metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­aqua­bis­­(5-carb­­oxy-1H-imidazole-4-carboxyl­ato-κ2N3,O4)iron(II)

aDepartment of Chemical and Biochemical Engineering, Nanyang Institute of Technology, 473004 Nanyang, Henan, People's Republic of China, bSchool of Chemical Engineering and Environment, Beijing Institute of Technology, 100081 Beijing, People's Republic of China, and cCollege of Science, Nanjing University of Aeronautics and Astronautics, Nanjing 211100, People's Republic of China
*Correspondence e-mail: chjdu@yahoo.com.cn

(Received 30 May 2011; accepted 23 June 2011; online 30 June 2011)

In the title compound, [Fe(C5H3N2O4)2(H2O)2], the FeII ion lies on an inversion centre and is coordinated by two N and two O atoms from two 5-carb­oxy-1H-imidazole-4-carboxyl­ate ligands and two water mol­ecules in a distorted octa­hedral geometry. An intra­molecular O—H⋯O hydrogen bond occurs. In the crystal, inter­molecular N—H⋯O and O—H⋯O hydrogen bonds form a three-dimensional network, which consolidates the packing.

Related literature

For the diversity of coordination architectures of the metal atom in complexes with 4,5-dicarb­oxy­imidazole, see: Shimizu et al. (2004[Shimizu, E., Kondo, M., Fuwa, Y., Sarker, R. P., Miyazawa, M., Ueno, M., Naito, T., Maeda, K. & Uchida, F. (2004). Inorg. Chem. Commun. 7, 1191-1194.]); Fang & Zhang (2006[Fang, R. Q. & Zhang, X. M. (2006). Inorg. Chem. 45, 4801-4810.]). For the closely related crystal structures of the Zn, Mg and Cd complexes, see: Ma et al. (2003[Ma, C.-B., Chen, F., Chen, C.-N. & Liu, Q.-T. (2003). Acta Cryst. C59, m516-m518.]), Liu et al. (2004[Liu, J.-W., Gao, S., Huo, L.-H., Gu, C.-S., Zhao, H. & Zhao, J.-G. (2004). Acta Cryst. E60, m1697-m1699.]) and Zhang et al. (2004[Zhang, X.-M., Fang, R.-Q., Wu, H.-S. & Ng, S. W. (2004). Acta Cryst. E60, m12-m13.]), respectively.

[Scheme 1]

Experimental

Crystal data
  • [Fe(C5H3N2O4)2(H2O)2]

  • Mr = 402.07

  • Monoclinic, P 21 /c

  • a = 5.0676 (9) Å

  • b = 22.769 (4) Å

  • c = 6.6725 (9) Å

  • β = 113.733 (10)°

  • V = 704.8 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.14 mm−1

  • T = 298 K

  • 0.32 × 0.28 × 0.25 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.712, Tmax = 0.764

  • 2872 measured reflections

  • 1240 independent reflections

  • 976 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.080

  • S = 1.05

  • 1240 reflections

  • 116 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O3i 0.86 2.05 2.897 (3) 169
O3—H3⋯O2 0.82 1.74 2.525 (3) 160
O1W—H1W⋯O2ii 0.85 1.94 2.744 (3) 157
O1W—H2W⋯O1iii 0.85 1.92 2.710 (3) 155
Symmetry codes: (i) [x+1, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) x+1, y, z+1; (iii) -x+1, -y+2, -z+1.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In recent years, the construction of metal complexes based on 1H-imidazole-4,5-dicarboxylic acid ligand has been investigated in terms of their intriguing topologies. The diversity of coordination architecture of metal 4,5-dicarboxyimidazole has been described by Shimizu et al. (2004) and Fang et al. (2006). In order to search for new metal complexes based on 1H-imidazole-4,5-dicarboxylic acid ligand, the title complex (I) has been synthesized and its crystal determined.

The crystal structure of (I) is isostructural with the previously reported Zn (Ma et al., 2003), Mg (Zhang et al., 2004) and Cd (Liu et al., 2004) 4,5-dicarboxyimidazole complexes. In the four isostructural complexes, all metal ions lie on an inversion centre being coordinated by two N,O-bidentate 1H-imidazole-4,5-dicarboxylate monoanionic ligands and two water molecules in a distorted octahedral geometry.

In the crystal structure of (I), intermolecular N—H···O and O—H···O hydrogen bonds (Table 1) form three-dimensional hydrogen-bonding network, which consolidate the crystal packing.

Related literature top

For the diversity of coordination architectures of the metal atom in complexes with 4,5-dicarboxyimidazole, see: Shimizu et al. (2004); Fang & Zhang (2006). For the closely related crystal structures of the Zn, Mg and Cd complexes, see: Ma et al. (2003), Liu et al. (2004) and Zhang et al. (2004), respectively.

Experimental top

A mixture of FeSO4.7H2O (0.10 mmol), 1H-imidazole-4,5-dicarboxylic acid (0.10 mmol), Et3N (0.1 ml), EtOH (2 ml) and H2O (2 ml) was sealed in a 10 ml Tefon-lined stainless-steel reactor and then heated to 393 K for 48 h under autogenous pressure, and then slowly cooled to room temperature at a rate of 5 K/h. Pale-yellow block crystals of the title complex were isolated, washed with distilled water, and dried in air (yield: 48%).

Refinement top

H atoms attached to C and N atoms were placed in calculated positions (C—H = 0.93 Å, N—H = 0.86 Å) and refined as riding atoms and with Uiso(H) = 1.2 Ueq(C, N),respectively. The carboxy and water H atoms were located in a difference map, but placed in idealized positions (O—H = 0.82, 0.85 Å), and refined as riding with Uiso(H) = 1.5 Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with displacement ellipsoids drawn at the 40% probability level [symmetry code: (A) 2 - x, 2 - y, 1 - z].
Diaquabis(5-carboxy-1H-imidazole-4-carboxylato- κ2N3,O4)iron(II) top
Crystal data top
[Fe(C5H3N2O4)2(H2O)2]F(000) = 408
Mr = 402.07Dx = 1.895 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1102 reflections
a = 5.0676 (9) Åθ = 3.5–23.7°
b = 22.769 (4) ŵ = 1.14 mm1
c = 6.6725 (9) ÅT = 298 K
β = 113.733 (10)°Block, pale-yellow
V = 704.8 (2) Å30.32 × 0.28 × 0.25 mm
Z = 2
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
1240 independent reflections
Radiation source: fine-focus sealed tube976 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ϕ and ω scansθmax = 25.2°, θmin = 3.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 65
Tmin = 0.712, Tmax = 0.764k = 2626
2872 measured reflectionsl = 47
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.080H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0375P)2 + 0.0621P]
where P = (Fo2 + 2Fc2)/3
1240 reflections(Δ/σ)max < 0.001
116 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
[Fe(C5H3N2O4)2(H2O)2]V = 704.8 (2) Å3
Mr = 402.07Z = 2
Monoclinic, P21/cMo Kα radiation
a = 5.0676 (9) ŵ = 1.14 mm1
b = 22.769 (4) ÅT = 298 K
c = 6.6725 (9) Å0.32 × 0.28 × 0.25 mm
β = 113.733 (10)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
1240 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
976 reflections with I > 2σ(I)
Tmin = 0.712, Tmax = 0.764Rint = 0.027
2872 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.080H-atom parameters constrained
S = 1.05Δρmax = 0.25 e Å3
1240 reflectionsΔρmin = 0.25 e Å3
116 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.2587 (6)0.86826 (13)0.4808 (4)0.0322 (7)
H11.44760.87180.58370.039*
C20.8201 (6)0.88774 (11)0.2661 (4)0.0265 (6)
C30.8639 (6)0.82984 (12)0.2373 (4)0.0279 (6)
C40.5611 (5)0.92523 (12)0.1742 (4)0.0268 (6)
C50.6789 (7)0.78182 (14)0.1066 (5)0.0369 (7)
Fe11.00001.00000.50000.0278 (2)
N11.0693 (5)0.91158 (10)0.4203 (3)0.0289 (6)
N21.1435 (5)0.81868 (10)0.3749 (4)0.0335 (6)
H21.23020.78550.39060.040*
O10.5823 (4)0.97682 (8)0.2452 (3)0.0313 (5)
O20.3337 (4)0.90334 (9)0.0295 (3)0.0370 (5)
O30.4133 (4)0.79590 (9)0.0221 (3)0.0462 (6)
H30.39750.83180.03010.069*
O40.7646 (5)0.73195 (9)0.1211 (4)0.0515 (6)
O1W0.8685 (4)0.96305 (9)0.7355 (3)0.0392 (5)
H1W1.00380.95080.85200.059*
H2W0.76630.98510.77850.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0267 (15)0.0259 (17)0.0363 (16)0.0013 (13)0.0045 (12)0.0015 (13)
C20.0257 (15)0.0223 (16)0.0300 (14)0.0002 (12)0.0098 (12)0.0011 (12)
C30.0274 (16)0.0224 (16)0.0320 (15)0.0013 (13)0.0101 (12)0.0011 (12)
C40.0259 (16)0.0258 (18)0.0268 (14)0.0010 (12)0.0088 (12)0.0022 (12)
C50.0379 (18)0.0283 (18)0.0430 (18)0.0011 (15)0.0144 (14)0.0057 (14)
Fe10.0267 (3)0.0203 (3)0.0314 (3)0.0024 (3)0.0067 (2)0.0026 (2)
N10.0271 (13)0.0217 (13)0.0331 (12)0.0008 (11)0.0073 (10)0.0030 (10)
N20.0316 (14)0.0218 (14)0.0432 (14)0.0079 (11)0.0110 (11)0.0020 (11)
O10.0282 (11)0.0220 (11)0.0375 (11)0.0047 (9)0.0068 (9)0.0019 (9)
O20.0277 (11)0.0317 (12)0.0402 (11)0.0007 (10)0.0018 (9)0.0000 (9)
O30.0367 (12)0.0286 (13)0.0570 (14)0.0070 (10)0.0019 (10)0.0073 (11)
O40.0512 (15)0.0258 (13)0.0703 (16)0.0008 (11)0.0169 (12)0.0131 (11)
O1W0.0346 (12)0.0437 (14)0.0385 (11)0.0168 (10)0.0140 (9)0.0092 (10)
Geometric parameters (Å, º) top
C1—N11.321 (3)C5—O31.312 (3)
C1—N21.335 (3)Fe1—O1Wi2.1128 (19)
C1—H10.9300Fe1—O1W2.1128 (19)
C2—C31.363 (4)Fe1—N12.147 (2)
C2—N11.379 (3)Fe1—N1i2.147 (2)
C2—C41.476 (4)Fe1—O12.1801 (18)
C3—N21.367 (3)Fe1—O1i2.1801 (18)
C3—C51.475 (4)N2—H20.8600
C4—O11.255 (3)O3—H30.8200
C4—O21.270 (3)O1W—H1W0.8498
C5—O41.206 (3)O1W—H2W0.8499
N1—C1—N2111.1 (2)O1Wi—Fe1—O190.82 (7)
N1—C1—H1124.4O1W—Fe1—O189.18 (7)
N2—C1—H1124.4N1—Fe1—O177.53 (8)
C3—C2—N1109.5 (2)N1i—Fe1—O1102.47 (8)
C3—C2—C4132.0 (2)O1Wi—Fe1—O1i89.18 (7)
N1—C2—C4118.4 (2)O1W—Fe1—O1i90.82 (7)
C2—C3—N2105.6 (2)N1—Fe1—O1i102.47 (8)
C2—C3—C5134.4 (2)N1i—Fe1—O1i77.53 (7)
N2—C3—C5120.0 (2)O1—Fe1—O1i179.999 (1)
O1—C4—O2124.6 (2)C1—N1—C2105.6 (2)
O1—C4—C2117.2 (2)C1—N1—Fe1142.71 (18)
O2—C4—C2118.2 (2)C2—N1—Fe1111.22 (17)
O4—C5—O3121.6 (3)C1—N2—C3108.2 (2)
O4—C5—C3121.9 (3)C1—N2—H2125.9
O3—C5—C3116.5 (3)C3—N2—H2125.9
O1Wi—Fe1—O1W179.998 (1)C4—O1—Fe1115.45 (16)
O1Wi—Fe1—N193.27 (8)C5—O3—H3109.5
O1W—Fe1—N186.73 (8)Fe1—O1W—H1W115.5
O1Wi—Fe1—N1i86.73 (8)Fe1—O1W—H2W115.7
O1W—Fe1—N1i93.27 (8)H1W—O1W—H2W105.2
N1—Fe1—N1i179.999 (1)
N1—C2—C3—N20.4 (3)O1Wi—Fe1—N1—C196.8 (3)
C4—C2—C3—N2176.4 (3)O1W—Fe1—N1—C183.2 (3)
N1—C2—C3—C5176.3 (3)O1—Fe1—N1—C1173.1 (3)
C4—C2—C3—C50.3 (5)O1i—Fe1—N1—C16.9 (3)
C3—C2—C4—O1174.6 (3)O1Wi—Fe1—N1—C293.03 (18)
N1—C2—C4—O11.1 (4)O1W—Fe1—N1—C286.97 (18)
C3—C2—C4—O25.5 (4)O1—Fe1—N1—C22.91 (16)
N1—C2—C4—O2178.8 (2)O1i—Fe1—N1—C2177.09 (16)
C2—C3—C5—O4174.3 (3)N1—C1—N2—C30.1 (3)
N2—C3—C5—O41.9 (5)C2—C3—N2—C10.2 (3)
C2—C3—C5—O33.9 (5)C5—C3—N2—C1177.1 (3)
N2—C3—C5—O3179.8 (3)O2—C4—O1—Fe1178.5 (2)
N2—C1—N1—C20.3 (3)C2—C4—O1—Fe11.6 (3)
N2—C1—N1—Fe1170.2 (2)O1Wi—Fe1—O1—C495.72 (19)
C3—C2—N1—C10.4 (3)O1W—Fe1—O1—C484.28 (19)
C4—C2—N1—C1177.0 (2)N1—Fe1—O1—C42.55 (18)
C3—C2—N1—Fe1173.45 (18)N1i—Fe1—O1—C4177.45 (18)
C4—C2—N1—Fe13.2 (3)
Symmetry code: (i) x+2, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O3ii0.862.052.897 (3)169
O3—H3···O20.821.742.525 (3)160
O1W—H1W···O2iii0.851.942.744 (3)157
O1W—H2W···O1iv0.851.922.710 (3)155
Symmetry codes: (ii) x+1, y+3/2, z+1/2; (iii) x+1, y, z+1; (iv) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formula[Fe(C5H3N2O4)2(H2O)2]
Mr402.07
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)5.0676 (9), 22.769 (4), 6.6725 (9)
β (°) 113.733 (10)
V3)704.8 (2)
Z2
Radiation typeMo Kα
µ (mm1)1.14
Crystal size (mm)0.32 × 0.28 × 0.25
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.712, 0.764
No. of measured, independent and
observed [I > 2σ(I)] reflections
2872, 1240, 976
Rint0.027
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.080, 1.05
No. of reflections1240
No. of parameters116
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.25

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O3i0.862.052.897 (3)169
O3—H3···O20.821.742.525 (3)160
O1W—H1W···O2ii0.851.942.744 (3)157
O1W—H2W···O1iii0.851.922.710 (3)155
Symmetry codes: (i) x+1, y+3/2, z+1/2; (ii) x+1, y, z+1; (iii) x+1, y+2, z+1.
 

References

First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFang, R. Q. & Zhang, X. M. (2006). Inorg. Chem. 45, 4801–4810.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLiu, J.-W., Gao, S., Huo, L.-H., Gu, C.-S., Zhao, H. & Zhao, J.-G. (2004). Acta Cryst. E60, m1697–m1699.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMa, C.-B., Chen, F., Chen, C.-N. & Liu, Q.-T. (2003). Acta Cryst. C59, m516–m518.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShimizu, E., Kondo, M., Fuwa, Y., Sarker, R. P., Miyazawa, M., Ueno, M., Naito, T., Maeda, K. & Uchida, F. (2004). Inorg. Chem. Commun. 7, 1191–1194.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, X.-M., Fang, R.-Q., Wu, H.-S. & Ng, S. W. (2004). Acta Cryst. E60, m12–m13.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds