metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Propane-1,2-diaminium bis­­(pyridine-2,6-di­carboxyl­ato-κ3O2,N,O6)cadmate dihydrate

aFaculty of Chemistry, Tarbiat Moallem University, 15614, Tehran, Iran, and bDepartment of Chemistry, Shahid Beheshti University, G. C., Evin, Tehran, 1983963113, Iran
*Correspondence e-mail: agah2006@yahoo.com

(Received 9 May 2011; accepted 21 June 2011; online 25 June 2011)

The reaction of cadmium nitrate dihydrate, propane-1,2-diamine and pyridine-2,6-dicarb­oxy­lic acid in a 1:1:2 molar ratio in an aqueous solution resulted in the formation of the title compound, (C3H12N2)[Cd(C7H3NO4)2]·2H2O or (p-1,2-daH2)-[Cd(pydc)2]·2H2O (where p-1,2-da is propane-1,2-diamine and pydcH2 is pyridine-2,6-dicarb­oxy­lic acid). The CdII ion is coordinated by four O and two N atoms of two pydc ligands in a distorted octa­hedral environment. The structure also contains two uncoordinated water mol­ecules. In the crystal, there are several inter­molecular N—H⋯O, O—H⋯O and weak C—H⋯O hydrogen bonds. There are also ππ stacking inter­actions between the pyridine rings of pydc units, with centroid–centroid distances of 3.4708 (16) Å.

Related literature

For related proton-transfer compounds reported by our group, see: Aghabozorg et al. (2008a[Aghabozorg, H., Bagheri, S., Heidari, M., Ghadermazi, M. & Attar Gharamaleki, J. (2008a). Acta Cryst. E64, m1065-m1066.],b[Aghabozorg, H., Ghadermazi, M., Nakhjavan, B. & Manteghi, F. (2008b). J. Chem. Crystallogr. 38, 135-145.],c[Aghabozorg, H., Heidari, M., Bagheri, S., Attar Gharamaleki, J. & Ghadermazi, M. (2008c). Acta Cryst. E64, m874-m875.],d[Aghabozorg, H., Heidari, M., Ghadermazi, M. & Attar Gharamaleki, J. (2008d). Acta Cryst. E64, o1045-o1046.]); Pasdar et al. (2011[Pasdar, H., Shakiba, S., Aghabozorg, H. & Notash, B. (2011). Acta Cryst. E67, m587.]).

[Scheme 1]

Experimental

Crystal data
  • (C3H12N2)[Cd(C7H3NO4)2]·2H2O

  • Mr = 554.80

  • Triclinic, [P \overline 1]

  • a = 8.6227 (17) Å

  • b = 10.133 (2) Å

  • c = 13.448 (3) Å

  • α = 81.36 (3)°

  • β = 76.73 (3)°

  • γ = 65.38 (3)°

  • V = 1037.7 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.12 mm−1

  • T = 298 K

  • 0.30 × 0.20 × 0.15 mm

Data collection
  • Stoe IPDS 2T diffractometer

  • Absorption correction: numerical (X-SHAPE and X-RED32; Stoe & Cie, 2005[Stoe & Cie (2005). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.])Tmin = 0.764, Tmax = 0.842

  • 11690 measured reflections

  • 5554 independent reflections

  • 4562 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.063

  • S = 1.02

  • 5554 reflections

  • 330 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯O10i 0.89 (3) 1.90 (3) 2.780 (3) 172 (3)
N3—H3B⋯O3ii 0.86 (3) 2.04 (3) 2.899 (3) 177 (3)
N3—H3C⋯O2i 0.92 (2) 1.89 (2) 2.790 (3) 164 (3)
N4—H4A⋯O8ii 0.91 (3) 1.96 (3) 2.870 (3) 176 (3)
N4—H4B⋯O5 0.83 (3) 2.06 (3) 2.889 (3) 172 (3)
N4—H4C⋯O9ii 0.91 (3) 1.90 (3) 2.803 (3) 170 (3)
O9—H9A⋯O4iii 0.76 (4) 1.96 (4) 2.708 (3) 170 (4)
O9—H9B⋯O2iv 0.84 (4) 2.00 (4) 2.827 (3) 165 (4)
O10—H10A⋯O6v 0.88 (6) 2.04 (6) 2.848 (4) 151 (6)
O10—H10B⋯O8vi 0.74 (4) 2.19 (4) 2.835 (3) 147 (4)
C10—H10⋯O3vii 0.93 2.54 3.298 (3) 139
C12—H12⋯O1vi 0.93 2.44 3.200 (3) 139
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z; (iii) x-1, y, z; (iv) x, y-1, z; (v) -x+1, -y+2, -z+1; (vi) -x+1, -y+1, -z+1; (vii) -x+2, -y+1, -z+1.

Data collection: X-AREA (Stoe & Cie, 2005[Stoe & Cie (2005). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Our group has previously reported some proton transfer systems, using pyridine-2,6-dicarboxylic acid(pydcH2), propane-1,2-diamine(p-1,2-da) and propane-1,3-diamine (p-1,3-da) which formed the proton transfer compounds (pnH2)(pydcH)2.2H2O(Aghabozorg, et al., 2008d), (p-1,3daH2)[Cd(pydc)2]. 3.5H2O (Aghabozorg, et al., 2008b), (C3H12N2)[Ni(C7H3NO4)2].4H2O (Hossein Aghabozorg et al., 2008c), (pnH2)[Hg(hypydc)Cl(H2O)]2.4H2O (Aghabozorg, et al., 2008a) and (p-1,2-daH2)[Zr(pydc)3].3H2O(Pasdar, et al., 2011).

The crystal structure of the title compound is shown in Fig. 1. The Cd(II) ion is six coordinated by two (pydc)2- groups in a distorted octahedral environment. The torsion angles O(5)—Cd(1)—O(3)—C(7) and O(3)—Cd(1)—O(5)—C(8) are 67.86 (15)° and 108.19 (17)° respectively, and also the angles O(7)—Cd(1)—O(1) and O(3)—Cd(1)—O(5) are 103.92 (7)° and 105.44 (6)° respectively, indicate that the two (pydc)2- units are not perpendicular to one another. In the crystal structure of the title compound, there are several intermolecular N—H···O, O—H···O and weak C—H···O hydrogen bonding (Table 1 & Fig. 2). There are also ππ stacking interactions between the pyridine rings of pydc moieties with a centroid to centroid distance of 3.4708 (16) Å (Fig. 3).

Related literature top

For related proton-transfer compounds reported by our group, see: Aghabozorg et al. (2008a,b,c,d); Pasdar et al. (2011).

Experimental top

An aqueous solution (30 ml) of propane-1,2-diamine(1 mmol), pyridine-2,6-dicarboxylic acid (2 mmol) and cadmium(II) nitrate dihydrate(1 mmol) were stirred at room temperature. Colorless crystals of the title compound were obtained after three weeks at room temperature.

Refinement top

H atoms attached to O and N were found in a difference Fourier map and refined isotropically. H3C were refined with distance restraints of N—H 0.92 (2). Other H atoms were positioned geometrically and refined as riding atoms with C—H = 0.93–0.98 Å, Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for the others.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2005); cell refinement: X-AREA (Stoe & Cie, 2005); data reduction: X-AREA (Stoe & Cie, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at 30% probability level.
[Figure 2] Fig. 2. The packing diagram of the title compound viewed down the a-axis. The intermolecular N—H···O, O—H···O and weak C—H···O hydrogen bonds are shown as blue dashed lines.
[Figure 3] Fig. 3. The packing diagram of the title compound showing π-π interactions between pydc fragments.Only anionic parts are shown for clarity.
Propane-1,2-diaminium bis(pyridine-2,6-dicarboxylato- κ3O2,N,O6)cadmate dihydrate top
Crystal data top
(C3H12N2)[Cd(C7H3NO4)2]·2H2OZ = 2
Mr = 554.80F(000) = 560
Triclinic, P1Dx = 1.776 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.6227 (17) ÅCell parameters from 5554 reflections
b = 10.133 (2) Åθ = 2.2–29.2°
c = 13.448 (3) ŵ = 1.12 mm1
α = 81.36 (3)°T = 298 K
β = 76.73 (3)°Plate, colorless
γ = 65.38 (3)°0.3 × 0.2 × 0.15 mm
V = 1037.7 (5) Å3
Data collection top
Stoe IPDS 2T
diffractometer
5554 independent reflections
Radiation source: fine-focus sealed tube4562 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
Detector resolution: 0.15 mm pixels mm-1θmax = 29.2°, θmin = 2.2°
rotation method scansh = 1011
Absorption correction: numerical
(X-SHAPE and X-RED32; Stoe & Cie, 2005)
k = 1313
Tmin = 0.764, Tmax = 0.842l = 1818
11690 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.063H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.030P)2 + 0.1592P]
where P = (Fo2 + 2Fc2)/3
5554 reflections(Δ/σ)max = 0.002
330 parametersΔρmax = 0.50 e Å3
1 restraintΔρmin = 0.37 e Å3
Crystal data top
(C3H12N2)[Cd(C7H3NO4)2]·2H2Oγ = 65.38 (3)°
Mr = 554.80V = 1037.7 (5) Å3
Triclinic, P1Z = 2
a = 8.6227 (17) ÅMo Kα radiation
b = 10.133 (2) ŵ = 1.12 mm1
c = 13.448 (3) ÅT = 298 K
α = 81.36 (3)°0.3 × 0.2 × 0.15 mm
β = 76.73 (3)°
Data collection top
Stoe IPDS 2T
diffractometer
5554 independent reflections
Absorption correction: numerical
(X-SHAPE and X-RED32; Stoe & Cie, 2005)
4562 reflections with I > 2σ(I)
Tmin = 0.764, Tmax = 0.842Rint = 0.035
11690 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0301 restraint
wR(F2) = 0.063H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.50 e Å3
5554 reflectionsΔρmin = 0.37 e Å3
330 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N31.0640 (3)1.0203 (2)0.73941 (18)0.0427 (4)
Cd10.66437 (2)0.504594 (16)0.721726 (12)0.03837 (6)
O20.2288 (2)0.84128 (17)0.89531 (14)0.0470 (4)
O10.3826 (2)0.68084 (17)0.77635 (13)0.0459 (4)
C20.5023 (3)0.66583 (19)0.92189 (15)0.0292 (4)
N10.6429 (2)0.55580 (16)0.88029 (12)0.0291 (3)
C60.7749 (3)0.4828 (2)0.92965 (15)0.0296 (4)
O50.7653 (2)0.69575 (17)0.65361 (13)0.0472 (4)
C10.3595 (3)0.7347 (2)0.85908 (16)0.0345 (4)
O30.8962 (2)0.31965 (15)0.79612 (12)0.0404 (3)
O70.6154 (2)0.31945 (16)0.67431 (12)0.0443 (4)
N20.7307 (2)0.50583 (17)0.55184 (12)0.0318 (3)
O41.0562 (2)0.29857 (19)0.91131 (16)0.0581 (5)
O60.8533 (3)0.80395 (19)0.50805 (16)0.0598 (5)
C50.7702 (3)0.5199 (2)1.02547 (16)0.0363 (4)
H50.86260.46911.05950.044*
C90.7864 (3)0.6038 (2)0.49661 (16)0.0352 (4)
C40.6252 (3)0.6340 (2)1.06974 (16)0.0385 (5)
H40.61930.66061.13420.046*
C30.4892 (3)0.7083 (2)1.01798 (16)0.0355 (4)
H30.39090.78511.04690.043*
C70.9229 (3)0.3556 (2)0.87480 (16)0.0340 (4)
C140.6464 (3)0.3028 (2)0.58002 (17)0.0382 (5)
C130.7083 (3)0.4078 (2)0.50696 (16)0.0330 (4)
C80.8043 (3)0.7107 (2)0.55696 (19)0.0408 (5)
O80.6343 (3)0.20351 (18)0.54186 (14)0.0550 (5)
N40.6575 (3)0.9894 (2)0.71014 (17)0.0395 (4)
C160.7838 (3)0.9958 (2)0.76668 (16)0.0362 (4)
H160.73381.09110.79570.043*
C120.7429 (3)0.4046 (3)0.40160 (17)0.0416 (5)
H120.72770.33580.37060.050*
C150.9497 (3)0.9831 (2)0.69164 (18)0.0410 (5)
H15A1.01040.88450.66970.049*
H15B0.92121.04820.63170.049*
C110.8002 (3)0.5050 (3)0.34338 (18)0.0505 (6)
H110.82360.50480.27240.061*
C100.8232 (3)0.6062 (3)0.39052 (18)0.0450 (5)
H100.86230.67430.35200.054*
C170.8098 (4)0.8803 (3)0.8543 (2)0.0649 (8)
H17A0.70070.89710.89970.097*
H17B0.89060.88470.89100.097*
H17C0.85450.78610.82770.097*
O90.3551 (3)0.0640 (3)0.8606 (2)0.0659 (6)
O100.3774 (3)0.9659 (3)0.60376 (17)0.0623 (5)
H4C0.553 (4)1.013 (3)0.754 (2)0.050 (8)*
H4B0.696 (4)0.906 (3)0.690 (2)0.057 (8)*
H4A0.651 (4)1.054 (3)0.655 (2)0.059 (8)*
H9A0.276 (6)0.135 (5)0.869 (3)0.090 (13)*
H10B0.404 (5)0.899 (4)0.577 (3)0.076 (13)*
H10A0.341 (8)1.039 (7)0.558 (5)0.16 (2)*
H9B0.317 (5)0.001 (4)0.883 (3)0.081 (12)*
H3C1.100 (4)0.957 (3)0.7943 (18)0.061 (9)*
H3A1.159 (4)1.011 (3)0.693 (2)0.057 (8)*
H3B1.013 (4)1.108 (4)0.758 (2)0.061 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N30.0314 (10)0.0350 (10)0.0587 (13)0.0071 (8)0.0084 (10)0.0124 (9)
Cd10.05293 (11)0.03011 (8)0.02906 (8)0.01047 (6)0.01066 (6)0.00649 (5)
O20.0355 (9)0.0356 (8)0.0624 (11)0.0006 (7)0.0148 (8)0.0127 (7)
O10.0479 (9)0.0413 (8)0.0447 (9)0.0050 (7)0.0223 (7)0.0084 (7)
C20.0304 (10)0.0243 (8)0.0341 (9)0.0113 (7)0.0054 (8)0.0048 (7)
N10.0313 (9)0.0251 (7)0.0312 (8)0.0094 (6)0.0077 (7)0.0048 (6)
C60.0282 (10)0.0279 (8)0.0342 (9)0.0127 (7)0.0053 (8)0.0022 (7)
O50.0632 (11)0.0349 (8)0.0474 (9)0.0195 (7)0.0135 (8)0.0092 (7)
C10.0345 (11)0.0270 (9)0.0423 (11)0.0099 (8)0.0119 (9)0.0027 (8)
O30.0421 (9)0.0311 (7)0.0386 (8)0.0030 (6)0.0073 (7)0.0093 (6)
O70.0632 (11)0.0335 (7)0.0388 (8)0.0203 (7)0.0113 (8)0.0035 (6)
N20.0331 (9)0.0270 (7)0.0313 (8)0.0056 (7)0.0093 (7)0.0040 (6)
O40.0351 (9)0.0504 (10)0.0833 (14)0.0012 (8)0.0240 (9)0.0222 (9)
O60.0699 (13)0.0428 (9)0.0738 (13)0.0306 (9)0.0176 (11)0.0068 (9)
C50.0360 (11)0.0402 (10)0.0379 (11)0.0172 (9)0.0134 (9)0.0018 (8)
C90.0294 (10)0.0316 (9)0.0384 (10)0.0051 (8)0.0084 (8)0.0022 (8)
C40.0453 (13)0.0426 (11)0.0329 (10)0.0197 (10)0.0074 (9)0.0111 (8)
C30.0352 (11)0.0335 (9)0.0371 (10)0.0121 (8)0.0028 (9)0.0108 (8)
C70.0301 (10)0.0257 (9)0.0429 (11)0.0085 (8)0.0045 (9)0.0036 (8)
C140.0404 (12)0.0270 (9)0.0453 (12)0.0053 (8)0.0168 (10)0.0070 (8)
C130.0308 (10)0.0286 (9)0.0352 (10)0.0026 (8)0.0111 (8)0.0089 (7)
C80.0362 (12)0.0285 (9)0.0538 (13)0.0067 (8)0.0123 (10)0.0037 (9)
O80.0795 (13)0.0384 (8)0.0578 (10)0.0255 (9)0.0245 (10)0.0093 (7)
N40.0381 (11)0.0341 (10)0.0483 (11)0.0121 (8)0.0127 (9)0.0080 (8)
C160.0352 (11)0.0325 (10)0.0414 (11)0.0106 (8)0.0103 (9)0.0072 (8)
C120.0379 (12)0.0452 (12)0.0369 (11)0.0055 (9)0.0115 (9)0.0147 (9)
C150.0353 (12)0.0378 (11)0.0477 (12)0.0093 (9)0.0085 (10)0.0110 (9)
C110.0472 (14)0.0666 (16)0.0287 (10)0.0145 (12)0.0042 (10)0.0058 (10)
C100.0390 (12)0.0520 (13)0.0385 (11)0.0160 (10)0.0037 (10)0.0018 (10)
C170.0664 (19)0.0728 (19)0.0647 (18)0.0363 (16)0.0286 (15)0.0201 (15)
O90.0449 (11)0.0434 (10)0.0973 (17)0.0131 (9)0.0117 (11)0.0213 (11)
O100.0782 (15)0.0666 (14)0.0503 (11)0.0389 (12)0.0044 (10)0.0085 (11)
Geometric parameters (Å, º) top
N3—C151.483 (3)C9—C81.522 (3)
N3—H3C0.924 (18)C4—C31.381 (3)
N3—H3A0.89 (3)C4—H40.9300
N3—H3B0.86 (3)C3—H30.9300
Cd1—N12.2185 (16)C14—O81.246 (3)
Cd1—N22.2236 (17)C14—C131.517 (3)
Cd1—O72.2906 (16)C13—C121.382 (3)
Cd1—O12.364 (2)N4—C161.490 (3)
Cd1—O32.3965 (18)N4—H4C0.91 (3)
Cd1—O52.4197 (18)N4—H4B0.83 (3)
O2—C11.252 (3)N4—H4A0.91 (3)
O1—C11.251 (3)C16—C171.515 (3)
C2—N11.333 (3)C16—C151.518 (3)
C2—C31.388 (3)C16—H160.9800
C2—C11.517 (3)C12—C111.376 (4)
N1—C61.334 (3)C12—H120.9300
C6—C51.383 (3)C15—H15A0.9700
C6—C71.522 (3)C15—H15B0.9700
O5—C81.268 (3)C11—C101.384 (4)
O3—C71.266 (3)C11—H110.9300
O7—C141.257 (3)C10—H100.9300
N2—C91.334 (3)C17—H17A0.9600
N2—C131.335 (3)C17—H17B0.9600
O4—C71.231 (3)C17—H17C0.9600
O6—C81.234 (3)O9—H9A0.76 (4)
C5—C41.384 (3)O9—H9B0.84 (4)
C5—H50.9300O10—H10B0.74 (4)
C9—C101.387 (3)O10—H10A0.88 (6)
C15—N3—H3C112.1 (19)C4—C3—H3120.7
C15—N3—H3A107.1 (19)C2—C3—H3120.7
H3C—N3—H3A107 (3)O4—C7—O3126.7 (2)
C15—N3—H3B111 (2)O4—C7—C6116.74 (19)
H3C—N3—H3B110 (3)O3—C7—C6116.52 (18)
H3A—N3—H3B110 (3)O8—C14—O7124.7 (2)
N1—Cd1—N2160.33 (6)O8—C14—C13117.2 (2)
N1—Cd1—O7126.63 (6)O7—C14—C13118.04 (18)
N2—Cd1—O772.61 (6)N2—C13—C12120.8 (2)
N1—Cd1—O171.23 (7)N2—C13—C14114.95 (17)
N2—Cd1—O1110.88 (7)C12—C13—C14124.22 (19)
O7—Cd1—O1103.92 (7)O6—C8—O5126.1 (2)
N1—Cd1—O370.42 (6)O6—C8—C9117.6 (2)
N2—Cd1—O3110.59 (7)O5—C8—C9116.27 (19)
O7—Cd1—O386.77 (6)C16—N4—H4C107.8 (18)
O1—Cd1—O3138.50 (6)C16—N4—H4B108 (2)
N1—Cd1—O590.60 (6)H4C—N4—H4B113 (3)
N2—Cd1—O570.02 (6)C16—N4—H4A108.2 (19)
O7—Cd1—O5142.62 (6)H4C—N4—H4A111 (3)
O1—Cd1—O590.16 (7)H4B—N4—H4A109 (3)
O3—Cd1—O5105.44 (6)N4—C16—C17109.4 (2)
C1—O1—Cd1115.64 (14)N4—C16—C15108.95 (18)
N1—C2—C3120.81 (19)C17—C16—C15114.1 (2)
N1—C2—C1115.44 (17)N4—C16—H16108.1
C3—C2—C1123.71 (18)C17—C16—H16108.1
C2—N1—C6121.19 (17)C15—C16—H16108.1
C2—N1—Cd1118.94 (13)C11—C12—C13118.8 (2)
C6—N1—Cd1119.73 (13)C11—C12—H12120.6
N1—C6—C5120.86 (19)C13—C12—H12120.6
N1—C6—C7115.26 (17)N3—C15—C16110.77 (19)
C5—C6—C7123.83 (19)N3—C15—H15A109.5
C8—O5—Cd1116.58 (14)C16—C15—H15A109.5
O1—C1—O2126.0 (2)N3—C15—H15B109.5
O1—C1—C2117.64 (18)C16—C15—H15B109.5
O2—C1—C2116.35 (18)H15A—C15—H15B108.1
C7—O3—Cd1114.43 (12)C12—C11—C10120.0 (2)
C14—O7—Cd1116.65 (14)C12—C11—H11120.0
C9—N2—C13121.17 (18)C10—C11—H11120.0
C9—N2—Cd1121.10 (14)C11—C10—C9118.5 (2)
C13—N2—Cd1117.70 (14)C11—C10—H10120.8
C6—C5—C4118.7 (2)C9—C10—H10120.8
C6—C5—H5120.6C16—C17—H17A109.5
C4—C5—H5120.6C16—C17—H17B109.5
N2—C9—C10120.7 (2)H17A—C17—H17B109.5
N2—C9—C8116.00 (18)C16—C17—H17C109.5
C10—C9—C8123.3 (2)H17A—C17—H17C109.5
C3—C4—C5119.84 (19)H17B—C17—H17C109.5
C3—C4—H4120.1H9A—O9—H9B104 (4)
C5—C4—H4120.1H10B—O10—H10A106 (4)
C4—C3—C2118.59 (19)
N1—Cd1—O1—C19.37 (15)O3—Cd1—N2—C9100.88 (15)
N2—Cd1—O1—C1149.82 (15)O5—Cd1—N2—C91.33 (15)
O7—Cd1—O1—C1133.77 (16)N1—Cd1—N2—C13170.20 (16)
O3—Cd1—O1—C132.7 (2)O7—Cd1—N2—C131.35 (14)
O5—Cd1—O1—C181.21 (16)O1—Cd1—N2—C1397.29 (15)
C3—C2—N1—C60.3 (3)O3—Cd1—N2—C1380.95 (15)
C1—C2—N1—C6177.55 (17)O5—Cd1—N2—C13179.50 (16)
C3—C2—N1—Cd1175.32 (14)N1—C6—C5—C40.3 (3)
C1—C2—N1—Cd16.9 (2)C7—C6—C5—C4177.21 (19)
N2—Cd1—N1—C291.3 (2)C13—N2—C9—C100.2 (3)
O7—Cd1—N1—C2101.95 (15)Cd1—N2—C9—C10178.30 (16)
O1—Cd1—N1—C28.29 (14)C13—N2—C9—C8179.24 (18)
O3—Cd1—N1—C2172.14 (16)Cd1—N2—C9—C81.1 (2)
O5—Cd1—N1—C281.67 (15)C6—C5—C4—C30.1 (3)
N2—Cd1—N1—C684.3 (2)C5—C4—C3—C20.1 (3)
O7—Cd1—N1—C682.38 (16)N1—C2—C3—C40.0 (3)
O1—Cd1—N1—C6176.04 (16)C1—C2—C3—C4177.62 (19)
O3—Cd1—N1—C612.20 (13)Cd1—O3—C7—O4160.3 (2)
O5—Cd1—N1—C693.99 (15)Cd1—O3—C7—C619.5 (2)
C2—N1—C6—C50.4 (3)N1—C6—C7—O4170.5 (2)
Cd1—N1—C6—C5175.12 (15)C5—C6—C7—O411.9 (3)
C2—N1—C6—C7177.30 (17)N1—C6—C7—O39.4 (3)
Cd1—N1—C6—C77.1 (2)C5—C6—C7—O3168.28 (19)
N1—Cd1—O5—C8178.02 (17)Cd1—O7—C14—O8176.57 (18)
N2—Cd1—O5—C81.47 (16)Cd1—O7—C14—C131.5 (3)
O7—Cd1—O5—C82.8 (2)C9—N2—C13—C120.2 (3)
O1—Cd1—O5—C8110.75 (17)Cd1—N2—C13—C12178.42 (15)
O3—Cd1—O5—C8108.19 (17)C9—N2—C13—C14179.35 (18)
Cd1—O1—C1—O2170.55 (18)Cd1—N2—C13—C142.5 (2)
Cd1—O1—C1—C29.2 (2)O8—C14—C13—N2175.54 (19)
N1—C2—C1—O12.1 (3)O7—C14—C13—N22.6 (3)
C3—C2—C1—O1175.7 (2)O8—C14—C13—C123.5 (3)
N1—C2—C1—O2177.69 (19)O7—C14—C13—C12178.3 (2)
C3—C2—C1—O24.6 (3)Cd1—O5—C8—O6177.91 (19)
N1—Cd1—O3—C717.16 (14)Cd1—O5—C8—C91.4 (2)
N2—Cd1—O3—C7141.91 (15)N2—C9—C8—O6179.1 (2)
O7—Cd1—O3—C7148.03 (15)C10—C9—C8—O60.3 (3)
O1—Cd1—O3—C740.58 (19)N2—C9—C8—O50.3 (3)
O5—Cd1—O3—C767.86 (15)C10—C9—C8—O5179.7 (2)
N1—Cd1—O7—C14175.19 (15)N2—C13—C12—C110.3 (3)
N2—Cd1—O7—C140.15 (15)C14—C13—C12—C11179.3 (2)
O1—Cd1—O7—C14108.04 (17)N4—C16—C15—N3167.86 (18)
O3—Cd1—O7—C14112.60 (17)C17—C16—C15—N369.6 (3)
O5—Cd1—O7—C141.2 (2)C13—C12—C11—C100.3 (4)
N1—Cd1—N2—C911.6 (3)C12—C11—C10—C90.3 (4)
O7—Cd1—N2—C9179.53 (17)N2—C9—C10—C110.2 (3)
O1—Cd1—N2—C980.88 (16)C8—C9—C10—C11179.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O10i0.89 (3)1.90 (3)2.780 (3)172 (3)
N3—H3B···O3ii0.86 (3)2.04 (3)2.899 (3)177 (3)
N3—H3C···O2i0.92 (2)1.89 (2)2.790 (3)164 (3)
N4—H4A···O8ii0.91 (3)1.96 (3)2.870 (3)176 (3)
N4—H4B···O50.83 (3)2.06 (3)2.889 (3)172 (3)
N4—H4C···O9ii0.91 (3)1.90 (3)2.803 (3)170 (3)
O9—H9A···O4iii0.76 (4)1.96 (4)2.708 (3)170 (4)
O9—H9B···O2iv0.84 (4)2.00 (4)2.827 (3)165 (4)
O10—H10A···O6v0.88 (6)2.04 (6)2.848 (4)151 (6)
O10—H10B···O8vi0.74 (4)2.19 (4)2.835 (3)147 (4)
C10—H10···O3vii0.932.543.298 (3)139
C12—H12···O1vi0.932.443.200 (3)139
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z; (iii) x1, y, z; (iv) x, y1, z; (v) x+1, y+2, z+1; (vi) x+1, y+1, z+1; (vii) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formula(C3H12N2)[Cd(C7H3NO4)2]·2H2O
Mr554.80
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)8.6227 (17), 10.133 (2), 13.448 (3)
α, β, γ (°)81.36 (3), 76.73 (3), 65.38 (3)
V3)1037.7 (5)
Z2
Radiation typeMo Kα
µ (mm1)1.12
Crystal size (mm)0.3 × 0.2 × 0.15
Data collection
DiffractometerStoe IPDS 2T
diffractometer
Absorption correctionNumerical
(X-SHAPE and X-RED32; Stoe & Cie, 2005)
Tmin, Tmax0.764, 0.842
No. of measured, independent and
observed [I > 2σ(I)] reflections
11690, 5554, 4562
Rint0.035
(sin θ/λ)max1)0.686
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.063, 1.02
No. of reflections5554
No. of parameters330
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.50, 0.37

Computer programs: X-AREA (Stoe & Cie, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O10i0.89 (3)1.90 (3)2.780 (3)172 (3)
N3—H3B···O3ii0.86 (3)2.04 (3)2.899 (3)177 (3)
N3—H3C···O2i0.924 (18)1.891 (19)2.790 (3)164 (3)
N4—H4A···O8ii0.91 (3)1.96 (3)2.870 (3)176 (3)
N4—H4B···O50.83 (3)2.06 (3)2.889 (3)172 (3)
N4—H4C···O9ii0.91 (3)1.90 (3)2.803 (3)170 (3)
O9—H9A···O4iii0.76 (4)1.96 (4)2.708 (3)170 (4)
O9—H9B···O2iv0.84 (4)2.00 (4)2.827 (3)165 (4)
O10—H10A···O6v0.88 (6)2.04 (6)2.848 (4)151 (6)
O10—H10B···O8vi0.74 (4)2.19 (4)2.835 (3)147 (4)
C10—H10···O3vii0.932.543.298 (3)139
C12—H12···O1vi0.932.443.200 (3)139
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z; (iii) x1, y, z; (iv) x, y1, z; (v) x+1, y+2, z+1; (vi) x+1, y+1, z+1; (vii) x+2, y+1, z+1.
 

Acknowledgements

We are grateful to Tarbiat Moallem University for financial support.

References

First citationAghabozorg, H., Bagheri, S., Heidari, M., Ghadermazi, M. & Attar Gharamaleki, J. (2008a). Acta Cryst. E64, m1065–m1066.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAghabozorg, H., Ghadermazi, M., Nakhjavan, B. & Manteghi, F. (2008b). J. Chem. Crystallogr. 38, 135–145.  CrossRef CAS Google Scholar
First citationAghabozorg, H., Heidari, M., Bagheri, S., Attar Gharamaleki, J. & Ghadermazi, M. (2008c). Acta Cryst. E64, m874–m875.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAghabozorg, H., Heidari, M., Ghadermazi, M. & Attar Gharamaleki, J. (2008d). Acta Cryst. E64, o1045–o1046.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationPasdar, H., Shakiba, S., Aghabozorg, H. & Notash, B. (2011). Acta Cryst. E67, m587.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2005). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds