organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,4-Di­hydro­quinoxaline-2,3-dione–5-nitro­isophthalic acid–water (1/1/1)

aDepartment of Chemistry and Chemical Engineering, Jining University, 273155 Qufu, Shandong, People's Republic of China
*Correspondence e-mail: mingfengwang_11@163.com

(Received 23 May 2011; accepted 31 May 2011; online 4 June 2011)

The asymmetric unit of the title compound, C8H6N2O2·C8H5NO6·H2O, contains mol­ecules of 1,4-dihydro­quinoxaline-2,3-dione, 5-nitro­isophthalic acid and a solvent water. In the crystal structure, mol­ecules are linked into a three-dimensional network by inter­molecular N—H⋯O and O—H⋯O hydrogen bonds.

Related literature

For applications of piperazine and its derivatives, see: Jian & Zhao (2004[Jian, F. F. & Zhao, P. S. (2004). J. Mol. Struct. 705, 133-139.]); Oxtoby et al. (2005[Oxtoby, N. S., Blake, A. J., Champness, N. R. & Wilson, C. (2005). Chem. Eur. J. 11, 4643-4654.]). For uses of 5-nitro­isophthalate and its derivatives, see: He et al. (2004[He, H.-Y., Zhou, Y.-L. & Zhu, L.-G. (2004). Acta Cryst. C60, m569-m571.]); Wang et al. (2009[Wang, H.-D., Li, M.-M., He, H.-Y. & Jiang, F.-B. (2009). Acta Cryst. E65, m416.]); Xu et al. (2011[Xu, H.-B., Ma, S. & He, Y. (2011). Acta Cryst. E67, m326.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C8H6N2O2·C8H5NO6·H2O

  • Mr = 391.29

  • Triclinic, [P \overline 1]

  • a = 7.245 (2) Å

  • b = 8.686 (3) Å

  • c = 13.142 (4) Å

  • α = 93.938 (4)°

  • β = 95.619 (4)°

  • γ = 95.793 (4)°

  • V = 816.3 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 295 K

  • 0.20 × 0.16 × 0.10 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.974, Tmax = 0.987

  • 4482 measured reflections

  • 2857 independent reflections

  • 2441 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.095

  • S = 1.03

  • 2857 reflections

  • 254 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O6i 0.86 2.40 2.9632 (18) 123
N2—H2⋯O9ii 0.86 2.33 3.0071 (17) 136
N1—H1⋯O1iii 0.86 2.02 2.8723 (17) 173
O9—H9B⋯O2iv 0.86 1.89 2.7456 (15) 171
O8—H8⋯O3v 0.82 1.86 2.6381 (17) 159
O9—H9A⋯O1 0.86 1.97 2.8220 (15) 168
O4—H4A⋯O9 0.82 1.78 2.5962 (15) 173
Symmetry codes: (i) -x+2, -y+1, -z; (ii) x+1, y, z; (iii) -x+1, -y, -z+1; (iv) -x+1, -y+1, -z+1; (v) x, y+1, z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) and APEX2; data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Piperazine and its derivatives have attracted a great interest due to their use as curatorial intermediate, bacteriophage and insectifuge (Jian & Zhao, 2004; Oxtoby et al., 2005). Coordination polymers of 5-nitroisophthalate and its derivatives have attracted interest because of their potential applications and intriguing architectures with new topologies (He et al., 2004; Wang et al., 2009; Xu et al., 2011). In this paper, we present the title compound (I).

In (I) (Fig. 1), the bond lengths and angles are normal (Allen et al., 1987). The asymmetric unit contains one molecule of 1,4-dihydro-2,3-quinoxalinedione, one molecule of 5-nitro-isophthalic acid and one crystalline water molecule.

The crystal packing is stabilized by intermolecular N—H···O and O—H···O hydrogen bonds (Table 1), which link the molecules into three-dimensional network.

Related literature top

For applications of piperazine and its derivatives, see: Jian & Zhao (2004); Oxtoby et al. (2005). For uses of 5-nitroisophthalate and its derivatives, see: He et al. (2004); Wang et al. (2009); Xu et al. (2011). For bond-length data, see: Allen et al. (1987).

Experimental top

A water solution (50 ml) of 1,4-Dihydro-2,3-quinoxalinedione (0.25 mmol) and 5-nitro-isophthalic acid (0.25 mmol) was heated at 333 K for 3 h. Then the mixture was cooled to room temperature. After two weeks orange crystals suitable for X-ray diffraction study were obtained.

Refinement top

All H atoms were positioned geometrically and refined using a riding model approximation with C—H = 0.93 Å, N—H = 0.86 Å, Ocarbonyl—H = 0.82 Å and Owater—H = 0.86 Å and with Uiso(H) = 1.2Ueq(C,N) and Uiso(H) = 1.5Ueq(O), respectively.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The content of asymmetric unit of (I) showing the atomic labeling and 30% probability displacement ellipsoids.
1,4-Dihydroquinoxaline-2,3-dione–5-nitroisophthalic acid–water (1/1/1) top
Crystal data top
C8H6N2O2·C8H5NO6·H2OZ = 2
Mr = 391.29F(000) = 404
Triclinic, P1Dx = 1.592 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.245 (2) ÅCell parameters from 2442 reflections
b = 8.686 (3) Åθ = 2.4–28.2°
c = 13.142 (4) ŵ = 0.13 mm1
α = 93.938 (4)°T = 295 K
β = 95.619 (4)°Block, orange
γ = 95.793 (4)°0.20 × 0.16 × 0.10 mm
V = 816.3 (4) Å3
Data collection top
Bruker APEXII CCD
diffractometer
2857 independent reflections
Radiation source: fine-focus sealed tube2441 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
ϕ and ω scansθmax = 25.1°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 88
Tmin = 0.974, Tmax = 0.987k = 910
4482 measured reflectionsl = 1515
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.095 w = 1/[σ2(Fo2) + (0.0491P)2 + 0.199P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
2857 reflectionsΔρmax = 0.18 e Å3
254 parametersΔρmin = 0.19 e Å3
0 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.040 (3)
Crystal data top
C8H6N2O2·C8H5NO6·H2Oγ = 95.793 (4)°
Mr = 391.29V = 816.3 (4) Å3
Triclinic, P1Z = 2
a = 7.245 (2) ÅMo Kα radiation
b = 8.686 (3) ŵ = 0.13 mm1
c = 13.142 (4) ÅT = 295 K
α = 93.938 (4)°0.20 × 0.16 × 0.10 mm
β = 95.619 (4)°
Data collection top
Bruker APEXII CCD
diffractometer
2857 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2441 reflections with I > 2σ(I)
Tmin = 0.974, Tmax = 0.987Rint = 0.017
4482 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.095H-atom parameters constrained
S = 1.03Δρmax = 0.18 e Å3
2857 reflectionsΔρmin = 0.19 e Å3
254 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.71730 (16)0.01395 (14)0.43192 (9)0.0305 (3)
H10.64210.05580.45430.037*
N20.96136 (17)0.23142 (14)0.36451 (9)0.0322 (3)
H21.04030.29930.34310.039*
N30.86203 (18)0.59454 (17)0.10289 (9)0.0406 (3)
O10.53849 (14)0.20004 (12)0.47998 (8)0.0398 (3)
O20.79757 (16)0.42195 (12)0.42271 (8)0.0412 (3)
O30.54289 (17)0.39843 (12)0.20331 (9)0.0467 (3)
O40.49185 (15)0.61637 (12)0.28917 (8)0.0383 (3)
H4A0.44790.55550.32770.058*
O50.85764 (19)0.45403 (16)0.11072 (9)0.0569 (4)
O60.9246 (2)0.67836 (17)0.16454 (10)0.0640 (4)
O70.7393 (2)1.14774 (14)0.02107 (10)0.0599 (4)
O80.62819 (19)1.11218 (13)0.17111 (9)0.0538 (3)
H80.62361.20620.17250.081*
O90.32657 (14)0.43362 (12)0.40853 (8)0.0369 (3)
H9A0.40130.37300.43520.055*
H9B0.30070.48040.46430.055*
C10.67867 (19)0.16099 (17)0.44281 (10)0.0293 (3)
C20.8180 (2)0.28385 (17)0.40886 (10)0.0296 (3)
C30.9929 (2)0.07624 (17)0.35027 (10)0.0299 (3)
C41.1426 (2)0.0307 (2)0.30139 (12)0.0417 (4)
H41.22550.10470.27700.050*
C51.1677 (2)0.1238 (2)0.28923 (13)0.0481 (4)
H51.26570.15450.25470.058*
C61.0477 (2)0.2347 (2)0.32807 (12)0.0436 (4)
H61.06740.33890.32080.052*
C70.8999 (2)0.19105 (18)0.37722 (11)0.0346 (3)
H70.82010.26520.40370.042*
C80.87052 (19)0.03525 (16)0.38704 (10)0.0280 (3)
C90.63865 (19)0.64015 (17)0.13886 (10)0.0296 (3)
C100.7140 (2)0.57178 (18)0.05592 (10)0.0324 (3)
H100.71610.46480.04750.039*
C110.7857 (2)0.66751 (18)0.01360 (10)0.0334 (3)
C120.7849 (2)0.82652 (19)0.00467 (11)0.0366 (4)
H120.83420.88760.05300.044*
C130.7085 (2)0.89318 (18)0.07831 (11)0.0334 (3)
C140.6363 (2)0.79974 (17)0.14970 (10)0.0318 (3)
H140.58580.84480.20540.038*
C150.5552 (2)0.53871 (17)0.21328 (10)0.0312 (3)
C160.6963 (2)1.06385 (19)0.08583 (12)0.0394 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0280 (6)0.0267 (6)0.0384 (6)0.0004 (5)0.0113 (5)0.0073 (5)
N20.0322 (7)0.0281 (7)0.0385 (6)0.0004 (5)0.0157 (5)0.0061 (5)
N30.0386 (7)0.0518 (9)0.0324 (7)0.0076 (7)0.0079 (5)0.0010 (6)
O10.0335 (6)0.0351 (6)0.0562 (7)0.0079 (5)0.0223 (5)0.0112 (5)
O20.0493 (7)0.0261 (6)0.0520 (6)0.0059 (5)0.0213 (5)0.0047 (5)
O30.0666 (8)0.0256 (6)0.0507 (7)0.0053 (5)0.0202 (6)0.0022 (5)
O40.0488 (7)0.0299 (6)0.0394 (6)0.0045 (5)0.0195 (5)0.0032 (4)
O50.0747 (9)0.0491 (8)0.0510 (7)0.0162 (7)0.0232 (6)0.0055 (6)
O60.0832 (10)0.0687 (9)0.0458 (7)0.0048 (8)0.0337 (7)0.0107 (7)
O70.0803 (10)0.0387 (7)0.0648 (8)0.0053 (7)0.0193 (7)0.0181 (6)
O80.0816 (9)0.0283 (6)0.0547 (7)0.0125 (6)0.0166 (6)0.0037 (5)
O90.0390 (6)0.0332 (6)0.0405 (6)0.0059 (5)0.0122 (4)0.0037 (4)
C10.0286 (7)0.0300 (8)0.0309 (7)0.0042 (6)0.0081 (6)0.0049 (6)
C20.0324 (8)0.0289 (8)0.0288 (7)0.0032 (6)0.0089 (5)0.0038 (6)
C30.0314 (8)0.0296 (8)0.0298 (7)0.0044 (6)0.0069 (6)0.0026 (6)
C40.0372 (9)0.0455 (10)0.0463 (9)0.0079 (7)0.0177 (7)0.0080 (7)
C50.0454 (10)0.0500 (11)0.0550 (10)0.0196 (8)0.0217 (8)0.0039 (8)
C60.0488 (10)0.0343 (9)0.0491 (9)0.0145 (8)0.0049 (7)0.0012 (7)
C70.0359 (8)0.0295 (8)0.0381 (7)0.0023 (6)0.0026 (6)0.0038 (6)
C80.0278 (7)0.0294 (8)0.0270 (6)0.0033 (6)0.0038 (5)0.0015 (6)
C90.0293 (7)0.0292 (8)0.0304 (7)0.0040 (6)0.0036 (5)0.0005 (6)
C100.0327 (8)0.0307 (8)0.0338 (7)0.0047 (6)0.0040 (6)0.0001 (6)
C110.0315 (8)0.0390 (9)0.0299 (7)0.0049 (7)0.0055 (6)0.0008 (6)
C120.0348 (8)0.0405 (9)0.0352 (7)0.0015 (7)0.0057 (6)0.0094 (7)
C130.0315 (8)0.0317 (8)0.0363 (7)0.0023 (6)0.0010 (6)0.0036 (6)
C140.0325 (8)0.0318 (8)0.0313 (7)0.0049 (6)0.0047 (6)0.0004 (6)
C150.0332 (8)0.0281 (8)0.0328 (7)0.0056 (6)0.0051 (6)0.0003 (6)
C160.0402 (9)0.0320 (9)0.0455 (9)0.0020 (7)0.0018 (7)0.0060 (7)
Geometric parameters (Å, º) top
N1—C11.3360 (18)C3—C41.391 (2)
N1—C81.3972 (17)C4—C51.373 (2)
N1—H10.8600C4—H40.9300
N2—C21.3428 (17)C5—C61.389 (3)
N2—C31.3928 (19)C5—H50.9300
N2—H20.8600C6—C71.376 (2)
N3—O51.2147 (19)C6—H60.9300
N3—O61.2158 (18)C7—C81.390 (2)
N3—C111.4764 (18)C7—H70.9300
O1—C11.2365 (16)C9—C141.386 (2)
O2—C21.2268 (18)C9—C101.3900 (19)
O3—C151.2098 (18)C9—C151.492 (2)
O4—C151.3114 (16)C10—C111.381 (2)
O4—H4A0.8200C10—H100.9300
O7—C161.201 (2)C11—C121.379 (2)
O8—C161.327 (2)C12—C131.388 (2)
O8—H80.8200C12—H120.9300
O9—H9A0.8597C13—C141.388 (2)
O9—H9B0.8598C13—C161.491 (2)
C1—C21.514 (2)C14—H140.9300
C3—C81.390 (2)
C1—N1—C8125.04 (12)C6—C7—C8119.52 (15)
C1—N1—H1117.5C6—C7—H7120.2
C8—N1—H1117.5C8—C7—H7120.2
C2—N2—C3125.43 (12)C3—C8—C7120.28 (13)
C2—N2—H2117.3C3—C8—N1118.07 (12)
C3—N2—H2117.3C7—C8—N1121.64 (13)
O5—N3—O6123.82 (13)C14—C9—C10120.07 (13)
O5—N3—C11118.00 (13)C14—C9—C15120.96 (12)
O6—N3—C11118.17 (14)C10—C9—C15118.95 (13)
C15—O4—H4A109.5C11—C10—C9117.97 (14)
C16—O8—H8109.5C11—C10—H10121.0
H9A—O9—H9B98.3C9—C10—H10121.0
O1—C1—N1123.40 (13)C12—C11—C10123.11 (13)
O1—C1—C2119.59 (13)C12—C11—N3118.92 (13)
N1—C1—C2117.01 (12)C10—C11—N3117.95 (14)
O2—C2—N2123.62 (14)C11—C12—C13118.30 (14)
O2—C2—C1120.46 (12)C11—C12—H12120.8
N2—C2—C1115.92 (12)C13—C12—H12120.8
C8—C3—C4119.61 (14)C12—C13—C14119.81 (14)
C8—C3—N2118.35 (12)C12—C13—C16118.98 (14)
C4—C3—N2122.04 (14)C14—C13—C16121.12 (13)
C5—C4—C3119.81 (16)C9—C14—C13120.74 (13)
C5—C4—H4120.1C9—C14—H14119.6
C3—C4—H4120.1C13—C14—H14119.6
C4—C5—C6120.48 (14)O3—C15—O4123.24 (14)
C4—C5—H5119.8O3—C15—C9123.34 (13)
C6—C5—H5119.8O4—C15—C9113.40 (12)
C7—C6—C5120.25 (15)O7—C16—O8123.72 (15)
C7—C6—H6119.9O7—C16—C13123.92 (15)
C5—C6—H6119.9O8—C16—C13112.33 (13)
C8—N1—C1—O1177.60 (13)C15—C9—C10—C11178.18 (12)
C8—N1—C1—C23.47 (19)C9—C10—C11—C120.3 (2)
C3—N2—C2—O2177.86 (13)C9—C10—C11—N3178.69 (12)
C3—N2—C2—C11.7 (2)O5—N3—C11—C12178.32 (14)
O1—C1—C2—O23.7 (2)O6—N3—C11—C121.3 (2)
N1—C1—C2—O2175.29 (13)O5—N3—C11—C100.1 (2)
O1—C1—C2—N2176.70 (13)O6—N3—C11—C10179.69 (14)
N1—C1—C2—N24.33 (18)C10—C11—C12—C130.1 (2)
C2—N2—C3—C81.9 (2)N3—C11—C12—C13178.43 (13)
C2—N2—C3—C4178.47 (14)C11—C12—C13—C140.2 (2)
C8—C3—C4—C50.4 (2)C11—C12—C13—C16176.43 (13)
N2—C3—C4—C5180.00 (14)C10—C9—C14—C130.1 (2)
C3—C4—C5—C61.9 (3)C15—C9—C14—C13177.81 (12)
C4—C5—C6—C71.4 (3)C12—C13—C14—C90.3 (2)
C5—C6—C7—C80.5 (2)C16—C13—C14—C9176.26 (13)
C4—C3—C8—C71.5 (2)C14—C9—C15—O3174.98 (14)
N2—C3—C8—C7178.08 (12)C10—C9—C15—O32.9 (2)
C4—C3—C8—N1177.39 (13)C14—C9—C15—O43.3 (2)
N2—C3—C8—N13.02 (19)C10—C9—C15—O4178.79 (12)
C6—C7—C8—C32.0 (2)C12—C13—C16—O74.3 (2)
C6—C7—C8—N1176.89 (13)C14—C13—C16—O7172.28 (16)
C1—N1—C8—C30.2 (2)C12—C13—C16—O8177.21 (14)
C1—N1—C8—C7179.10 (13)C14—C13—C16—O86.2 (2)
C14—C9—C10—C110.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O6i0.862.402.9632 (18)123
N2—H2···O9ii0.862.333.0071 (17)136
N1—H1···O1iii0.862.022.8723 (17)173
O9—H9B···O2iv0.861.892.7456 (15)171
O8—H8···O3v0.821.862.6381 (17)159
O9—H9A···O10.861.972.8220 (15)168
O4—H4A···O90.821.782.5962 (15)173
Symmetry codes: (i) x+2, y+1, z; (ii) x+1, y, z; (iii) x+1, y, z+1; (iv) x+1, y+1, z+1; (v) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC8H6N2O2·C8H5NO6·H2O
Mr391.29
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)7.245 (2), 8.686 (3), 13.142 (4)
α, β, γ (°)93.938 (4), 95.619 (4), 95.793 (4)
V3)816.3 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.20 × 0.16 × 0.10
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.974, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
4482, 2857, 2441
Rint0.017
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.095, 1.03
No. of reflections2857
No. of parameters254
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.19

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O6i0.862.402.9632 (18)123.2
N2—H2···O9ii0.862.333.0071 (17)135.9
N1—H1···O1iii0.862.022.8723 (17)173.2
O9—H9B···O2iv0.861.892.7456 (15)170.5
O8—H8···O3v0.821.862.6381 (17)159.1
O9—H9A···O10.861.972.8220 (15)168.3
O4—H4A···O90.821.782.5962 (15)173.0
Symmetry codes: (i) x+2, y+1, z; (ii) x+1, y, z; (iii) x+1, y, z+1; (iv) x+1, y+1, z+1; (v) x, y+1, z.
 

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHe, H.-Y., Zhou, Y.-L. & Zhu, L.-G. (2004). Acta Cryst. C60, m569–m571.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationJian, F. F. & Zhao, P. S. (2004). J. Mol. Struct. 705, 133–139.  CrossRef CAS Google Scholar
First citationOxtoby, N. S., Blake, A. J., Champness, N. R. & Wilson, C. (2005). Chem. Eur. J. 11, 4643–4654.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, H.-D., Li, M.-M., He, H.-Y. & Jiang, F.-B. (2009). Acta Cryst. E65, m416.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXu, H.-B., Ma, S. & He, Y. (2011). Acta Cryst. E67, m326.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds