0.59789 (9)	0.31499 (12)	0.44589 (11)	0.0464 (3)	

~ -				
C5	0.53567 (13)	0.24547 (15)	0.39018 (18)	0.0571 (5)
H5A	0.5483	0.1698	0.3905	0.069*
C6	0.47982 (11)	0.58898 (16)	0.37172 (13)	0.0453 (4)
01	0.41059 (9)	0.62239 (13)	0.35012 (13)	0.0676 (4)
C7	0.54433 (11)	0.67304 (14)	0.38234 (13)	0.0432 (4)
C8	0.53320 (14)	0.78598 (18)	0.39550 (17)	0.0602 (5)
H8A	0.4891	0.8084	0.4023	0.072*
C9	0.58907 (15)	0.86377 (16)	0.39825 (18)	0.0657 (6)
H9A	0.5826	0.9397	0.4062	0.079*
C10	0.65408 (13)	0.82833 (15)	0.38923 (14)	0.0520 (5)
H10A	0.6924	0.8795	0.3908	0.062*
C11	0.66154 (11)	0.71359 (13)	0.37759 (12)	0.0394 (4)
N2	0.60753 (9)	0.63678 (11)	0.37358 (10)	0.0378 (3)
N3	0.76337 (8)	0.36519 (10)	0.41813 (9)	0.0300 (3)
C14	0.74131 (10)	0.47290 (12)	0.41611 (11)	0.0314 (3)
H14A	0.7177	0.4935	0.4510	0.038*
C15	0.75214 (10)	0.55503 (12)	0.36437 (11)	0.0338 (3)
C16	0.78887 (11)	0.52392 (15)	0.31374 (12)	0.0419 (4)
H16A	0.7983	0.5770	0.2794	0.050*
C17	0.81099 (11)	0.41376 (15)	0.31523 (13)	0.0431 (4)
H17A	0.8353	0.3914	0.2815	0.052*
C13	0.79703 (10)	0.33587 (14)	0.36711 (11)	0.0368 (3)
H13A	0.8113	0.2611	0.3667	0.044*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu1	0.04854 (17)	0.01975 (13)	0.03224 (15)	-0.00100 (10)	0.02548 (13)	0.00062 (9)
Cl1	0.0554 (2)	0.02824 (18)	0.0347 (2)	-0.00295 (15)	0.02439 (18)	-0.00262 (14)
O2	0.0755 (10)	0.0343 (7)	0.1049 (14)	-0.0040 (6)	0.0566 (10)	0.0174 (7)
C12	0.0487 (9)	0.0296 (7)	0.0459 (9)	-0.0008 (7)	0.0230 (8)	0.0109 (7)
C1	0.0446 (11)	0.0549 (12)	0.0815 (16)	-0.0138 (9)	0.0198 (11)	-0.0136 (11)
C2	0.0344 (9)	0.0595 (12)	0.0661 (13)	0.0007 (8)	0.0149 (9)	-0.0019 (10)
C3	0.0366 (8)	0.0426 (9)	0.0436 (9)	0.0033 (7)	0.0221 (7)	0.0027 (7)
C4	0.0371 (8)	0.0365 (8)	0.0390 (8)	-0.0007 (6)	0.0177 (7)	0.0016 (6)
N1	0.0412 (8)	0.0358 (7)	0.0534 (9)	0.0007 (6)	0.0186 (7)	0.0041 (6)
C5	0.0498 (11)	0.0376 (10)	0.0752 (15)	-0.0054 (8)	0.0266 (11)	-0.0042 (9)
C6	0.0433 (9)	0.0466 (9)	0.0468 (10)	0.0112 (8)	0.0242 (8)	0.0031 (8)
01	0.0517 (8)	0.0637 (9)	0.0945 (12)	0.0184 (7)	0.0432 (9)	0.0034 (8)
C7	0.0444 (9)	0.0361 (8)	0.0428 (9)	0.0093 (7)	0.0185 (8)	0.0022 (7)
C8	0.0609 (13)	0.0440 (10)	0.0716 (14)	0.0169 (9)	0.0318 (11)	-0.0033 (10)
C9	0.0750 (15)	0.0305 (9)	0.0796 (15)	0.0102 (9)	0.0320 (13)	-0.0070 (9)
C10	0.0630 (12)	0.0273 (8)	0.0548 (11)	-0.0004 (8)	0.0233 (10)	0.0011 (7)
C11	0.0489 (9)	0.0264 (7)	0.0365 (8)	0.0033 (6)	0.0178 (7)	0.0052 (6)
N2	0.0430 (7)	0.0279 (6)	0.0397 (7)	0.0055 (5)	0.0196 (6)	0.0041 (5)
N3	0.0373 (7)	0.0248 (5)	0.0326 (6)	0.0011 (5)	0.0214 (6)	0.0023 (5)
C14	0.0374 (7)	0.0264 (7)	0.0343 (7)	0.0021 (6)	0.0213 (6)	0.0036 (6)
C15	0.0366 (8)	0.0284 (7)	0.0352 (8)	-0.0024 (6)	0.0179 (6)	0.0052 (6)

supporting information

C16	0.0462 (9)	0.0437 (9)	0.0407 (9)	-0.0072 (7)	0.0262 (8)	0.0073 (7)
C17	0.0491 (10)	0.0495 (9)	0.0438 (9)	-0.0021 (8)	0.0335 (8)	-0.0011 (7)
C13	0.0428 (9)	0.0332 (7)	0.0394 (8)	0.0019 (6)	0.0251 (7)	-0.0011 (6)

<i>Geometric parameters</i>	(Å,	9	
-----------------------------	-----	---	--

Cu1—N3	2.0412 (12)	C7—N2	1.338 (2)
Cu1—N3 ⁱ	2.0412 (12)	C7—C8	1.395 (3)
Cu1—Cl1	2.3087 (4)	C8—C9	1.380 (3)
Cu1—Cl1 ⁱ	2.3087 (4)	C8—H8A	0.9300
O2—C12	1.215 (2)	C9—C10	1.369 (3)
C12—C15	1.495 (2)	С9—Н9А	0.9300
C12—C11	1.502 (3)	C10—C11	1.396 (2)
C1—C2	1.371 (3)	C10—H10A	0.9300
C1—C5	1.376 (3)	C11—N2	1.339 (2)
C1—H1A	0.9300	N3—C14	1.3415 (18)
C2—C3	1.383 (3)	N3—C13	1.3438 (19)
C2—H2A	0.9300	C14—C15	1.3875 (19)
C3—C4	1.391 (2)	C14—H14A	0.9300
C3—C6	1.487 (2)	C15—C16	1.390 (2)
C4—N1	1.333 (2)	C16—C17	1.371 (2)
C4—H4A	0.9300	C16—H16A	0.9300
N1—C5	1.332 (2)	C17—C13	1.383 (2)
С5—Н5А	0.9300	C17—H17A	0.9300
C6—O1	1.217 (2)	C13—H13A	0.9300
C6—C7	1.506 (3)		
N3—Cu1—N3 ⁱ	180.0	C9—C8—C7	118 57 (19)
N_3 — C_{11} — C_{11}	90 99 (4)	C9—C8—H8A	120.7
N ³ⁱ —Cu1—Cl1	89.01 (4)	C7—C8—H8A	120.7
N3—Cu1—Cl1 ⁱ	89.01 (4)	C10-C9-C8	119.50 (18)
$N3^{i}$ —Cu1—Cl1 ⁱ	90.99 (4)	C10-C9-H9A	120.2
$C_1 - C_1 - C_1^{i}$	180.0	C8—C9—H9A	120.2
O2—C12—C15	118.88 (17)	C9—C10—C11	118.42 (19)
02—C12—C11	119.02 (16)	C9—C10—H10A	120.8
C15—C12—C11	122.10 (14)	C11—C10—H10A	120.8
C2—C1—C5	118.40 (19)	N2—C11—C10	123.12 (17)
C2—C1—H1A	120.8	N2-C11-C12	119.14 (14)
C5—C1—H1A	120.8	C10—C11—C12	117.71 (16)
C1—C2—C3	119.45 (18)	C7—N2—C11	117.58 (14)
C1—C2—H2A	120.3	C14—N3—C13	118.19 (13)
C3—C2—H2A	120.3	C14—N3—Cu1	120.94 (10)
C2—C3—C4	117.64 (17)	C13—N3—Cu1	120.84 (10)
C2—C3—C6	119.12 (16)	N3—C14—C15	123.02 (14)
C4—C3—C6	123.23 (16)	N3—C14—H14A	118.5
N1—C4—C3	123.46 (16)	C15—C14—H14A	118.5
N1—C4—H4A	118.3	C14—C15—C16	118.09 (14)
C3—C4—H4A	118.3	C14—C15—C12	123.33 (14)

C5—N1—C4	116.97 (16)	C16—C15—C12	118.41 (14)
N1—C5—C1	123.86 (18)	C17—C16—C15	118.97 (14)
N1—C5—H5A	118.1	C17—C16—H16A	120.5
C1—C5—H5A	118.1	C15—C16—H16A	120.5
O1—C6—C3	120.78 (18)	C16—C17—C13	119.84 (15)
O1—C6—C7	118.89 (17)	С16—С17—Н17А	120.1
C3—C6—C7	120.22 (15)	C13—C17—H17A	120.1
N2—C7—C8	122.80 (18)	N3—C13—C17	121.86 (15)
N2—C7—C6	118.31 (15)	N3—C13—H13A	119.1
C8—C7—C6	118.79 (17)	C17—C13—H13A	119.1
05 01 02 02	1 2 (4)	02 612 611 610	$7 \wedge (2)$
$C_{3} = C_{1} = C_{2} = C_{3}$	-1.2(4)	02-012-011-010	-7.4(3)
C1 = C2 = C3 = C4	-2.9(3)	C15 - C12 - C11 - C10	1/2./9 (16)
C1 = C2 = C3 = C6	1/6.4 (2)	C_{8} C_{7} N_{2} C_{11}	-0.2(3)
C2—C3—C4—N1	5.2 (3)	C6—C7—N2—C11	176.08 (15)
C6—C3—C4—N1	-1/4.0/ (1/)	C10—C11—N2—C7	-0.8 (3)
C3—C4—N1—C5	-3.0(3)	C12—C11—N2—C7	-178.81 (15)
C4—N1—C5—C1	-1.6 (3)	Cl1—Cu1—N3—C14	136.92 (12)
C2-C1-C5-N1	3.7 (4)	$Cl1^{1}$ — $Cu1$ — $N3$ — $C14$	-43.08 (12)
C2—C3—C6—O1	30.2 (3)	Cl1—Cu1—N3—C13	-45.23 (12)
C4—C3—C6—O1	-150.5 (2)	Cl1 ⁱ —Cu1—N3—C13	134.77 (12)
C2—C3—C6—C7	-145.85 (19)	C13—N3—C14—C15	-0.4 (2)
C4—C3—C6—C7	33.5 (3)	Cu1—N3—C14—C15	177.50 (11)
O1—C6—C7—N2	-157.20 (19)	N3—C14—C15—C16	-1.1 (2)
C3—C6—C7—N2	18.9 (3)	N3—C14—C15—C12	-176.31 (15)
O1—C6—C7—C8	19.2 (3)	O2—C12—C15—C14	146.67 (19)
C3—C6—C7—C8	-164.64 (18)	C11—C12—C15—C14	-33.5 (2)
N2—C7—C8—C9	1.0 (3)	O2-C12-C15-C16	-28.5 (3)
C6—C7—C8—C9	-175.3 (2)	C11—C12—C15—C16	151.27 (16)
C7—C8—C9—C10	-0.8 (4)	C14-C15-C16-C17	1.5 (2)
C8—C9—C10—C11	-0.1 (3)	C12-C15-C16-C17	176.90 (16)
C9—C10—C11—N2	0.9 (3)	C15—C16—C17—C13	-0.4 (3)
C9—C10—C11—C12	178.98 (19)	C14—N3—C13—C17	1.6 (2)
O2—C12—C11—N2	170.73 (18)	Cu1—N3—C13—C17	-176.35 (13)
C15—C12—C11—N2	-9.1 (2)	C16—C17—C13—N3	-1.2 (3)

Symmetry code: (i) -x+3/2, -y+1/2, -z+1.

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C13–C17,N3 ring.

D—H···A	D—H	H···A	D···A	D—H···A	
С13—Н13А…О1іі	0.93	2.61	3.418 (2)	146	
C2—H2A····Cg1 ⁱⁱⁱ	0.93	2.73	3.621 (3)	162	

Symmetry codes: (ii) x+1/2, y-1/2, z; (iii) -x+1, y, -z+1/2.