metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[4-bromo-2-(ethyl­imino­meth­yl)phenolato-κ2N,O]nickel(II)

aCollege of Chemistry and Bioengineering, Guilin University of Technology, Key Laboratory of Non-ferrous Metal Materials and Processing Technology, Ministry of Education, Guilin 541004, People's Republic of China
*Correspondence e-mail: zsh720108@163.com

(Received 13 May 2011; accepted 31 May 2011; online 4 June 2011)

In the title complex, [Ni(C9H9BrNO)2], the NiII ion lies on an inversion centre and is coordinated in a slightly distorted square-planar geometry by two N atoms and two O atoms from two symmetry-related bidentate 4-bromo-2-(ethyl­imino­meth­yl)phenolate ligands. The complex forms a one-dimensional chain in the crystal structure through short C—H⋯Br contacts (H⋯Br = 3.009 Å).

Related literature

For background to Schiff base compounds, see: Gupta & Sutar (2008[Gupta, K. C. & Sutar, A. K. (2008). Coord. Chem. Rev. 252, 1420-1450.]); Zhang et al. (2008[Zhang, S. H., Ge, C. M. & Feng, C. (2008). Acta Cryst. E64, m1627.], 2009[Zhang, S. H., Song, Y., Liang, H. & Zeng, M. H. (2009). CrystEngComm, 11, 865-872.]); Zhang & Feng (2010[Zhang, S. H. & Feng, C. (2010). J. Mol. Struct. 977, 62-66.]); Ge et al. (2011[Ge, C. M., Zhang, S. H., Feng, C., Wang, Y. G. & Li, W. (2011). Z. Anorg. Allg. Chem. 637, 112-116.]). For Schiff base coordination models, see: Nakagima et al. (1989[Nakagima, K., Kojima, M. M., Foriumi, K., Saito, K. & Gujita, J. (1989). Bull. Chem. Soc. Jpn, 62, 760-767.]); Zhang et al. (2007[Zhang, S.-H., Feng, X.-Z., Li, G.-Z., Jing, L.-X. & Liu, Z. (2007). Acta Cryst. E63, m396-m398.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C9H9BrNO)2]

  • Mr = 512.83

  • Monoclinic, P 21 /n

  • a = 13.456 (6) Å

  • b = 4.803 (2) Å

  • c = 14.743 (6) Å

  • β = 102.157 (8)°

  • V = 931.4 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 5.35 mm−1

  • T = 293 K

  • 0.15 × 0.12 × 0.11 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.465, Tmax = 0.558

  • 4567 measured reflections

  • 1651 independent reflections

  • 995 reflections with I > 2σ(I)

  • Rint = 0.164

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.142

  • S = 1.03

  • 1651 reflections

  • 116 parameters

  • H-atom parameters constrained

  • Δρmax = 0.79 e Å−3

  • Δρmin = −0.52 e Å−3

Data collection: SMART (Bruker, 2004[Bruker (2004). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Schiff base complexes have been studied for many years (Gupta & Sutar, 2008; Zhang et al., 2008, 2009; Zhang & Feng, 2010; Ge et al., 2011) and produced increasing interest because of their anticancer, antiviral, catalytic and fluorescent properties. Most model studies of metal complexes of Schiff base ligands containing salicylaldehyde and amino acids have focused on the binding mode of these ligands (Nakagima et al., 1989; Zhang et al., 2007). The crystal structures of the complexes obtained demonstrate that the Schiff base ligands act in a bidentate, tridentate, tetradentate or pentadentate mode, coordinating through the phenolate O, imine N and carboxylate O atoms. Our research group is interested in bidentate Schiff bases derived from 5-bromo-2-hydroxy-benzaldehyde and ethylamine.

In the title complex, the NiII ion lies on a centre of inversion and is coordinated by two O and two N atoms from two bidentate 5-bromo-N-ethylsalicylaldimino ligands, forming a slightly distorted square-planar geometry (Fig. 1). The compound further form a one-dimensional crystal structure (Fig. 2) through C—H···Br contacts (C9···Br1i = 3.871 (1) Å, H9···Br1 = 3.009 Å, symmetry code: (i) -x, -y, 1 - z).

Related literature top

For background to Schiff base compounds, see: Gupta & Sutar (2008); Zhang et al. (2008, 2009); Zhang & Feng (2010); Ge et al. (2011). For Schiff base coordination models, see: Nakagima et al. (1989); Zhang et al. (2007).

Experimental top

To a solution of 5-bromo-2-hydroxy-benzaldehyde (0.181 g, 1.0 mmol), ethylamine (0.044 g, 1 mmol), and sodium hydroxide (0.040 g, 1 mmol) in 20 ml absolute methanol was added slowly a solution of nickel nitrate hexahydrate (0.145 g, 0.5 mmol) in methanol. The mixture was stirred for 3 h at room temperature to give a green solution, which was filtered and the filtrate was left to stand at room temperature. Green block crystals suitable for X-ray diffraction were obtained by slow evaporation. yield: 84.6% (based on Ni). Elemental analysis, calculated: C 42.12, H 3.57, N 5.48%; Found: C 42.15, H 3.54, N 5.46%.

Refinement top

H atoms were positioned geometrically and refined with a riding model, with distances 0.96 (CH3), 0.97 (CH2) or 0.93 Å (aromatic CH), and with Uiso(H) = 1.2 Ueq(carrier C) or Uiso(H) = 1.5 Ueq(CH3).

Computing details top

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex, showing 30% probability displacement ellipsoids. H atoms were omitted.
[Figure 2] Fig. 2. Packing drawing of the title compound.
Bis[4-bromo-2-(ethyliminomethyl)phenolato-κ2N,O]nickel(II) top
Crystal data top
[Ni(C9H9BrNO)2]F(000) = 508
Mr = 512.83Dx = 1.829 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1651 reflections
a = 13.456 (6) Åθ = 2.3–25.1°
b = 4.803 (2) ŵ = 5.35 mm1
c = 14.743 (6) ÅT = 293 K
β = 102.157 (8)°Block, green
V = 931.4 (7) Å30.15 × 0.12 × 0.11 mm
Z = 2
Data collection top
Bruker SMART CCD area-detector
diffractometer
1651 independent reflections
Radiation source: fine-focus sealed tube995 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.164
ϕ and ω scansθmax = 25.1°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1516
Tmin = 0.465, Tmax = 0.558k = 55
4567 measured reflectionsl = 1714
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.142H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0386P)2]
where P = (Fo2 + 2Fc2)/3
1651 reflections(Δ/σ)max < 0.001
116 parametersΔρmax = 0.79 e Å3
0 restraintsΔρmin = 0.52 e Å3
0 constraints
Crystal data top
[Ni(C9H9BrNO)2]V = 931.4 (7) Å3
Mr = 512.83Z = 2
Monoclinic, P21/nMo Kα radiation
a = 13.456 (6) ŵ = 5.35 mm1
b = 4.803 (2) ÅT = 293 K
c = 14.743 (6) Å0.15 × 0.12 × 0.11 mm
β = 102.157 (8)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1651 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
995 reflections with I > 2σ(I)
Tmin = 0.465, Tmax = 0.558Rint = 0.164
4567 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.142H-atom parameters constrained
S = 1.03Δρmax = 0.79 e Å3
1651 reflectionsΔρmin = 0.52 e Å3
116 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.14681 (6)0.5969 (2)0.56509 (5)0.0835 (4)
C10.0224 (5)0.9743 (16)0.8127 (5)0.0595 (18)
C20.0114 (6)1.0740 (16)0.7195 (5)0.069 (2)
H20.05901.21700.70750.083*
C30.0255 (5)0.9609 (18)0.6489 (4)0.067 (2)
H30.00251.02570.58870.080*
C40.0964 (5)0.7519 (18)0.6657 (4)0.065 (2)
C50.1313 (5)0.6526 (17)0.7529 (4)0.064 (2)
H50.18060.51390.76350.077*
C60.0921 (5)0.7616 (15)0.8278 (4)0.0556 (17)
C70.1305 (5)0.6525 (16)0.9196 (5)0.0638 (19)
H70.17940.51300.92570.077*
C80.1627 (6)0.5937 (18)1.0814 (5)0.080 (3)
H8A0.11640.53951.12060.096*
H8B0.19510.42651.06460.096*
C90.2412 (6)0.783 (2)1.1336 (6)0.100 (3)
H9A0.29140.81981.09760.150*
H9B0.27300.69731.19130.150*
H9C0.21000.95481.14590.150*
N10.1026 (4)0.7322 (12)0.9936 (3)0.0560 (15)
Ni10.00001.00001.00000.0544 (4)
O10.0152 (4)1.0925 (11)0.8785 (3)0.0712 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0908 (6)0.1153 (9)0.0524 (5)0.0021 (5)0.0331 (4)0.0090 (4)
C10.069 (4)0.064 (5)0.049 (4)0.013 (4)0.021 (3)0.003 (3)
C20.086 (5)0.078 (6)0.046 (4)0.012 (4)0.017 (4)0.013 (4)
C30.075 (5)0.090 (6)0.038 (4)0.002 (5)0.017 (3)0.011 (4)
C40.070 (4)0.089 (6)0.043 (4)0.017 (4)0.026 (3)0.005 (4)
C50.067 (5)0.081 (6)0.050 (4)0.011 (4)0.022 (3)0.001 (4)
C60.060 (4)0.061 (5)0.049 (4)0.001 (4)0.019 (3)0.001 (3)
C70.075 (5)0.060 (5)0.062 (5)0.012 (4)0.026 (4)0.008 (4)
C80.110 (6)0.078 (6)0.059 (5)0.040 (5)0.033 (5)0.024 (4)
C90.087 (6)0.141 (9)0.066 (5)0.012 (6)0.001 (5)0.029 (6)
N10.071 (4)0.061 (4)0.038 (3)0.000 (3)0.018 (3)0.004 (3)
Ni10.0691 (8)0.0562 (8)0.0417 (7)0.0038 (6)0.0205 (5)0.0068 (6)
O10.093 (4)0.083 (4)0.044 (3)0.027 (3)0.030 (2)0.013 (2)
Geometric parameters (Å, º) top
Br1—C41.907 (7)C7—H70.9300
C1—O11.314 (9)C8—C91.481 (12)
C1—C61.373 (10)C8—N11.527 (8)
C1—C21.435 (10)C8—H8A0.9700
C2—C31.358 (10)C8—H8B0.9700
C2—H20.9300C9—H9A0.9600
C3—C41.371 (10)C9—H9B0.9600
C3—H30.9300C9—H9C0.9600
C4—C51.359 (9)N1—Ni11.904 (6)
C5—C61.420 (9)Ni1—O1i1.815 (4)
C5—H50.9300Ni1—O11.815 (4)
C6—C71.442 (9)Ni1—N1i1.904 (6)
C7—N11.284 (8)
O1—C1—C6124.0 (6)C9—C8—H8A109.3
O1—C1—C2117.9 (7)N1—C8—H8A109.3
C6—C1—C2118.1 (7)C9—C8—H8B109.3
C3—C2—C1120.5 (7)N1—C8—H8B109.3
C3—C2—H2119.8H8A—C8—H8B108.0
C1—C2—H2119.8C8—C9—H9A109.5
C2—C3—C4120.5 (6)C8—C9—H9B109.5
C2—C3—H3119.8H9A—C9—H9B109.5
C4—C3—H3119.8C8—C9—H9C109.5
C5—C4—C3121.1 (7)H9A—C9—H9C109.5
C5—C4—Br1119.4 (6)H9B—C9—H9C109.5
C3—C4—Br1119.6 (5)C7—N1—C8113.2 (6)
C4—C5—C6119.7 (7)C7—N1—Ni1126.0 (5)
C4—C5—H5120.2C8—N1—Ni1120.8 (4)
C6—C5—H5120.2O1i—Ni1—O1180.000 (2)
C1—C6—C5120.1 (6)O1i—Ni1—N1i92.8 (2)
C1—C6—C7121.3 (6)O1—Ni1—N1i87.2 (2)
C5—C6—C7118.5 (6)O1i—Ni1—N187.2 (2)
N1—C7—C6125.3 (7)O1—Ni1—N192.8 (2)
N1—C7—H7117.3N1i—Ni1—N1180.0 (3)
C6—C7—H7117.3C1—O1—Ni1129.9 (5)
C9—C8—N1111.4 (7)
Symmetry code: (i) x, y+2, z+2.

Experimental details

Crystal data
Chemical formula[Ni(C9H9BrNO)2]
Mr512.83
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)13.456 (6), 4.803 (2), 14.743 (6)
β (°) 102.157 (8)
V3)931.4 (7)
Z2
Radiation typeMo Kα
µ (mm1)5.35
Crystal size (mm)0.15 × 0.12 × 0.11
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.465, 0.558
No. of measured, independent and
observed [I > 2σ(I)] reflections
4567, 1651, 995
Rint0.164
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.142, 1.03
No. of reflections1651
No. of parameters116
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.79, 0.52

Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors acknowledge financial support from Guangxi Key Laboratory for Advanced Materials and New Preparation Technology (grant No. 0842003–25), the Young Science Foundation of Guangxi Province of China (grant No. 0832085) and the Startup Foundation for Doctorates of Guilin University of Technology.

References

First citationBruker (2004). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGe, C. M., Zhang, S. H., Feng, C., Wang, Y. G. & Li, W. (2011). Z. Anorg. Allg. Chem. 637, 112–116.  CrossRef CAS Google Scholar
First citationGupta, K. C. & Sutar, A. K. (2008). Coord. Chem. Rev. 252, 1420–1450.  Web of Science CrossRef CAS Google Scholar
First citationNakagima, K., Kojima, M. M., Foriumi, K., Saito, K. & Gujita, J. (1989). Bull. Chem. Soc. Jpn, 62, 760–767.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, S. H. & Feng, C. (2010). J. Mol. Struct. 977, 62–66.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, S.-H., Feng, X.-Z., Li, G.-Z., Jing, L.-X. & Liu, Z. (2007). Acta Cryst. E63, m396–m398.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, S. H., Ge, C. M. & Feng, C. (2008). Acta Cryst. E64, m1627.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, S. H., Song, Y., Liang, H. & Zeng, M. H. (2009). CrystEngComm, 11, 865–872.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds