organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(±)-4a-(4-Nitro­benz­yl)-2,3,4,4a-tetra­hydro-1H-carbazole

aDepartment of Food Science and Engineering, Jinan University, Guangzhou 510632, People's Republic of China, and bDepartment of Chemistry, Jinan University, Guangzhou 510632, People's Republic of China
*Correspondence e-mail: zhouhua5460@jnu.edu.cn

(Received 8 May 2011; accepted 27 May 2011; online 4 June 2011)

The title mol­ecule, C19H18N2O2, is built up from three fused rings, viz. phenyl, pyrrole and cyclo­hexane, linked to a nitro­benzyl group. The C atom bearing the nitro­benzyl group is chiral and the compound is a racemate (R/S). The dihedral angle between the nitro­benzyl and indole rings is 57.49 (5)°. The cyclo­hexane ring adopts a slightly distorted chair conformation.

Related literature

For the biocativity of carbazole derivatives, see: Nakahara et al. (2002[Nakahara, K., Gassinee, T., Najeeb, S. A., Hiroshi, O., Mayumi, O. K. & Mitsuru, Y. (2002). J. Agric. Food Chem. 50, 4796-4802.]); Yukari et al. (2001[Yukari, T., Hiroe, K., Nordin, J. L., Lajis, H. & Nobuji, N. (2001). J. Agric. Food Chem. 49, 5589-5594.], 2003[Yukari, T., Hiroe, K., Nordin, J. L., Lajis, H. & Nobuji, N. (2003). J. Agric. Food Chem. 51, 6461-6467.]). For crystallographic studies of carbazole derivatives, see: Gunaseelan et al. (2007[Gunaseelan, A. T., Thiruvalluvar, A., Martin, A. E. & Prasad, K. J. R. (2007). Acta Cryst. E63, o2413-o2414.]); Murugavel et al. (2008[Murugavel, S., Kannan, P. S., SubbiahPandi, A., Surendiran, T. & Balasubramanian, S. (2008). Acta Cryst. E64, o2433.]).

[Scheme 1]

Experimental

Crystal data
  • C19H18N2O2

  • Mr = 306.35

  • Monoclinic, P 21 /c

  • a = 8.7266 (3) Å

  • b = 16.6916 (6) Å

  • c = 11.0857 (4) Å

  • β = 105.790 (4)°

  • V = 1553.82 (10) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.69 mm−1

  • T = 295 K

  • 0.5 × 0.4 × 0.3 mm

Data collection
  • Agilent Xcalibur Sapphire3 Gemini ultra diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.967, Tmax = 1.000

  • 4772 measured reflections

  • 2479 independent reflections

  • 2089 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.116

  • S = 1.04

  • 2479 reflections

  • 208 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.27 e Å−3

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]) and ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Carbazole alkaloids are a class of alkaloids containing a structural moiety of indole. Many of them possess significant bioactivity and some of them are used in medicine (Nakahara et al.2002; Yukari et al.(2001, 2003)). This is the reason why they have attracted our interest.

The molecular structure of the title compound is built up from three fused rings, a phenyl, a pyrrole and a cyclohexane, linked to a nitrobenzyl group (Fig.1). The C1 carbon is chiral and the compound is a racemate (R/S). The dihedral angle between the nitrobenzyl and the indole rings is 57.49 (5)°. Bond lengths and angles agree with related compounds (Gunaseelan et al. (2007); Murugavel et al. (2008)).

Related literature top

For the biocativity of carbazole derivatives, see: Nakahara et al. (2002); Yukari et al. (2001, 2003). For crystallographic studies of carbazole derivatives, see: Gunaseelan et al. (2007); Murugavel et al. (2008).

Experimental top

2-[(4-nitrophenyl)methyl]-Cyclohexanone (0.233 g, 1 mmol) and phenylhydrazine(0.118 g, 1.1 mmol) were added to acetic acid (10 ml). The mixture was stirred at 295 K for 1 h, and ice-water (10 ml) was added. After filtration, the precipitate was collected as a yellow solid. The impure product was dissolved in MeOH at room temperature. Colourless crystals suitable for X-ray analysis (92.6% yield) grew over a period of one week when the solution was exposed to the air. CH&N elemental analysis. Calc. for C19H18N2O2: C 74.49, H 5.92, N 9.14, O 10.44%; found: C 74.52, H 5.91, N 9.15%, O 10.45%.

Refinement top

Refinement of F2 against ALL reflections. The weighted R- factor wR and goodness of fit S are based on F2, conventional R- factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 >σ(F2) is used only for calculating R- factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound in (I) showing the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.
(±)-4a-(4-Nitrobenzyl)-2,3,4,4a-tetrahydro-1H-carbazole top
Crystal data top
C19H18N2O2F(000) = 648
Mr = 306.35Dx = 1.310 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.5418 Å
a = 8.7266 (3) ÅCell parameters from 2290 reflections
b = 16.6916 (6) Åθ = 4.1–63.3°
c = 11.0857 (4) ŵ = 0.69 mm1
β = 105.790 (4)°T = 295 K
V = 1553.82 (10) Å3Block, colourless
Z = 40.5 × 0.4 × 0.3 mm
Data collection top
Agilent Xcalibur Sapphire3 Gemini ultra
diffractometer
2479 independent reflections
Radiation source: Enhance Ultra (Cu) X-ray Source2089 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.016
Detector resolution: 16.0288 pixels mm-1θmax = 63.4°, θmin = 4.9°
ω scansh = 910
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 1915
Tmin = 0.967, Tmax = 1.000l = 1212
4772 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.053P)2 + 0.3423P]
where P = (Fo2 + 2Fc2)/3
2479 reflections(Δ/σ)max < 0.001
208 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C19H18N2O2V = 1553.82 (10) Å3
Mr = 306.35Z = 4
Monoclinic, P21/cCu Kα radiation
a = 8.7266 (3) ŵ = 0.69 mm1
b = 16.6916 (6) ÅT = 295 K
c = 11.0857 (4) Å0.5 × 0.4 × 0.3 mm
β = 105.790 (4)°
Data collection top
Agilent Xcalibur Sapphire3 Gemini ultra
diffractometer
2479 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
2089 reflections with I > 2σ(I)
Tmin = 0.967, Tmax = 1.000Rint = 0.016
4772 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.116H-atom parameters constrained
S = 1.04Δρmax = 0.34 e Å3
2479 reflectionsΔρmin = 0.27 e Å3
208 parameters
Special details top

Experimental. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm, CrysAlisPro (Agilent Technologies, 2010)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.00300 (17)0.11252 (9)0.00877 (13)0.0508 (4)
N20.40823 (18)0.06469 (10)0.32518 (16)0.0606 (4)
O10.45120 (19)0.11644 (11)0.24495 (19)0.0981 (6)
O20.4868 (2)0.04523 (13)0.39422 (19)0.1103 (7)
C20.26031 (19)0.02163 (10)0.33128 (15)0.0474 (4)
C40.0688 (2)0.26406 (11)0.22420 (17)0.0546 (5)
H40.01330.28420.30200.066*
C50.1638 (2)0.04885 (11)0.26058 (16)0.0522 (4)
H50.19060.09460.21150.063*
C60.01239 (19)0.06249 (10)0.33455 (14)0.0447 (4)
C70.0266 (2)0.00705 (11)0.26372 (16)0.0517 (4)
H70.04090.02560.21780.062*
C80.0060 (2)0.20306 (10)0.16888 (15)0.0457 (4)
C90.14637 (19)0.15610 (11)0.21010 (15)0.0465 (4)
C100.2232 (2)0.04547 (11)0.40556 (16)0.0512 (4)
H100.28830.06210.45470.061*
C110.0874 (2)0.08749 (11)0.40559 (15)0.0490 (4)
H110.06200.13350.45420.059*
C120.2623 (2)0.05042 (12)0.08696 (19)0.0601 (5)
H12A0.23640.02370.00630.072*
H12B0.28320.00990.15210.072*
C130.09041 (19)0.17322 (10)0.05232 (15)0.0471 (4)
C140.1591 (2)0.10996 (11)0.33379 (15)0.0503 (4)
H14A0.24920.07370.34870.060*
H14B0.18030.14800.40240.060*
C150.1269 (2)0.10175 (10)0.09656 (15)0.0477 (4)
C160.2976 (2)0.20659 (12)0.22068 (19)0.0603 (5)
H16A0.27770.24420.15150.072*
H16B0.32140.23720.29800.072*
C170.2169 (2)0.29487 (12)0.1613 (2)0.0623 (5)
H170.25970.33700.19650.075*
C180.3009 (2)0.26371 (13)0.04740 (19)0.0636 (5)
H180.40110.28420.00790.076*
C200.4094 (2)0.10320 (15)0.1016 (2)0.0743 (6)
H20A0.50130.06950.10600.089*
H20B0.39410.13750.02860.089*
C220.2390 (2)0.20246 (13)0.00932 (17)0.0588 (5)
H220.29570.18170.08640.071*
C230.4413 (2)0.15502 (15)0.2191 (2)0.0717 (6)
H23A0.46750.12080.29260.086*
H23B0.53210.18940.22300.086*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0533 (8)0.0569 (9)0.0419 (7)0.0040 (7)0.0123 (6)0.0011 (6)
N20.0532 (9)0.0588 (10)0.0678 (10)0.0018 (8)0.0132 (8)0.0018 (8)
O10.0780 (11)0.0826 (11)0.1356 (16)0.0255 (9)0.0322 (10)0.0397 (11)
O20.0896 (12)0.1405 (18)0.1213 (14)0.0460 (12)0.0636 (11)0.0443 (13)
C20.0457 (9)0.0468 (9)0.0473 (9)0.0012 (7)0.0087 (7)0.0058 (8)
C40.0638 (11)0.0508 (10)0.0518 (10)0.0033 (9)0.0201 (8)0.0001 (8)
C50.0608 (11)0.0441 (10)0.0511 (10)0.0018 (8)0.0143 (8)0.0053 (8)
C60.0473 (9)0.0479 (9)0.0363 (8)0.0040 (7)0.0070 (7)0.0062 (7)
C70.0590 (11)0.0489 (10)0.0510 (10)0.0048 (8)0.0214 (8)0.0013 (8)
C80.0490 (9)0.0456 (9)0.0435 (8)0.0043 (7)0.0145 (7)0.0031 (7)
C90.0444 (9)0.0513 (10)0.0426 (9)0.0050 (7)0.0097 (7)0.0003 (7)
C100.0499 (10)0.0577 (11)0.0475 (9)0.0047 (8)0.0160 (8)0.0008 (8)
C110.0550 (10)0.0481 (10)0.0420 (8)0.0014 (8)0.0102 (7)0.0042 (7)
C120.0594 (11)0.0656 (12)0.0577 (11)0.0043 (9)0.0203 (9)0.0031 (9)
C130.0484 (9)0.0517 (10)0.0415 (9)0.0037 (8)0.0124 (7)0.0057 (7)
C140.0493 (9)0.0576 (11)0.0410 (9)0.0017 (8)0.0070 (7)0.0018 (8)
C150.0491 (9)0.0507 (10)0.0445 (9)0.0049 (8)0.0151 (7)0.0012 (7)
C160.0561 (11)0.0632 (12)0.0595 (11)0.0159 (9)0.0121 (9)0.0002 (9)
C170.0689 (12)0.0556 (11)0.0716 (12)0.0104 (9)0.0346 (10)0.0123 (10)
C180.0522 (11)0.0729 (13)0.0675 (12)0.0094 (10)0.0196 (9)0.0230 (11)
C200.0561 (12)0.0945 (16)0.0787 (14)0.0032 (11)0.0295 (10)0.0032 (12)
C220.0514 (10)0.0734 (13)0.0487 (10)0.0020 (9)0.0090 (8)0.0098 (9)
C230.0458 (10)0.0912 (16)0.0780 (14)0.0130 (10)0.0165 (9)0.0027 (12)
Geometric parameters (Å, º) top
N1—C131.429 (2)C10—C111.377 (2)
N1—C151.290 (2)C11—H110.9300
C2—N21.463 (2)C12—H12A0.9700
C2—C51.375 (2)C12—H12B0.9700
C2—C101.376 (2)C12—C151.487 (2)
N2—O11.223 (2)C12—C201.529 (3)
N2—O21.203 (2)C13—C221.380 (2)
C4—H40.9300C14—H14A0.9700
C4—C81.377 (2)C14—H14B0.9700
C4—C171.389 (3)C16—H16A0.9700
C5—H50.9300C16—H16B0.9700
C5—C71.378 (2)C16—C231.525 (3)
C6—C71.391 (2)C17—H170.9300
C6—C111.387 (2)C17—C181.378 (3)
C6—C141.508 (2)C18—H180.9300
C7—H70.9300C18—C221.384 (3)
C8—C91.503 (2)C20—H20A0.9700
C8—C131.394 (2)C20—H20B0.9700
C9—C141.550 (2)C20—C231.525 (3)
C9—C151.523 (2)C22—H220.9300
C9—C161.543 (2)C23—H23A0.9700
C10—H100.9300C23—H23B0.9700
C15—N1—C13106.51 (14)C8—C13—N1111.75 (15)
C5—C2—N2118.76 (16)C22—C13—N1126.84 (16)
C5—C2—C10121.97 (16)C22—C13—C8121.40 (17)
C10—C2—N2119.26 (16)C6—C14—C9114.16 (13)
O1—N2—C2118.20 (17)C6—C14—H14A108.7
O2—N2—C2119.10 (17)C6—C14—H14B108.7
O2—N2—O1122.58 (18)C9—C14—H14A108.7
C8—C4—H4120.7C9—C14—H14B108.7
C8—C4—C17118.61 (18)H14A—C14—H14B107.6
C17—C4—H4120.7N1—C15—C9114.72 (15)
C2—C5—H5120.6N1—C15—C12125.36 (16)
C2—C5—C7118.76 (16)C12—C15—C9119.35 (15)
C7—C5—H5120.6C9—C16—H16A109.1
C7—C6—C14120.87 (15)C9—C16—H16B109.1
C11—C6—C7118.46 (16)H16A—C16—H16B107.9
C11—C6—C14120.67 (15)C23—C16—C9112.31 (17)
C5—C7—C6120.96 (16)C23—C16—H16A109.1
C5—C7—H7119.5C23—C16—H16B109.1
C6—C7—H7119.5C4—C17—H17119.7
C4—C8—C9132.56 (16)C18—C17—C4120.70 (19)
C4—C8—C13120.21 (16)C18—C17—H17119.7
C13—C8—C9107.22 (14)C17—C18—H18119.4
C8—C9—C14111.88 (13)C17—C18—C22121.25 (18)
C8—C9—C1599.71 (13)C22—C18—H18119.4
C8—C9—C16113.94 (15)C12—C20—H20A109.3
C15—C9—C14113.58 (14)C12—C20—H20B109.3
C15—C9—C16106.80 (14)H20A—C20—H20B107.9
C16—C9—C14110.48 (13)C23—C20—C12111.70 (16)
C2—C10—H10120.7C23—C20—H20A109.3
C2—C10—C11118.51 (16)C23—C20—H20B109.3
C11—C10—H10120.7C13—C22—C18117.80 (18)
C6—C11—H11119.4C13—C22—H22121.1
C10—C11—C6121.29 (16)C18—C22—H22121.1
C10—C11—H11119.4C16—C23—C20111.76 (16)
H12A—C12—H12B108.3C16—C23—H23A109.3
C15—C12—H12A109.9C16—C23—H23B109.3
C15—C12—H12B109.9C20—C23—H23A109.3
C15—C12—C20108.74 (17)C20—C23—H23B109.3
C20—C12—H12A109.9H23A—C23—H23B107.9
C20—C12—H12B109.9

Experimental details

Crystal data
Chemical formulaC19H18N2O2
Mr306.35
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)8.7266 (3), 16.6916 (6), 11.0857 (4)
β (°) 105.790 (4)
V3)1553.82 (10)
Z4
Radiation typeCu Kα
µ (mm1)0.69
Crystal size (mm)0.5 × 0.4 × 0.3
Data collection
DiffractometerAgilent Xcalibur Sapphire3 Gemini ultra
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.967, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
4772, 2479, 2089
Rint0.016
(sin θ/λ)max1)0.580
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.116, 1.04
No. of reflections2479
No. of parameters208
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.27

Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997), publCIF (Westrip, 2010).

 

Acknowledgements

This work was supported by grants from the National Natural Science Fund (No. 2010 A480005).

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGunaseelan, A. T., Thiruvalluvar, A., Martin, A. E. & Prasad, K. J. R. (2007). Acta Cryst. E63, o2413–o2414.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMurugavel, S., Kannan, P. S., SubbiahPandi, A., Surendiran, T. & Balasubramanian, S. (2008). Acta Cryst. E64, o2433.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNakahara, K., Gassinee, T., Najeeb, S. A., Hiroshi, O., Mayumi, O. K. & Mitsuru, Y. (2002). J. Agric. Food Chem. 50, 4796–4802.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYukari, T., Hiroe, K., Nordin, J. L., Lajis, H. & Nobuji, N. (2001). J. Agric. Food Chem. 49, 5589–5594.  Web of Science PubMed Google Scholar
First citationYukari, T., Hiroe, K., Nordin, J. L., Lajis, H. & Nobuji, N. (2003). J. Agric. Food Chem. 51, 6461–6467.  Web of Science PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds