organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

1,1-(Biphenyl-2,2'-diyldioxy)-3,3,5,5tetrakis(4-bromomethylphenoxy)cyclotriphosphazene

Rui Han, Mei-Mei Chai, Jun-Liang Yang and Yong Ye*

Phosphorus Chemical Engineering Research Center of Henan Province, Department of Chemistry, Zhengzhou University, Zhengzhou 450052, People's Republic of China

Correspondence e-mail: yeyong@zzu.edu.cn

Received 6 April 2011; accepted 27 April 2011

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.009 Å; R factor = 0.077; wR factor = 0.192; data-to-parameter ratio = 19.8.

In the title compound, C40H32Br4N3O6P3, the cyclotriphosphazene ring adopts a planar conformation, with an r.m.s. deviation of 0.0247 Å. In the crystal, there is a weak intermolecular C-H···O hydrogen bond as well as short intermolecular Br $\cdot \cdot \cdot$ Br contacts [3.3352 (12) Å].

Related literature

For general background to cyclotriphosphazenes, see: Manners (1996). For the applications of cyclotriphosphazene derivatives as flame retardants, see: Allcock (1977); as elastomers, see: Allcock (2000); as biomaterials, see: Trollsa & Hedrick (1998); as artificial nucleases, see: Wang, Ye, Zhong et al. (2009); Wang, Ye, Ju et al. (2009).

Experimental

Crystal data

$C_{40}H_{32}Br_4N_3O_6P_3$	$V = 4216.7 (15) \text{ Å}^3$
$M_r = 1063.24$	Z = 4
Monoclinic, $P2_1/n$	Mo $K\alpha$ radiation
a = 10.991 (2) Å	$\mu = 3.98 \text{ mm}^{-1}$
b = 28.417 (6) Å	T = 293 K
c = 14.008 (3) Å	$0.24 \times 0.20 \times 0.18 \text{ mm}$
$\beta = 105.47 \ (3)^{\circ}$	

Data collection

Bruker P4 CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2008) $T_{\min} = 0.392, T_{\max} = 0.520$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.077$	505 parameters
$wR(F^2) = 0.192$	H-atom parameters constrained
S = 1.11	$\Delta \rho_{\rm max} = 0.82 \text{ e } \text{\AA}^{-3}$
9978 reflections	$\Delta \rho_{\rm min} = -0.71 \text{ e } \text{\AA}^{-3}$

52073 measured reflections

 $R_{\rm int} = 0.075$

9978 independent reflections

6049 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C33-H33A\cdotsO1^{i}$	0.97	2.60	3.525 (8)	160
Symmetry code: (i) $x +$	$\frac{1}{2}$, $-v + \frac{1}{2}$, $z - \frac{1}{2}$	-		

Data collection: XSCANS (Bruker, 2008); cell refinement: XSCANS; data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

This work was supported by Natural Science Foundation of China (Grant Nos. 20972143, 20602032).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZS2109).

References

- Allcock, H. R. (1977). Angew. Chem. Int. Ed. Engl. 16, 147-150.
- Allcock, H. R. (2000). Polym. Prep. 14, 553-558.
- Bruker (2008). XSCANS, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Manners, I. (1996). Angew. Chem. Int. Ed. Engl. 35, 1602-1607.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Trollsa, M. & Hedrick, J. L. (1998). J. Am. Chem. Soc. 120, 4644-4648.
- Wang, L., Ye, Y., Ju, Z., Zhong, S. & Zhao, Y. F. (2009). Phosphorus Sulfur, 184. 1958-1963.
- Wang, L., Ye, Y., Zhong, S., Zhang, D. & Zhao, Y. F. (2009). Chem. J. Chin. Univ. 30, 493-496

supporting information

Acta Cryst. (2011). E67, o1298 [doi:10.1107/S1600536811016047]

1,1-(Biphenyl-2,2'-diyldioxy)-3,3,5,5-tetrakis(4-bromomethylphenoxy)cyclotriphosphazene

Rui Han, Mei-Mei Chai, Jun-Liang Yang and Yong Ye

S1. Comment

Cyclotriphosphazenes are of considerable interest not only because of their wide spectrum of chemical and physical properties, but also their importance in synthetic chemistry (Manners, 1996). Different side-group substituents affect the chemical and physical properties of the ring systems in high polymers based on a phosphazene skeleton. Various cyclotriphosphazenes have been successfully developed for a variety of applications, such as flame retardants (Allcock, 1977), elastomers (Allcock, 2000) and biomaterials (Trollsa & Hedrick, 1998), achieved by varying the nature of the substituent side group. Recently, some polydentate cyclotriphosphazene ligands were reported, which showed good nuclease activity with hydrolytic cleavage ability (Wang, Ye, Zhong *et al.*, 2009; Wang, Ye, Ju *et al.*, 2009). To obtain more insight into the selective recognization and efficient cleavage of DNA by different metal complexes of cyclotriphosphazene, the title compound, $C_{40}H_{32}Br_4N_3O_6P_3$ (I), was synthesized and its crystal structure is reported here.

In the crystal structure of (I) (Fig. 1), the part of cyclotriphosphazene ring adopts a planar conformation with an r.m.s. deviation of 0.0247 Å. There are short intermolecular Br···Br contacts: Br1···Br2ⁱⁱ [3.3352 (12) Å] and Br3···Br4ⁱⁱⁱ [3.5868 (15) Å] [for symmetry codes: (ii) -x - 1/2, y - 1/2, -z + 1/2; (iii) -x + 1/2, y - 1/2, -z + 1/2]. The crystal structure is stabilized by weak intermolecular C—H···O hydrogen bond (Table 1).

S2. Experimental

To 30 ml of THF 2,2'-biphenyldioxy-3,3,5,5-tetrakis(4-hydroxymethylphenoxy)- cyclotriphosphazene (1.622 g, 2 mmol) was added under argon. Then, 1.1 ml of phosphorus tribromide in 10 ml of THF was added dropwise and the mixture was stirred for 5 h. The organic solvent was removed under reduced pressure and the residue was dissolved in CHCl₃. The residue washed with aq. K_2CO_3 and extracted with CHCl₃, the organic layer was dried over Na₂SO₄ and then evaporated under reduced pressure. The remaining residue was purified by silica gel column chromatography (CH₂Cl₂/PE) to provide title compound which was recrystallized from CH₂Cl₂ and single crystals of (I) were obtained by slow evaporation.

S3. Refinement

All H atoms were placed in calculated positions, with C—H = 0.93 or 0.97 Å, and included in the final cycles of refinement using a riding model, with $U_{iso}(H) = 1.2U_{eq}(C)$. There is a single reflection which is considered to be affected by the beamstop.

Figure 1

Molecular configuration and atom numbering scheme for (I), with displacement ellipsoids drawn at the 20% probability level.

F(000) = 2104

 $\theta = 2.1 - 27.9^{\circ}$

 $\mu = 3.98 \text{ mm}^{-1}$

T = 293 K

 $D_{\rm x} = 1.675 {\rm ~Mg} {\rm ~m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 7462 reflections

1,1-(Biphenyl-2,2'-diyldioxy)-3,3,5,5-tetrakis(4- bromomethylphenoxy)cyclotriphosphazene

Crystal data

 $C_{40}H_{32}Br_4N_3O_6P_3$ $M_r = 1063.24$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn a = 10.991 (2) Å b = 28.417 (6) Å c = 14.008 (3) Å $\beta = 105.47$ (3)° V = 4216.7 (15) Å³ Z = 4Data collection

Bruker P4 CCD diffractometer Radiation source: fine-focus

Radiation source: fine-focus sealed tube	6049 reflections with
Graphite monochromator	$R_{\rm int} = 0.075$
ω scans	$\theta_{\rm max} = 27.9^{\circ}, \ \theta_{\rm min} = 1.$
Absorption correction: multi-scan	$h = -14 \rightarrow 14$
(SADABS; Bruker, 2008)	$k = -37 \rightarrow 37$
$T_{\min} = 0.392, \ T_{\max} = 0.520$	$l = -18 \rightarrow 18$

Prism, colorless $0.24 \times 0.20 \times 0.18 \text{ mm}$ 52073 measured reflections 9978 independent reflections 6049 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.075$ $\theta_{\text{max}} = 27.9^{\circ}, \ \theta_{\text{min}} = 1.7^{\circ}$ Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.077$	Hydrogen site location: inferred from
$wR(F^2) = 0.192$	neighbouring sites
S = 1.11	H-atom parameters constrained
9978 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0761P)^2]$
505 parameters	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.82 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.71 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Br1	-0.08346 (6)	0.09289 (3)	0.36653 (6)	0.0732 (3)	
Br2	-0.10180 (6)	0.59356 (3)	0.19304 (6)	0.0773 (3)	
Br3	0.41308 (8)	0.13542 (3)	0.06958 (6)	0.0843 (3)	
Br4	0.24692 (10)	0.53274 (3)	0.55072 (7)	0.0985 (3)	
C1	-0.1461 (5)	0.3971 (2)	0.2173 (4)	0.0397 (12)	
C2	-0.1438 (5)	0.4452 (2)	0.2072 (4)	0.0478 (14)	
H2	-0.0683	0.4617	0.2283	0.057*	
C3	-0.2555 (6)	0.4686 (2)	0.1653 (5)	0.0596 (17)	
H3	-0.2547	0.5010	0.1558	0.072*	
C4	-0.3689 (6)	0.4443 (2)	0.1372 (5)	0.0605 (17)	
H4	-0.4442	0.4604	0.1114	0.073*	
C5	-0.3695 (5)	0.3956 (2)	0.1477 (4)	0.0505 (15)	
H5	-0.4457	0.3794	0.1284	0.061*	
C6	-0.2570 (5)	0.37038 (19)	0.1869 (4)	0.0405 (13)	
C7	-0.2574 (5)	0.3188 (2)	0.1952 (4)	0.0397 (12)	
C8	-0.3569 (5)	0.2945 (2)	0.2200 (4)	0.0531 (15)	
H8	-0.4232	0.3114	0.2329	0.064*	
C9	-0.3574 (6)	0.2458 (2)	0.2256 (5)	0.0616 (17)	
H9	-0.4243	0.2304	0.2410	0.074*	
C10	-0.2592 (6)	0.2202 (2)	0.2083 (5)	0.0599 (17)	
H10	-0.2593	0.1876	0.2134	0.072*	
C11	-0.1597 (5)	0.2428 (2)	0.1833 (4)	0.0514 (15)	
H11	-0.0936	0.2255	0.1713	0.062*	
C12	-0.1602 (5)	0.2911 (2)	0.1766 (4)	0.0408 (13)	
C13	0.2596 (5)	0.21640 (18)	0.3066 (4)	0.0394 (12)	

C14	0.1915 (6)	0.1900(2)	0.2275 (4)	0.0555 (16)
H14	0.1855	0.1997	0.1630	0.067*
C15	0.1329 (6)	0.1493 (2)	0.2442 (5)	0.0600 (17)
H15	0.0845	0.1322	0.1910	0.072*
C16	0.1454 (5)	0.13370 (19)	0.3407 (5)	0.0506 (15)
C17	0.2122 (6)	0.1612 (2)	0.4168 (5)	0.0582 (16)
H17	0.2182	0.1518	0.4815	0.070*
C18	0 2703 (6)	0.2019(2)	0.4018(4)	0.0551 (16)
H18	0.3163	0.2195	0.4552	0.066*
C19	0.0912 (6)	0.2199 0.0870 (2)	0.3589(6)	0.069(2)
H19A	0.1424	0.0739	0.4204	0.082*
H19R	0.0942	0.0655	0.3058	0.082*
C20	0.0942	0.0055	0.3038 0.1584 (4)	0.002
C20	0.2409(5) 0.2325(6)	0.40520(19) 0.4852(2)	0.1334(4) 0.2471(5)	0.0443(14) 0.0610(17)
U21	0.2323 (0)	0.4600	0.2471 (5)	0.0019(17)
C22	0.2008 0.1733 (6)	0.4099	0.3009	0.074°
022	0.1733 (0)	0.3270 (2)	0.2431 (3)	0.0000 (17)
H22	0.1/00	0.5415	0.3044	0.073^{+}
C23	0.1184 (5)	0.5500 (2)	0.15/1 (6)	0.0575(17)
C24	0.1274 (5)	0.5302 (2)	0.0/19(5)	0.0545 (16)
H24	0.0915	0.5455	0.0123	0.065*
C25	0.1886 (5)	0.4877 (2)	0.0705 (4)	0.0505 (15)
H25	0.1943	0.4747	0.0109	0.061*
C26	0.0582 (6)	0.5975 (2)	0.1576 (7)	0.086 (3)
H26A	0.0436	0.6116	0.0924	0.104*
H26B	0.1156	0.6178	0.2045	0.104*
C27	0.2824 (5)	0.3118 (2)	0.0172 (4)	0.0453 (13)
C28	0.1792 (6)	0.2826 (2)	0.0044 (4)	0.0545 (15)
H28	0.1028	0.2937	0.0120	0.065*
C29	0.1932 (6)	0.2355 (2)	-0.0206 (4)	0.0580 (16)
H29	0.1246	0.2153	-0.0299	0.070*
C30	0.3068 (6)	0.2184 (2)	-0.0318 (4)	0.0518 (15)
C31	0.4050 (6)	0.2488 (2)	-0.0236 (5)	0.0591 (16)
H31	0.4797	0.2380	-0.0351	0.071*
C32	0.3950 (5)	0.2958 (2)	0.0020 (4)	0.0538 (15)
H32	0.4630	0.3162	0.0088	0.065*
C33	0.3209 (7)	0.1675 (2)	-0.0525 (5)	0.0693 (19)
H33A	0.3666	0.1641	-0.1025	0.083*
H33B	0.2383	0.1533	-0.0775	0.083*
C34	0.3556 (5)	0.3579 (2)	0.4642 (4)	0.0453 (14)
C35	0.4494 (6)	0.3902 (2)	0.4700 (5)	0.0605 (17)
H35	0.5128	0.3846	0.4388	0.073*
C36	0.4494(7)	0.4315 (2)	0.5229 (5)	0.0670 (18)
H36	0.5131	0.4536	0.5274	0.080*
C37	0.3557 (8)	0.4398(3)	0.5684 (5)	0.073(2)
C38	0 2603 (8)	0.4073(3)	0 5598 (5)	0.075(2)
H38	0.1958	0.4134	0.5896	0.097*
C39	0 2586 (6)	0 3658 (2)	0 5074 (5)	0.0678 (19)
H39	0 1939	0 3440	0.5017	0.081*
	0.1/0/	0.2110	0.201/	0.001

C40	0.3541 (10)	0.4844 (3)	0.6263 (6)	0.104 (3)	
H40A	0.4395	0.4964	0.6490	0.125*	
H40B	0.3253	0.4771	0.6843	0.125*	
N1	0.1362 (4)	0.31181 (15)	0.2933 (3)	0.0398 (10)	
N2	0.3402 (4)	0.34123 (15)	0.2342 (3)	0.0408 (10)	
N3	0.1042 (4)	0.37315 (15)	0.1405 (3)	0.0410 (11)	
01	-0.0320 (3)	0.37457 (12)	0.2693 (3)	0.0400 (9)	
O2	-0.0652 (3)	0.31282 (12)	0.1399 (2)	0.0386 (8)	
03	0.3244 (3)	0.25632 (12)	0.2862 (3)	0.0473 (9)	
O4	0.3618 (3)	0.31523 (13)	0.4151 (3)	0.0467 (9)	
05	0.3091 (4)	0.42359 (13)	0.1597 (4)	0.0642 (12)	
O6	0.2786 (4)	0.35924 (13)	0.0467 (3)	0.0504 (10)	
P1	0.04465 (12)	0.34309 (5)	0.21146 (10)	0.0365 (3)	
P2	0.28306 (12)	0.30824 (5)	0.30222 (11)	0.0394 (3)	
Р3	0.25256 (13)	0.37218 (5)	0.14930 (11)	0.0419 (4)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U^{33}	U^{12}	U ¹³	U^{23}
Br1	0.0496 (4)	0.0666 (5)	0.1086 (6)	-0.0111 (3)	0.0299 (4)	-0.0175 (4)
Br2	0.0483 (4)	0.0767(5)	0.1062 (6)	0.0045 (3)	0.0193(4)	-0.0218(4)
Br3	0.1166(7)	0.0600(5)	0.0737(5)	0.0086 (4)	0.0206 (5)	0.0056(4)
Br4	0.1407 (8)	0.0686(5)	0.0916 (6)	0.0241 (5)	0.0405 (6)	0.0054 (4)
C1	0.037(3)	0.048 (3)	0.038 (3)	0.001 (2)	0.015 (2)	-0.009(2)
C2	0.047(3)	0.043 (3)	0.060 (4)	-0.004(3)	0.026(3)	-0.008(3)
C3	0.081 (5)	0.044 (4)	0.063 (4)	0.013 (3)	0.034 (4)	0.001 (3)
C4	0.051 (4)	0.063 (4)	0.068 (4)	0.020 (3)	0.016 (3)	-0.001(3)
C5	0.045 (3)	0.052 (4)	0.055 (4)	0.005(3)	0.014 (3)	-0.008(3)
C6	0.039 (3)	0.046 (3)	0.038 (3)	0.005 (2)	0.011 (2)	0.004 (2)
C7	0.032 (3)	0.047 (3)	0.040 (3)	-0.003(2)	0.011 (2)	0.001 (2)
C8	0.044 (3)	0.069 (4)	0.048 (4)	-0.008(3)	0.015 (3)	-0.001(3)
C9	0.060 (4)	0.065 (4)	0.064 (4)	-0.031 (4)	0.024 (3)	-0.002(3)
C10	0.080 (5)	0.039 (3)	0.060 (4)	-0.018(3)	0.018 (3)	-0.001(3)
C11	0.051 (3)	0.039 (3)	0.061 (4)	-0.004(3)	0.011 (3)	-0.005(3)
C12	0.031 (3)	0.049 (3)	0.041 (3)	-0.004(2)	0.007 (2)	0.000 (2)
C13	0.035 (3)	0.036 (3)	0.049 (3)	0.004 (2)	0.014 (2)	-0.002(2)
C14	0.073 (4)	0.048 (4)	0.041 (4)	0.001 (3)	0.008 (3)	0.004 (3)
C15	0.063 (4)	0.052 (4)	0.056 (4)	-0.007(3)	0.001 (3)	-0.012(3)
C16	0.039 (3)	0.036 (3)	0.079 (5)	0.003 (3)	0.020 (3)	0.000 (3)
C17	0.075 (4)	0.057 (4)	0.045 (4)	-0.013 (3)	0.020 (3)	0.005 (3)
C18	0.066 (4)	0.056 (4)	0.039 (4)	-0.013(3)	0.007 (3)	-0.001(3)
C19	0.063 (4)	0.048 (4)	0.107 (6)	-0.003(3)	0.045 (4)	0.001 (4)
C20	0.038 (3)	0.032 (3)	0.066 (4)	-0.001(2)	0.020 (3)	0.004 (3)
C21	0.075 (4)	0.063 (4)	0.050 (4)	-0.001 (4)	0.019 (3)	0.011 (3)
C22	0.064 (4)	0.054 (4)	0.067 (4)	-0.001(3)	0.023 (3)	-0.019(3)
C23	0.044 (3)	0.043 (3)	0.089 (5)	-0.004 (3)	0.024 (3)	-0.008 (4)
C24	0.050 (4)	0.044 (3)	0.062 (4)	-0.007(3)	0.001 (3)	0.013 (3)
C25	0.056 (4)	0.052 (4)	0.045 (4)	-0.008(3)	0.016 (3)	-0.009 (3)

C26	0.061 (4)	0.047 (4)	0.161 (8)	0.000 (3)	0.046 (5)	0.000 (5)
C27	0.052 (3)	0.047 (3)	0.038 (3)	0.002 (3)	0.015 (3)	0.006 (2)
C28	0.051 (4)	0.064 (4)	0.052 (4)	-0.003 (3)	0.020 (3)	0.001 (3)
C29	0.059 (4)	0.066 (4)	0.049 (4)	-0.014 (3)	0.014 (3)	0.000 (3)
C30	0.062 (4)	0.049 (4)	0.041 (3)	-0.006 (3)	0.008 (3)	-0.005 (3)
C31	0.065 (4)	0.058 (4)	0.057 (4)	0.012 (3)	0.022 (3)	-0.006 (3)
C32	0.041 (3)	0.062 (4)	0.057 (4)	-0.001 (3)	0.013 (3)	0.003 (3)
C33	0.101 (5)	0.049 (4)	0.054 (4)	0.008 (4)	0.014 (4)	-0.006 (3)
C34	0.047 (3)	0.047 (3)	0.040 (3)	0.005 (3)	0.008 (3)	-0.005 (3)
C35	0.059 (4)	0.059 (4)	0.063 (4)	-0.004 (3)	0.015 (3)	-0.002 (3)
C36	0.076 (5)	0.051 (4)	0.070 (5)	-0.004 (4)	0.012 (4)	0.007 (3)
C37	0.099 (6)	0.056 (4)	0.059 (4)	0.006 (4)	0.012 (4)	-0.005 (3)
C38	0.103 (6)	0.088 (6)	0.065 (5)	0.017 (5)	0.046 (4)	-0.016 (4)
C39	0.069 (4)	0.068 (5)	0.076 (5)	-0.013 (4)	0.035 (4)	-0.012 (4)
C40	0.181 (9)	0.056 (5)	0.068 (5)	0.022 (5)	0.022 (5)	-0.005 (4)
N1	0.033 (2)	0.042 (3)	0.047 (3)	0.0026 (19)	0.016 (2)	0.004 (2)
N2	0.031 (2)	0.035 (2)	0.059 (3)	-0.0023 (19)	0.018 (2)	0.002 (2)
N3	0.034 (2)	0.037 (2)	0.053 (3)	0.0041 (19)	0.014 (2)	0.010 (2)
01	0.0313 (19)	0.043 (2)	0.047 (2)	0.0017 (16)	0.0130 (16)	-0.0061 (17)
O2	0.0345 (18)	0.043 (2)	0.042 (2)	-0.0042 (16)	0.0176 (16)	-0.0089 (16)
03	0.048 (2)	0.032 (2)	0.067 (3)	0.0024 (17)	0.0243 (19)	-0.0022 (18)
O4	0.041 (2)	0.043 (2)	0.052 (2)	0.0017 (17)	0.0053 (18)	-0.0025 (18)
05	0.045 (2)	0.032 (2)	0.125 (4)	0.0020 (18)	0.040 (2)	0.004 (2)
O6	0.062 (2)	0.044 (2)	0.057 (2)	0.0070 (19)	0.036 (2)	0.0122 (19)
P1	0.0320 (7)	0.0372 (7)	0.0431 (8)	-0.0004 (6)	0.0148 (6)	-0.0016 (6)
P2	0.0346 (7)	0.0346 (7)	0.0494 (9)	0.0015 (6)	0.0117 (6)	-0.0005 (6)
P3	0.0394 (8)	0.0330 (7)	0.0592 (10)	0.0005 (6)	0.0236 (7)	0.0036 (6)

Geometric parameters (Å, °)

Br1—C19	1.958 (6)	C23—C24	1.347 (9)
Br2—C26	1.953 (7)	C23—C26	1.503 (8)
Br3—C33	1.963 (6)	C24—C25	1.385 (8)
Br4—C40	1.932 (8)	C24—H24	0.9300
C1—C2	1.374 (7)	C25—H25	0.9300
C1—C6	1.403 (7)	C26—H26A	0.9700
C101	1.423 (6)	C26—H26B	0.9700
C2—C3	1.382 (8)	C27—C28	1.379 (8)
С2—Н2	0.9300	C27—C32	1.387 (8)
C3—C4	1.388 (9)	C27—O6	1.413 (7)
С3—Н3	0.9300	C28—C29	1.401 (9)
C4—C5	1.392 (8)	C28—H28	0.9300
C4—H4	0.9300	C29—C30	1.387 (8)
C5—C6	1.407 (7)	C29—H29	0.9300
С5—Н5	0.9300	C30—C31	1.363 (8)
C6—C7	1.470 (7)	C30—C33	1.492 (8)
C7—C12	1.407 (7)	C31—C32	1.397 (8)
С7—С8	1.414 (7)	C31—H31	0.9300

C8—C9	1.385 (8)	С32—Н32	0.9300
C8—H8	0.9300	C33—H33A	0.9700
C9—C10	1 375 (9)	C33—H33B	0.9700
C9—H9	0.9300	C_{34} C_{35}	1 367 (8)
C10-C11	1 391 (8)	C_{34} C_{39}	1.378 (8)
C10—H10	0.9300	$C_{34} - O_{4}$	1.376 (6)
C_{11} C_{12}	1 374 (7)	C_{35} C_{36} C_{36}	1 389 (9)
C11_H11	0.9300	C35_H35	0.9300
C_{12} C_{2}	1 422 (6)	C36 C37	1.368(10)
$C_{12} = 02$	1.422(0) 1 370(8)	$C_{36} = H_{36}$	0.0300
$C_{13} = C_{18}$	1.370(0) 1.382(7)	$C_{30}^{30} = 1130$	1.377(10)
$C_{13} = C_{14}$	1.302(7)	$C_{37} = C_{38}$	1.577(10)
$C_{13} = 0.5$	1.409(0) 1.272(8)	C_{3}^{28} C_{30}^{20}	1.307(10)
C14 - C13	1.373 (0)	$C_{20} = U_{20}$	1.380 (9)
C14—H14	0.9500	Сзо—Пзо	0.9300
C15—C16	1.393 (9)	С39—Н39	0.9300
C15—H15	0.9300	C40—H40A	0.9700
	1.368 (8)	C40—H40B	0.9700
C16—C19	1.503 (8)	NI—PI	1.581 (4)
	1.364 (8)	NI—P2	1.589 (4)
C17—H17	0.9300	N2—P2	1.581 (4)
C18—H18	0.9300	N2—P3	1.583 (4)
С19—Н19А	0.9700	N3—P1	1.579 (4)
С19—Н19В	0.9700	N3—P3	1.602 (4)
C20—C25	1.371 (8)	O1—P1	1.591 (4)
C20—C21	1.390 (8)	O2—P1	1.599 (4)
C20—O5	1.398 (6)	O3—P2	1.577 (4)
C21—C22	1.366 (9)	O4—P2	1.600 (4)
C21—H21	0.9300	O5—P3	1.579 (4)
C22—C23	1.377 (9)	O6—P3	1.582 (4)
С22—Н22	0.9300		
C2-C1-C6	123.1 (5)	Br2—C26—H26A	109.5
C2—C1—O1	117.6 (5)	C23—C26—H26B	109.5
C6-C1-O1	119.1 (5)	Br2—C26—H26B	109.5
C1—C2—C3	118.9 (5)	H26A—C26—H26B	108.5
C1—C2—H2	120.0	C28—C27—C32	121.3 (6)
С3—С2—Н2	120.0	C28—C27—O6	121.7 (5)
C2—C3—C4	120.6 (6)	C32—C27—O6	117.0 (5)
С4—С3—Н3	120.0	C27—C28—C29	117.8 (6)
С2—С3—Н3	120.0	С27—С28—Н28	120.0
C3—C4—C5	119.7 (6)	С29—С28—Н28	120.0
C3—C4—H4	120.0	C30—C29—C28	121.7 (6)
С5—С4—Н4	120.0	С30—С29—Н29	120.0
C4—C5—C6	121.2 (5)	С28—С29—Н29	120.0
С4—С5—Н5	120.0	C31—C30—C29	119.0 (6)
С6—С5—Н5	120.0	C31—C30—C33	120.6 (6)
C1—C6—C5	116.4 (5)	C29—C30—C33	120.4 (6)
C1—C6—C7	122.5 (4)	C30—C31—C32	120.8 (6)

C5 C6 C7	121 1 (5)	C30 C31 H31	120.0
C_{12} C_{7} C_{8}	121.1(5) 116.5(5)	$C_{30} = C_{31} = H_{31}$	120.0
$C_{12} = C_7 = C_8$	110.3(5)	$C_{22} = C_{21} = 1151$	120.0
$C_{12}^{\circ} = C_{12}^{\circ} = C_{12}^{\circ}$	121.7(5)	$C_{27} = C_{32} = C_{31}$	119.2 (0)
$C_{0} = C_{0} = C_{0}$	121.0(5)	$C_2 / - C_{32} - H_{32}$	120.0
$C_{2} = C_{2} = C_{1}$	121.1 (0)	$C_{31} - C_{32} - H_{32}$	120.0
C9—C8—H8	120.0	C30—C33—BF3	109.7 (4)
C/C8H8	120.0	C30-C33-H33A	109.5
C10—C9—C8	120.2 (6)	Br3—C33—H33A	109.5
C10—C9—H9	120.0	C30—C33—H33B	109.5
С8—С9—Н9	120.0	Br3—C33—H33B	109.5
C9—C10—C11	120.4 (6)	H33A—C33—H33B	108.5
С9—С10—Н10	120.0	C35—C34—C39	121.6 (6)
C11—C10—H10	120.0	C35—C34—O4	118.3 (5)
C12-C11-C10	119.3 (6)	C39—C34—O4	120.1 (5)
C12—C11—H11	120.0	C34—C35—C36	119.5 (6)
C10-C11-H11	120.0	С34—С35—Н35	120.0
C11—C12—C7	122.4 (5)	С36—С35—Н35	120.0
C11—C12—O2	117.9 (5)	C37—C36—C35	120.1 (7)
C7—C12—O2	119.4 (5)	C37—C36—H36	120.0
C18—C13—C14	120.3 (5)	C35—C36—H36	120.0
C18 - C13 - O3	120.0(0) 121.5(5)	C36—C37—C38	119.6 (7)
C14-C13-O3	1180(5)	$C_{36} - C_{37} - C_{40}$	120.9(8)
C_{15} C_{14} C_{13}	110.0 (6)	$C_{38} - C_{37} - C_{40}$	120.5(8)
$C_{15} = C_{14} = C_{15}$	119.9 (0)	$C_{37} C_{38} C_{30}$	117.3(0) 121.2(7)
$C_{13} = C_{14} = H_{14}$	120.0	$C_{37} = C_{38} = C_{39}$	121.2(7)
C13 - C14 - H14	120.0	$C_{20} = C_{20} = H_{20}$	120.0
C14 - C15 - C16	120.5 (0)	C34 C30 C38	120.0
C14—C15—H15	120.0	$C_{34} = C_{39} = C_{38}$	118.0 (7)
C16—C15—H15	120.0	C34—C39—H39	120.0
C17—C16—C15	117.9 (5)	C38—C39—H39	120.0
C17—C16—C19	121.8 (6)	C37—C40—Br4	113.3 (5)
C15—C16—C19	120.3 (6)	C37—C40—H40A	109.5
C18—C17—C16	122.7 (6)	Br4—C40—H40A	109.5
C16—C17—H17	120.0	C37—C40—H40B	109.5
C18—C17—H17	120.0	Br4—C40—H40B	109.5
C17—C18—C13	118.9 (5)	H40A—C40—H40B	108.5
C13—C18—H18	120.0	P1—N1—P2	122.0 (3)
C17—C18—H18	120.0	P2—N2—P3	121.5 (2)
C16-C19-Br1	111.9 (4)	P1—N3—P3	121.8 (3)
С16—С19—Н19А	109.5	C1—O1—P1	120.4 (3)
Br1—C19—H19A	109.5	C12—O2—P1	120.8 (3)
С16—С19—Н19В	109.5	C13—O3—P2	123.0 (3)
Br1—C19—H19B	109.5	C34—O4—P2	120.5 (3)
H19A—C19—H19B	108.5	C20—O5—P3	125.8(3)
C_{25} C_{20} C_{21}	120.0 (5)	C27—O6—P3	120.9(3)
$C_{25} = C_{20} = 0.5$	120.1 (5)	N3—P1—N1	1180(2)
C_{21} C_{20} C	119.8 (5)	N3P1O1	112 4 (2)
$C_{22} = C_{20} = C_{30}$	119.0 (5)	N1P1O1	112.7(2) 105 5 (2)
$C_{22} = C_{21} = -C_{20}$	120.0	$N_2 = P_1 = O_1$	105.5(2)
$U22 - U21 - \Pi 21$	120.0	INJ-FI-02	103.3 (2)

C20—C21—H21	120.0	N1—P1—O2	112.3 (2)
C21—C22—C23	121.3 (6)	O1—P1—O2	101.99 (18)
C21—C22—H22	120.0	O3—P2—N2	107.0 (2)
С23—С22—Н22	120.0	O3—P2—N1	111.9 (2)
C24—C23—C22	118.8 (6)	N2—P2—N1	118.2 (2)
C24—C23—C26	121.0 (7)	O3—P2—O4	99.0 (2)
C22—C23—C26	120.0 (7)	N2—P2—O4	108.9 (2)
C_{23} C_{24} C_{25}	121.8 (6)	N1—P2—O4	109.9(2)
C_{23} C_{24} H_{24}	120.0	05-P3-O6	97.9 (2)
C_{25} C_{24} H_{24}	120.0	05—P3—N2	107.4(2)
$C_{20} = C_{25} = C_{24}$	118.9 (6)	06—P3—N2	109.4(2)
$C_{20} = C_{25} = H_{25}$	120.0	05—P3—N3	1110(2)
C_{24} C_{25} H_{25}	120.0	06—P3—N3	111.0(2)
C_{23} C_{26} Br ²	112.2 (5)	N2_P3_N3	118.1(2)
$C_{23} = C_{26} = H_{26A}$	109 5	112 13 113	110.1 (2)
C25-C20-1120/A	109.5		
02 - P1 - O1 - C1	-44.8(4)	C5—C6—C7—C8	-36.7(8)
N1—P1—O1—C1	-162.3 (4)	C1—C6—C7—C8	143.2 (6)
N3—P1—O1—C1	67.8 (4)	C6—C7—C12—O2	-6.0 (8)
O1—P1—O2—C12	-45.8 (4)	C12—C7—C8—C9	0.1 (8)
N1—P1—O2—C12	66.8 (4)	C8—C7—C12—C11	-0.9(8)
N3—P1—O2—C12	-163.4 (4)	C6—C7—C12—C11	-179.5 (5)
N3—P1—N1—P2	-2.8(4)	C8—C7—C12—O2	172.6 (5)
N1—P1—N3—P3	0.5 (4)	C6-C7-C8-C9	178.7 (5)
01—P1—N3—P3	123.7 (3)	C7—C8—C9—C10	0.9 (9)
02—P1—N3—P3	-126.0(3)	C8-C9-C10-C11	-1.2(10)
01-P1-N1-P2	-129.4(3)	C9-C10-C11-C12	0.4 (9)
Ω^2 _P1_N1_P2	1202(3)	C10-C11-C12-C7	0.7(9)
N1 - P2 - O3 - C13	-269(5)	C10-C11-C12-O2	-172.9(5)
$04-P^2-O^3-C^{13}$	88 9 (4)	03-C13-C14-C15	1763(5)
$03 - P^2 - N1 - P1$	-1186(3)	C18 - C13 - C14 - C15	0.8(9)
$N_2 - P_2 - O_3 - C_{13}$	-158.0(4)	03-C13-C18-C17	-175.6(5)
$03 - P^2 - 04 - C^{34}$	179 8 (4)	C_{14} C_{13} C_{18} C_{17}	-0.3(9)
N1 - P2 - O4 - C34	-62.8(4)	C_{13} C_{14} C_{15} C_{16}	-2.2(10)
$N_2 - P_2 - O_4 - C_{34}$	68 2 (4)	C_{14} C_{15} C_{16} C_{19}	-1745(6)
N1 - P2 - N2 - P3	-8.1(4)	C14-C15-C16-C17	3.0 (9)
N2—P2—N1—P1	65(4)	C_{15} C_{16} C_{17} C_{18}	-2.5(10)
$03 - P^2 - N^2 - P^3$	119 4 (3)	C19-C16-C17-C18	174 9 (6)
$04 - P^2 - N^1 - P^1$	132 5 (3)	C_{15} C_{16} C_{19} Br_{1}	-89.6(7)
$04_P2_N2_P3$	-1344(3)	C17 - C16 - C19 - Br1	93 1 (7)
$N_2 = P_3 = O_5 = C_20$	-1324(5)	C_{16} C_{17} C_{18} C_{13}	12(10)
$N_3 P_3 O_5 C_20$	-20(6)	05-020-021-022	175 3 (6)
06-P3-O5-C20	1144(5)	05 - C20 - C25 - C24	-1765(5)
05 - P3 - N2 - P2	132.2 (3)	$C_{21} = C_{20} = C_{25} = C_{24}$	-0.3(9)
06 - P3 - N2 - P2	-1226(3)	C_{25} C_{20} C_{21} C_{27} C_{27}	-0.9(9)
$N_3 P_3 N_2 P_2$	5 8 (4)	$C_{20} = C_{20} = C_{21} = C_{22}$	22(10)
05 - P3 - 06 - C27	159 7 (4)	$C_{20} = C_{21} = C_{22} = C_{23}$	-2.2(10)
N2 P3 $O6 C27$	137.7 (T) A8 1 (5)	$C_{21} = C_{22} = C_{23} = C_{24}$	-1777(6)
112 - 15 - 00 - 027	T0.1 (J)	021 - 022 - 023 - 020	1///(0)

N3—P3—O6—C27	-84.1 (5)	C22—C23—C24—C25	1.0 (9)
O5—P3—N3—P1	-126.6 (3)	C22—C23—C26—Br2	-73.1 (7)
O6—P3—N3—P1	125.6 (3)	C24—C23—C26—Br2	111.5 (6)
N2—P3—N3—P1	-2.0 (4)	C26—C23—C24—C25	176.4 (6)
P1-01-C1-C2	-108.8 (5)	C23—C24—C25—C20	0.3 (9)
P1-01-C1-C6	76.9 (6)	C32—C27—C28—C29	2.6 (8)
P1-02-C12-C7	75.7 (6)	O6—C27—C28—C29	-177.2 (5)
P1-02-C12-C11	-110.5 (5)	O6—C27—C32—C31	177.7 (5)
P2-03-C13-C18	-74.7 (6)	C28—C27—C32—C31	-2.1 (8)
P2-03-C13-C14	109.9 (5)	C27—C28—C29—C30	0.3 (8)
P2-04-C34-C39	84.1 (6)	C28—C29—C30—C33	176.4 (5)
P2-04-C34-C35	-97.7 (6)	C28—C29—C30—C31	-3.7 (8)
P3-05-C20-C21	94.2 (7)	C33—C30—C31—C32	-175.9 (6)
P3-05-C20-C25	-89.6 (7)	C29—C30—C31—C32	4.1 (9)
P3—O6—C27—C32	-118.7 (5)	C29—C30—C33—Br3	-101.7 (6)
P3-06-C27-C28	61.1 (7)	C31—C30—C33—Br3	78.3 (7)
O1—C1—C6—C5	171.9 (5)	C30—C31—C32—C27	-1.3 (9)
C6—C1—C2—C3	0.1 (9)	O4—C34—C35—C36	-176.4 (5)
O1—C1—C2—C3	-174.1 (5)	C39—C34—C35—C36	1.8 (10)
O1—C1—C6—C7	-8.0 (8)	O4—C34—C39—C38	176.4 (6)
C2-C1-C6-C5	-2.2 (8)	C35—C34—C39—C38	-1.7 (9)
C2-C1-C6-C7	178.0 (5)	C34—C35—C36—C37	-0.3 (10)
C1—C2—C3—C4	2.4 (9)	C35—C36—C37—C38	-1.2 (11)
C2—C3—C4—C5	-2.6 (10)	C35—C36—C37—C40	179.9 (7)
C3—C4—C5—C6	0.3 (9)	C36—C37—C38—C39	1.3 (11)
C4—C5—C6—C7	-178.2 (5)	C40—C37—C38—C39	-179.8 (7)
C4—C5—C6—C1	1.9 (8)	C36—C37—C40—Br4	96.5 (9)
C1—C6—C7—C12	-38.3 (8)	C38—C37—C40—Br4	-82.5 (8)
C5—C6—C7—C12	141.9 (6)	C37—C38—C39—C34	0.2 (10)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
C33—H33 <i>A</i> ···O1 ⁱ	0.97	2.60	3.525 (8)	160

Symmetry code: (i) x+1/2, -y+1/2, z-1/2.