organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(2-Chloro­phen­yl)-4-(4-nitro­phen­yl)-1H-1,2,4-triazole-5(4H)-thione

aDepartment of Chemistry, Faculty of Science, Urmia University, 57159 Urmia, Iran, and bDepartment of Chemistry, Shahid Beheshti University, G. C. Evin, Tehran 1983963113, Iran
*Correspondence e-mail: kadilmaghani@yahoo.com

(Received 15 May 2011; accepted 28 May 2011; online 11 June 2011)

In the crystal structure of the title triazole compound, C14H9ClN4O2S, mol­ecules are connected into centrosymmetric dimers by pairs of N—H⋯S hydrogen bonds. In addition, there are weak C—H⋯N hydrogen bonds stabilizing the crystal structure. The dihedral angles between the triazole ring and the two benzene rings are 73.0 (4) and 72.9 (4)°.

Related literature

For related structures, see: Genç et al. (2004[Genç, S., Dege, N., Çetin, A., Cansız, A., Şekerci, M. & Dinçer, M. (2004). Acta Cryst. E60, o1580-o1582.]); Kumaran et al. (1999[Kumaran, D., Ponnuswamy, M. N., Jayanthi, G., Ramakrishnan, V. T., Chinnakali, K. & Fun, H.-K. (1999). Acta Cryst. C55, 581-582.]). For the synthesis of triazoles, see: Zamani et al. (2003[Zamani, K., Faghihi, K., Sangi, M. R. & Zolgharnein, J. (2003). Turk. J. Chem, 27, 119-125.]).

[Scheme 1]

Experimental

Crystal data
  • C14H9ClN4O2S

  • Mr = 332.77

  • Monoclinic, P 21 /n

  • a = 6.7262 (13) Å

  • b = 17.109 (3) Å

  • c = 13.101 (3) Å

  • β = 95.89 (3)°

  • V = 1499.7 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.41 mm−1

  • T = 298 K

  • 0.35 × 0.3 × 0.3 mm

Data collection
  • Stoe IPDS 2T diffractometer

  • 16462 measured reflections

  • 4038 independent reflections

  • 2850 reflections with I > 2σ(I)

  • Rint = 0.060

Refinement
  • R[F2 > 2σ(F2)] = 0.072

  • wR(F2) = 0.174

  • S = 1.18

  • 4038 reflections

  • 203 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1⋯S1i 0.86 (3) 2.48 (3) 3.328 (3) 172 (3)
C2—H2⋯N1ii 0.93 2.54 3.454 (5) 170
Symmetry codes: (i) -x, -y+2, -z; (ii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: X-AREA (Stoe & Cie, 2005[Stoe & Cie (2005). X-AREA, X-SHAPE and X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

In the medicinal chemistry, 1,2,4-triazoles are widely used. Cyclization of 1,4-disubstituted thiosemicarbazides produced 4,5-disubstituted 1,2,4-triazoles (Zamani et al., 2003). 4-nitro phenylisothiocyanate reacted with 2-chlorophenylcarboxylic acid hydrazide to yield the corresponding 1-(2-chlorobenzoyl)-4-(4-nitrophenyl)thiosemicarbazide (1), whereas cyclization of (1) with NaHCO3 10% solution gave the 3-(2-Chlorophenyl)-4-(4-nitrophenyl)-1H-1,2,4-triazole-5(4H)-thione (2) (Fig. 1).The structures of the compounds were assigned on the basis of IR, 1H-NMR and 13C-NMR spectra.

The molecular structure of the title compound is shown in Fig. 2. In the crystal structure of the title compound, there are intermolecular N—H···S and weak C—H···N hydrogen bonding which play important role in the stabilization of the crystal structure (Table 1 and Fig. 3).

Related literature top

For related structures, see: Genç et al. (2004); Kumaran et al. (1999). For the synthesis of triazoles, see: Zamani et al. (2003).

Experimental top

Starting materials were obtained from Merck. For the synthesis of 1-(2-chlorobenzoyl)-4-(4-nitrophenyl)thiosemicarbazide (1), a mixture of 2-chlorophenylcarboxylic acid hydrazide (0.01 mol, 1.7 g) and 4-nitrophenyl isothiocynate (0.01 mol, 1.8 g) in absolute ethanol was refluxed for 6 h. The solid material obtained on cooling was filtered, washed with diethyl ether, dried and crystallized from ethanol (yield 82%; m.p. 170–172°C). IR (KBr, cm-1): 3315, 3184 (N—H), 1643 (CO), 1457, 1330 (NO2), 1273 (CS); 1H NMR (300 MHz, DMSO-d6): 7.42–7.53 (3H, m, 2-chlorophenyl), 7.74 (1H, s, 2-chlorophenyl), 7.90 (2H, d, J = 8.7, Ar—H), 8.21 (2H, d, J = 8.7, Ar—H), 9.99 (1H, br, –NH—Ar), 10.30 (1H, s, –CS—NH–), 10.56 (1H, br, –CO—NH–); 13C NMR (75 MHz, DMSO-d6): 121.59, 124.66, 125.11, 127.43, 130.39, 131.22, 132.19, 146.25, 165.93 and 181.58. For the synthesis of (2), a stirred mixture of (1) (1 mmol, 0.35 g) and NaHCO3 10% (10 ml) was refluxed for 6 h. After cooling, the solution was acidified with hydrochloric acid and the precipitate was filtered. The precipitate was then crystallized from ethanol (yield 57%; m.p. 223–225°C). IR (KBr, cm-1): 3286 (N—H), 1608 (CN), 1465, 1336 (NO2), 1529, 1177, 1071, 963 (N—S, amide I, II, III and IV bands); 1H NMR (300 MHz, CDCl3): 7.37–7.53 (6H, m, Ar—H), 7.91 (1H, s, 2-chlorophenyl), 8.23 (2H, d, J = 8.7, Ar—H), 12.24 (1H, s, SH); 13C NMR (75 MHz, CDCl3): 124.43, 127.26, 127.48, 128.74, 130.30, 130.50, 131.58, 132.23, 133, 133.07.

Refinement top

The H atom attached to amine group was found in a difference Fourier map and refined isotropically without restraint. The C—H protons were positioned geometrically and refined as riding atoms with C—H = 0.93 Å and Uiso(H) = 1.2 Ueq(C).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2005); cell refinement: X-AREA (Stoe & Cie, 2005); data reduction: X-AREA (Stoe & Cie, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The reaction scheme for synthesis of the title compound.
[Figure 2] Fig. 2. The molecular structure of the title compound with displacement ellipsoids drawn at 30% probability level.
[Figure 3] Fig. 3. The packing diagram of the title compound down the a axis. The intermolecular N—H···S, C—H···N hydrogen bonds are shown as blue dashed lines.
3-(2-Chlorophenyl)-4-(4-nitrophenyl)-1H-1,2,4-triazole-5(4H)- thione top
Crystal data top
C14H9ClN4O2SF(000) = 680.0
Mr = 332.77Dx = 1.474 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4038 reflections
a = 6.7262 (13) Åθ = 2.4–29.2°
b = 17.109 (3) ŵ = 0.41 mm1
c = 13.101 (3) ÅT = 298 K
β = 95.89 (3)°Block, brown
V = 1499.7 (5) Å30.35 × 0.3 × 0.3 mm
Z = 4
Data collection top
Stoe IPDS 2T
diffractometer
2850 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.060
Graphite monochromatorθmax = 29.2°, θmin = 2.4°
Detector resolution: 0.15 pixels mm-1h = 99
rotation method scansk = 2322
16462 measured reflectionsl = 1617
4038 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.072Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.174H atoms treated by a mixture of independent and constrained refinement
S = 1.18 w = 1/[σ2(Fo2) + (0.0706P)2 + 0.4737P]
where P = (Fo2 + 2Fc2)/3
4038 reflections(Δ/σ)max = 0.001
203 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C14H9ClN4O2SV = 1499.7 (5) Å3
Mr = 332.77Z = 4
Monoclinic, P21/nMo Kα radiation
a = 6.7262 (13) ŵ = 0.41 mm1
b = 17.109 (3) ÅT = 298 K
c = 13.101 (3) Å0.35 × 0.3 × 0.3 mm
β = 95.89 (3)°
Data collection top
Stoe IPDS 2T
diffractometer
2850 reflections with I > 2σ(I)
16462 measured reflectionsRint = 0.060
4038 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0720 restraints
wR(F2) = 0.174H atoms treated by a mixture of independent and constrained refinement
S = 1.18Δρmax = 0.26 e Å3
4038 reflectionsΔρmin = 0.23 e Å3
203 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.23357 (11)1.07003 (4)0.08833 (6)0.0535 (2)
Cl10.4224 (2)0.80997 (7)0.35611 (8)0.0955 (4)
N30.4499 (3)0.94203 (12)0.15936 (15)0.0400 (5)
C80.2956 (4)0.97505 (15)0.09792 (19)0.0417 (6)
C70.4517 (4)0.86289 (16)0.13680 (19)0.0433 (6)
C90.5843 (4)0.98312 (15)0.23334 (19)0.0403 (5)
N20.2132 (4)0.91476 (14)0.04511 (19)0.0512 (6)
C140.7779 (4)0.99626 (19)0.2123 (2)0.0538 (7)
H140.82070.97950.15060.065*
C120.8404 (4)1.05784 (17)0.3744 (2)0.0512 (7)
N10.3080 (4)0.84485 (14)0.06799 (19)0.0523 (6)
C60.6088 (4)0.80956 (16)0.1831 (2)0.0479 (6)
C110.6475 (5)1.04638 (19)0.3956 (2)0.0555 (7)
H110.60491.06400.45690.067*
C50.7588 (5)0.78584 (19)0.1248 (3)0.0644 (9)
H50.75440.80110.05650.077*
N40.9821 (5)1.09731 (19)0.4514 (2)0.0732 (8)
C10.6151 (5)0.78478 (19)0.2838 (2)0.0612 (8)
C130.9084 (4)1.0349 (2)0.2844 (2)0.0598 (8)
H131.03951.04490.27160.072*
C100.5174 (4)1.00804 (19)0.3240 (2)0.0508 (7)
H100.38580.99910.33670.061*
O21.1498 (5)1.1103 (2)0.4306 (3)0.1210 (13)
C20.7732 (8)0.7390 (2)0.3270 (3)0.0859 (13)
H20.77890.72300.39510.103*
O10.9257 (5)1.1125 (2)0.5332 (2)0.1153 (12)
C30.9209 (7)0.7181 (2)0.2669 (5)0.0946 (15)
H31.02810.68830.29540.114*
C40.9137 (6)0.7400 (2)0.1668 (4)0.0852 (13)
H41.01310.72400.12700.102*
H10.104 (5)0.9176 (17)0.006 (2)0.048 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0494 (4)0.0469 (4)0.0592 (4)0.0006 (3)0.0187 (3)0.0028 (3)
Cl10.1317 (10)0.1029 (8)0.0554 (5)0.0121 (7)0.0263 (6)0.0092 (5)
N30.0405 (11)0.0458 (12)0.0315 (10)0.0015 (9)0.0071 (8)0.0005 (8)
C80.0380 (12)0.0494 (14)0.0360 (12)0.0011 (10)0.0041 (10)0.0027 (10)
C70.0465 (14)0.0479 (14)0.0341 (12)0.0028 (11)0.0024 (10)0.0026 (10)
C90.0384 (12)0.0472 (14)0.0328 (12)0.0008 (10)0.0081 (10)0.0017 (10)
N20.0500 (13)0.0513 (14)0.0476 (13)0.0014 (10)0.0187 (11)0.0010 (10)
C140.0428 (15)0.077 (2)0.0415 (15)0.0000 (13)0.0016 (12)0.0100 (13)
C120.0479 (15)0.0567 (17)0.0453 (15)0.0043 (12)0.0134 (12)0.0085 (12)
N10.0579 (14)0.0506 (13)0.0450 (13)0.0029 (11)0.0112 (11)0.0022 (10)
C60.0503 (15)0.0420 (14)0.0485 (15)0.0010 (11)0.0094 (12)0.0050 (11)
C110.0558 (17)0.0692 (19)0.0408 (15)0.0009 (14)0.0015 (13)0.0119 (13)
C50.065 (2)0.0530 (18)0.075 (2)0.0103 (15)0.0080 (17)0.0146 (15)
N40.0633 (18)0.085 (2)0.0659 (19)0.0037 (15)0.0195 (15)0.0246 (15)
C10.082 (2)0.0535 (17)0.0446 (16)0.0095 (15)0.0103 (15)0.0079 (13)
C130.0355 (14)0.084 (2)0.0592 (18)0.0052 (14)0.0003 (12)0.0125 (16)
C100.0401 (14)0.0705 (19)0.0415 (14)0.0031 (12)0.0038 (11)0.0056 (13)
O20.0646 (18)0.172 (3)0.122 (3)0.030 (2)0.0108 (17)0.065 (2)
C20.116 (3)0.063 (2)0.069 (2)0.007 (2)0.039 (2)0.0228 (18)
O10.100 (2)0.168 (3)0.074 (2)0.015 (2)0.0115 (17)0.061 (2)
C30.082 (3)0.057 (2)0.134 (4)0.0075 (19)0.043 (3)0.018 (2)
C40.064 (2)0.056 (2)0.135 (4)0.0139 (17)0.008 (2)0.018 (2)
Geometric parameters (Å, º) top
S1—C81.679 (3)C6—C11.382 (4)
Cl1—C11.736 (4)C6—C51.387 (5)
N3—C81.369 (3)C11—C101.382 (4)
N3—C71.386 (3)C11—H110.9300
N3—C91.439 (3)C5—C41.373 (5)
C8—N21.331 (3)C5—H50.9300
C7—N11.290 (3)N4—O11.203 (4)
C7—C61.479 (4)N4—O21.208 (4)
C9—C141.377 (4)C1—C21.393 (5)
C9—C101.380 (4)C13—H130.9300
N2—N11.374 (3)C10—H100.9300
N2—H10.86 (3)C2—C31.377 (7)
C14—C131.389 (4)C2—H20.9300
C14—H140.9300C3—C41.360 (7)
C12—C131.366 (4)C3—H30.9300
C12—C111.369 (4)C4—H40.9300
C12—N41.478 (4)
C8—N3—C7107.5 (2)C12—C11—H11120.7
C8—N3—C9125.5 (2)C10—C11—H11120.7
C7—N3—C9127.0 (2)C4—C5—C6120.7 (4)
N2—C8—N3103.6 (2)C4—C5—H5119.7
N2—C8—S1128.6 (2)C6—C5—H5119.7
N3—C8—S1127.68 (19)O1—N4—O2123.3 (3)
N1—C7—N3111.1 (2)O1—N4—C12117.8 (3)
N1—C7—C6126.3 (2)O2—N4—C12118.9 (3)
N3—C7—C6122.4 (2)C6—C1—C2120.5 (4)
C14—C9—C10121.4 (2)C6—C1—Cl1119.5 (3)
C14—C9—N3119.1 (2)C2—C1—Cl1120.0 (3)
C10—C9—N3119.5 (2)C12—C13—C14118.7 (3)
C8—N2—N1113.7 (2)C12—C13—H13120.6
C8—N2—H1124 (2)C14—C13—H13120.6
N1—N2—H1122 (2)C9—C10—C11119.4 (3)
C9—C14—C13119.1 (3)C9—C10—H10120.3
C9—C14—H14120.5C11—C10—H10120.3
C13—C14—H14120.5C3—C2—C1118.6 (4)
C13—C12—C11122.8 (3)C3—C2—H2120.7
C13—C12—N4118.1 (3)C1—C2—H2120.7
C11—C12—N4119.1 (3)C4—C3—C2121.6 (4)
C7—N1—N2104.0 (2)C4—C3—H3119.2
C1—C6—C5118.9 (3)C2—C3—H3119.2
C1—C6—C7122.1 (3)C3—C4—C5119.7 (4)
C5—C6—C7118.9 (3)C3—C4—H4120.2
C12—C11—C10118.6 (3)C5—C4—H4120.2
C7—N3—C8—N21.3 (3)C13—C12—C11—C101.8 (5)
C9—N3—C8—N2178.7 (2)N4—C12—C11—C10178.7 (3)
C7—N3—C8—S1176.1 (2)C1—C6—C5—C41.5 (5)
C9—N3—C8—S13.8 (4)C7—C6—C5—C4176.2 (3)
C8—N3—C7—N11.3 (3)C13—C12—N4—O1174.9 (4)
C9—N3—C7—N1178.7 (3)C11—C12—N4—O15.6 (5)
C8—N3—C7—C6175.2 (2)C13—C12—N4—O22.6 (5)
C9—N3—C7—C64.8 (4)C11—C12—N4—O2176.9 (4)
C8—N3—C9—C14107.0 (3)C5—C6—C1—C22.2 (5)
C7—N3—C9—C1472.9 (4)C7—C6—C1—C2175.4 (3)
C8—N3—C9—C1073.4 (3)C5—C6—C1—Cl1176.9 (2)
C7—N3—C9—C10106.6 (3)C7—C6—C1—Cl15.4 (4)
N3—C8—N2—N11.0 (3)C11—C12—C13—C141.9 (5)
S1—C8—N2—N1176.4 (2)N4—C12—C13—C14178.7 (3)
C10—C9—C14—C130.5 (5)C9—C14—C13—C120.7 (5)
N3—C9—C14—C13179.0 (3)C14—C9—C10—C110.6 (5)
N3—C7—N1—N20.7 (3)N3—C9—C10—C11179.0 (3)
C6—C7—N1—N2175.6 (3)C12—C11—C10—C90.6 (5)
C8—N2—N1—C70.2 (3)C6—C1—C2—C31.0 (5)
N1—C7—C6—C1109.4 (4)Cl1—C1—C2—C3178.1 (3)
N3—C7—C6—C174.7 (4)C1—C2—C3—C41.0 (6)
N1—C7—C6—C573.0 (4)C2—C3—C4—C51.8 (6)
N3—C7—C6—C5103.0 (3)C6—C5—C4—C30.5 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1···S1i0.86 (3)2.48 (3)3.328 (3)172 (3)
C2—H2···N1ii0.932.543.454 (5)170
Symmetry codes: (i) x, y+2, z; (ii) x+1/2, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC14H9ClN4O2S
Mr332.77
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)6.7262 (13), 17.109 (3), 13.101 (3)
β (°) 95.89 (3)
V3)1499.7 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.41
Crystal size (mm)0.35 × 0.3 × 0.3
Data collection
DiffractometerStoe IPDS 2T
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
16462, 4038, 2850
Rint0.060
(sin θ/λ)max1)0.686
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.072, 0.174, 1.18
No. of reflections4038
No. of parameters203
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.26, 0.23

Computer programs: X-AREA (Stoe & Cie, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1···S1i0.86 (3)2.48 (3)3.328 (3)172 (3)
C2—H2···N1ii0.932.543.454 (5)169.7
Symmetry codes: (i) x, y+2, z; (ii) x+1/2, y+3/2, z+1/2.
 

Acknowledgements

The authors are grateful to Urmia University for financial support.

References

First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGenç, S., Dege, N., Çetin, A., Cansız, A., Şekerci, M. & Dinçer, M. (2004). Acta Cryst. E60, o1580–o1582.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKumaran, D., Ponnuswamy, M. N., Jayanthi, G., Ramakrishnan, V. T., Chinnakali, K. & Fun, H.-K. (1999). Acta Cryst. C55, 581–582.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2005). X-AREA, X-SHAPE and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationZamani, K., Faghihi, K., Sangi, M. R. & Zolgharnein, J. (2003). Turk. J. Chem, 27, 119–125.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds