

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(E)-N'-(2-Chloro-5-nitrobenzylidene)-3methoxybenzohydrazide monohydrate

Shi-Yong Liu^a* and Xiao-Ling Wang^b

^aCollege of Chemistry and Pharmacy, Taizhou University, Taizhou Zhejiang 317000, People's Republic of China, and ^bDepartment of Chemistry, Liaoning Normal University, Dalian 116029, People's Republic of China Correspondence e-mail: liushiyong2010@yahoo.cn

Received 25 May 2011; accepted 30 May 2011

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.004 Å; R factor = 0.061; wR factor = 0.185; data-to-parameter ratio = 14.7.

In the hydrazone molecule of the title compound, C₁₅H₁₂ClN₃O₄·H₂O, the two benzene rings form a dihedral angle of 3.6 $(1)^{\circ}$. In the crystal structure, the solvent water molecules are involved in the formation of intermolecular N- $H \cdots O$ and $O - H \cdots N$ hydrogen bonds, which link the molecules into double ribbons extending along the b axis. Intermolecular π - π interactions between the aromatic rings [centroid–centroid distances = 3.712(3) and 3.672(3)Å] link these ribbons further into layers parallel to the *ab* plane.

Related literature

For the crystal structures of hydrazones recently reported by us, see: Liu & You (2010a,b,c); Liu & Wang (2010a,b); Sun et al. (2011).

Experimental

Crystal data C15H12CIN3O4·H2O

 $M_r = 351.74$

Triclinic, $P1$	
a = 7.176 (2) Å	
b = 7.179 (2) Å	
c = 15.395 (4) Å	
$\alpha = 83.820 \ (18)^{\circ}$	
$\beta = 89.953 \ (18)^{\circ}$	
$\gamma = 80.190 \ (18)^{\circ}$	

Data collection

Bruker SMART CCD area-detector	4678 measured reflections
diffractometer	3267 independent reflections
Absorption correction: multi-scan	2015 reflections with $I > 2\sigma(I)$
(SADABS; Bruker, 2001)	$R_{\rm int} = 0.032$
$T_{\min} = 0.939, \ T_{\max} = 0.947$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.061$	H atoms treated by a mixture of
$wR(F^2) = 0.185$	independent and constrained
S = 1.02	refinement
3267 reflections	$\Delta \rho_{\rm max} = 0.36 \ {\rm e} \ {\rm \AA}^{-3}$
222 parameters	$\Delta \rho_{\rm min} = -0.48 \text{ e } \text{\AA}^{-3}$
4 restraints	

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
N2-H2···O5	0.90(1)	1.92 (1)	2.813 (4)	169 (4)
$O5-H5B\cdots O1^{iii}$	0.84 (1)	2.03 (2)	2.783 (3)	150 (4)
$O5-H5A\cdots O1^{iv}$	0.84 (1)	2.30 (3)	3.004 (4)	142 (3)

Symmetry codes: (iii) x, y + 1, z; (iv) -x + 1, -y + 1, -z + 2.

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

The authors acknowledge the Undergraduate Innovation Group Project of Zhejiang Province (project no. 2010R428015).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV5103).

References

Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

- Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Liu, S.-Y. & Wang, X. (2010a). Acta Cryst. E66, 01775.
- Liu, S.-Y. & Wang, X. (2010b). Acta Cryst. E66, o1805.

Liu, S.-Y. & You, Z. (2010a). Acta Cryst. E66, 01652.

- Liu, S.-Y. & You, Z. (2010b). Acta Cryst. E66, 01658.
- Liu, S.-Y. & You, Z. (2010c). Acta Cryst. E66, 01662.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sun, S.-S., Liu, S.-Y., Zheng, T.-T. & Wang, X.-L. (2011). Acta Cryst. E67, o1624.

V = 776.8 (4) Å³

Mo $K\alpha$ radiation

 $0.23 \times 0.21 \times 0.20 \text{ mm}$

 $\mu = 0.28 \text{ mm}^{-1}$ T = 298 K

7 - 2

supporting information

Acta Cryst. (2011). E67, o1625 [doi:10.1107/S1600536811020769]

(E)-N'-(2-Chloro-5-nitrobenzylidene)-3-methoxybenzohydrazide monohydrate

Shi-Yong Liu and Xiao-Ling Wang

S1. Comment

In continuation of our structural studies of hydrazone derivatives (Liu & You, 2010*a*,*b*,*c*; Liu & Wang, 2010*a*,*b*; Sun *et al.*, 2011), we present here the title compound (I) (Fig. 1).

In the hydrazone molecule of (I), two benzene rings form a dihedral angle of 3.6 (1)°. In the crystal structure, the crystalline water molecules are involved in formation of intermolecular N—H…O and O—H…O hydrogen bonds (Table 2), which link the molecules into doubled ribbons extended along *b* axis (Fig. 2). Intermolecular π - π interactions (Table 1) between the aromatic rings link further these ribbons into layers parallel to *ab* plane.

S2. Experimental

The title compound was prepared by the condensation reaction of 2-chloro-5-nitrobenzaldehyde (1.0 mmol, 0.185 g) and 3-methoxybenzohydrazide (1.0 mmol, 0.166 g) in methanol (50 ml) at ambient temperature. Colourless block-shaped single crystals suitable for X-ray structural determination were obtained by slow evaporation of the solution for a few days.

S3. Refinement

N- and O-bound H atoms were located from a difference Fourier map and refined with $U_{iso}(H)$ fixed to 0.08 and with the N—H distance restrained to 0.90 (1) Å and O—H distances restrained to 0.84 (1). The remaining H atoms were positioned geometrically and constrained to ride on their parent atoms, with C—H distances of 0.93–0.96 Å, and with $U_{iso}(H) = 1.2-1.5U_{eq}(C)$.

Figure 1

The molecular structure of (I). Displacement ellipsoids are drawn at the 30% probability level. H atoms are shown as spheres of arbitrary radius. Hydrogen bond is shown as a dashed line.

Figure 2

A portion of the crystal packing viewed along the *a* axis. Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted.

(E)-N'-(2-Chloro-5-nitrobenzylidene)-3-methoxybenzohydrazide monohydrate

) Å
8)°
8)°
8)°
ų
)

Z = 2 F(000) = 364 $D_x = 1.504 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 887 reflections

Data collection

Bruker SMART CCD area-detector	4678 measured reflections
diffractometer	3267 independent reflections
Radiation source: fine-focus sealed tube	2015 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.032$
ω scans	$\theta_{\text{max}} = 27.0^{\circ}, \ \theta_{\text{min}} = 1.3^{\circ}$
Absorption correction: multi-scan	$h = -9 \rightarrow 9$
(SADABS; Bruker, 2001)	$k = -8 \rightarrow 9$
$T_{\min} = 0.939, \ T_{\max} = 0.947$	$l = -19 \rightarrow 19$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.061$	Hydrogen site location: inferred from
$wR(F^2) = 0.185$	neighbouring sites
S = 1.02	H atoms treated by a mixture of independent
3267 reflections	and constrained refinement
222 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0928P)^2]$
4 restraints	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} < 0.001$
direct methods	$\Delta \rho_{\rm max} = 0.36 \text{ e } \text{\AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.48 \text{ e } \text{\AA}^{-3}$

 $\theta = 2.8 - 25.3^{\circ}$

 $\mu = 0.28 \text{ mm}^{-1}$

Block, colourless

 $0.23 \times 0.21 \times 0.20$ mm

T = 298 K

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F² against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F², conventional R-factors R are based on F, with F set to zero for negative F². The threshold expression of $F^2 > 2sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$	
Cl1	0.05788 (14)	1.03926 (12)	1.12824 (6)	0.0525 (3)	
N1	0.2400 (4)	0.5012 (4)	1.03085 (15)	0.0348 (6)	
N2	0.2787 (4)	0.5246 (3)	0.94318 (16)	0.0350 (6)	
N3	0.1926 (5)	0.3190 (5)	1.36258 (19)	0.0543 (8)	
01	0.3018 (4)	0.2107 (3)	0.93423 (15)	0.0486 (6)	
O2	0.2513 (4)	0.8041 (4)	0.63274 (15)	0.0594 (8)	
03	0.2584 (5)	0.1707 (4)	1.33358 (19)	0.0750 (9)	
O4	0.1633 (5)	0.3291 (4)	1.44026 (17)	0.0838 (10)	
05	0.4570 (3)	0.8422 (3)	0.90264 (16)	0.0475 (6)*	
C1	0.1635 (4)	0.6554 (4)	1.15934 (19)	0.0322 (7)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C2	0.0887 (4)	0.8238 (4)	1.1940 (2)	0.0350 (7)
C3	0.0387 (5)	0.8259 (5)	1.2810(2)	0.0435 (8)
H3	-0.0148	0.9392	1.3021	0.052*
C4	0.0690 (5)	0.6595 (5)	1.3356 (2)	0.0448 (8)
H4	0.0350	0.6582	1.3940	0.054*
C5	0.1506 (5)	0.4938 (5)	1.3029 (2)	0.0373 (8)
C6	0.1960 (4)	0.4882 (4)	1.2159 (2)	0.0356 (7)
H6	0.2478	0.3738	1.1954	0.043*
C7	0.2063 (4)	0.6559 (4)	1.0662 (2)	0.0362 (7)
H7	0.2088	0.7708	1.0323	0.043*
C8	0.3063 (4)	0.3706 (4)	0.8984 (2)	0.0335 (7)
С9	0.3373 (4)	0.4103 (4)	0.8024 (2)	0.0327 (7)
C10	0.2874 (4)	0.5904 (4)	0.7584 (2)	0.0366 (7)
H10	0.2378	0.6916	0.7892	0.044*
C11	0.3104 (5)	0.6216 (5)	0.6691 (2)	0.0397 (8)
C12	0.3870 (5)	0.4713 (5)	0.6231 (2)	0.0449 (8)
H12	0.4035	0.4907	0.5631	0.054*
C13	0.4381 (5)	0.2933 (5)	0.6678 (2)	0.0462 (9)
H13	0.4893	0.1925	0.6371	0.055*
C14	0.4157 (5)	0.2598 (5)	0.7561 (2)	0.0396 (8)
H14	0.4524	0.1383	0.7849	0.048*
C15	0.2835 (6)	0.8508 (6)	0.5424 (2)	0.0683 (12)
H15A	0.4162	0.8194	0.5312	0.103*
H15B	0.2414	0.9844	0.5267	0.103*
H15C	0.2148	0.7799	0.5083	0.103*
H2	0.334 (5)	0.624 (4)	0.923 (3)	0.080*
H5A	0.563 (3)	0.822 (5)	0.928 (2)	0.080*
H5B	0.382 (4)	0.931 (4)	0.921 (2)	0.080*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0666 (7)	0.0353 (5)	0.0513 (6)	0.0039 (4)	0.0017 (4)	-0.0056 (4)
N1	0.0430 (16)	0.0342 (14)	0.0266 (13)	-0.0046 (12)	0.0026 (11)	-0.0043 (11)
N2	0.0474 (17)	0.0316 (14)	0.0263 (13)	-0.0060 (12)	0.0050 (12)	-0.0053 (11)
N3	0.069 (2)	0.057 (2)	0.0384 (18)	-0.0204 (17)	-0.0057 (15)	0.0042 (15)
O1	0.0780 (18)	0.0293 (12)	0.0386 (13)	-0.0088 (12)	0.0036 (12)	-0.0046 (10)
O2	0.085 (2)	0.0501 (15)	0.0335 (13)	0.0100 (14)	0.0089 (13)	0.0051 (11)
O3	0.114 (3)	0.0452 (16)	0.0614 (19)	-0.0077 (17)	-0.0034 (17)	0.0033 (14)
O4	0.133 (3)	0.086 (2)	0.0292 (14)	-0.021 (2)	0.0034 (16)	0.0090 (14)
C1	0.0302 (16)	0.0331 (16)	0.0331 (16)	-0.0038 (13)	-0.0005 (13)	-0.0062 (13)
C2	0.0334 (17)	0.0363 (17)	0.0347 (17)	-0.0030 (13)	-0.0015 (13)	-0.0053 (13)
C3	0.044 (2)	0.045 (2)	0.0417 (19)	-0.0018 (16)	0.0014 (16)	-0.0174 (16)
C4	0.048 (2)	0.060(2)	0.0297 (17)	-0.0132 (17)	0.0049 (15)	-0.0131 (16)
C5	0.0391 (19)	0.0415 (18)	0.0330 (17)	-0.0134 (15)	-0.0025 (14)	-0.0011 (14)
C6	0.0389 (18)	0.0356 (17)	0.0325 (16)	-0.0047 (14)	0.0004 (14)	-0.0072 (13)
C7	0.0397 (18)	0.0320 (16)	0.0342 (16)	-0.0009 (14)	0.0045 (14)	-0.0008 (13)
C8	0.0372 (18)	0.0305 (16)	0.0331 (16)	-0.0044 (13)	0.0001 (13)	-0.0059 (13)

supporting information

C9	0.0309 (17)	0.0351 (16)	0.0334 (16)	-0.0064 (13)	0.0002 (13)	-0.0080 (13)
C10	0.0410 (19)	0.0355 (17)	0.0319 (16)	0.0000 (14)	0.0021 (14)	-0.0080 (13)
C11	0.0392 (19)	0.0416 (18)	0.0365 (18)	-0.0020(15)	0.0026 (15)	-0.0036(14)
C12	0.051 (2)	0.054 (2)	0.0320 (17)	-0.0110(17)	0.0133 (16)	-0.0106(15)
C13	0.056 (2)	0.0410 (19)	0.045 (2)	-0.0088(16)	0.0150 (17)	-0.0183(15)
C14 C15	0.036 (2) 0.046 (2) 0.096 (3)	0.0347 (17) 0.067 (3)	0.0379 (18) 0.036 (2)	-0.005 (2)	0.0032 (15) 0.004 (2)	-0.0066 (14) 0.0071 (19)

Geometric parameters (Å, °)

Cl1—C2	1.735 (3)	C4—C5	1.380 (5)
N1—C7	1.275 (4)	C4—H4	0.9300
N1—N2	1.376 (3)	C5—C6	1.381 (4)
N2—C8	1.351 (4)	С6—Н6	0.9300
N2—H2	0.902 (10)	С7—Н7	0.9300
N3—O3	1.219 (4)	C8—C9	1.499 (4)
N3—O4	1.222 (4)	C9—C10	1.383 (4)
N3—C5	1.461 (4)	C9—C14	1.396 (4)
O1—C8	1.225 (3)	C10—C11	1.383 (4)
O2—C11	1.365 (4)	C10—H10	0.9300
O2—C15	1.424 (4)	C11—C12	1.389 (5)
O5—H5A	0.837 (10)	C12—C13	1.376 (5)
O5—H5B	0.835 (10)	C12—H12	0.9300
C1—C6	1.391 (4)	C13—C14	1.369 (5)
C1—C2	1.397 (4)	С13—Н13	0.9300
C1—C7	1.467 (4)	C14—H14	0.9300
C2—C3	1.388 (4)	C15—H15A	0.9600
C3—C4	1.370 (5)	C15—H15B	0.9600
С3—Н3	0.9300	C15—H15C	0.9600
Cg1···Cg2 ⁱ	3.712 (3)	Cg1···Cg2 ⁱⁱ	3.672 (3)
C7—N1—N2	114.2 (2)	С1—С7—Н7	119.5
C8—N2—N1	119.0 (2)	O1—C8—N2	121.7 (3)
C8—N2—H2	118 (3)	O1—C8—C9	122.8 (3)
N1—N2—H2	118 (3)	N2—C8—C9	115.5 (3)
O3—N3—O4	122.8 (3)	C10-C9-C14	119.4 (3)
O3—N3—C5	119.1 (3)	C10—C9—C8	121.9 (3)
O4—N3—C5	118.1 (3)	C14—C9—C8	118.7 (3)
C11—O2—C15	118.6 (3)	C9—C10—C11	120.7 (3)
H5A—O5—H5B	113 (2)	С9—С10—Н10	119.7
C6—C1—C2	117.9 (3)	C11—C10—H10	119.7
C6—C1—C7	121.3 (3)	O2—C11—C10	115.3 (3)
C2—C1—C7	120.8 (3)	O2—C11—C12	124.9 (3)
C3—C2—C1	121.9 (3)	C10-C11-C12	119.8 (3)
C3—C2—Cl1	117.9 (2)	C13—C12—C11	118.9 (3)
C1—C2—Cl1	120.2 (2)	C13—C12—H12	120.5
C4—C3—C2	119.4 (3)	C11—C12—H12	120.5

С4—С3—Н3	120.3	C14—C13—C12	122.0 (3)
С2—С3—Н3	120.3	C14—C13—H13	119.0
C3—C4—C5	119.1 (3)	С12—С13—Н13	119.0
С3—С4—Н4	120.5	C13—C14—C9	119.2 (3)
С5—С4—Н4	120.5	C13—C14—H14	120.4
C4—C5—C6	122.3 (3)	C9—C14—H14	120.4
C4—C5—N3	118.8 (3)	O2—C15—H15A	109.5
C6—C5—N3	119.0 (3)	O2—C15—H15B	109.5
C5—C6—C1	119.3 (3)	H15A—C15—H15B	109.5
С5—С6—Н6	120.3	O2—C15—H15C	109.5
С1—С6—Н6	120.3	H15A—C15—H15C	109.5
N1—C7—C1	121.0 (3)	H15B—C15—H15C	109.5
N1—C7—H7	119.5		

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*; (ii) -*x*+2, -*y*+1, -*z*.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H…A	$D \cdots A$	D—H···A
N2—H2…O5	0.90(1)	1.92 (1)	2.813 (4)	169 (4)
O5—H5 <i>B</i> ···O1 ⁱⁱⁱ	0.84(1)	2.03 (2)	2.783 (3)	150 (4)
O5— $H5A$ ···O1 ^{iv}	0.84 (1)	2.30 (3)	3.004 (4)	142 (3)

Symmetry codes: (iii) x, y+1, z; (iv) -x+1, -y+1, -z+2.