organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Ureido-1,3-thia­zol-3-ium di­hydrogen phosphate

aNational Taras Shevchenko University, Department of Chemistry, Volodymyrska Street 64, 01033 Kyiv, Ukraine
*Correspondence e-mail: katlig@univ.kiev.ua

(Received 24 May 2011; accepted 2 June 2011; online 11 June 2011)

The title compound, C4H6N3OS+·H2PO4, (I), was obtained as a result of hydrolysis of [(1,3-thia­zol-2-yl­amino)­carbon­yl]­phospho­ramidic acid, (II), in water. X-ray analysis has shown that the N—P bond in (II) breaks, leading to the formation of the substituted carbamide (I). This compound exists as an inter­nal salt. The unit cell consists of a urea cation and an anion of H2PO4. Protonation of the N atom of the heterocyclic ring was confirmed by the location of the H atom in a difference Fourier map. The mol­ecules of substituted urea are connected by O⋯O hydrogen bonds into unlimited planes. In turn, those planes are connected to each other via N—H⋯O hydrogen bonds with mol­ecules of phospho­ric acid, forming a three-dimensional polymer.

Related literature

For background to the chemistry of phospho­rus–organic compounds, see: Ly & Woollins (1998[Ly, T. Q. & Woollins, J. D. (1998). Coord. Chem. Rev. 176, 451-481.]). For details of the synthesis and properties of the [(1,3-thia­zol-2-yl­amino)­carbon­yl]phospho­ramidic acid, see: Kirsanov & Levchenko (1957[Kirsanov, A. & Levchenko, V. (1957). Zh. Obshch. Khim. 27, 2313-2320.]); Smaliy et al.(2003[Smaliy, R. V., Chaikovskay, A. A., Pinchyk, A. M. & Tolmachev, A. A. (2003). Synthesis, 16, 2525-2529.]). For structural analogues of phospho­rylated carbacyl­amides and their properties, see: Amirkhanov et al. (1997[Amirkhanov, V. M., Ovchynnikov, V. A., Glowiak, T. & Kozlowski, H. (1997). Z. Naturforsh. Teil B, 52, 1331-1336.]). For a structural investigation of phospho­rtriamidic compounds, see: Ovchynnikov et al. (1997[Ovchynnikov, V. A., Amirkhanov, V. M., Timoshenko, T. P., Glowiak, T. & Kozlowski, H. (1997). Z. Naturforsh. Teil B, 53, 481-484.]). For the synthesis of the amino­thia­zol-containing phosphor­triamides, see: Shatrava et al. (2009[Shatrava, I., Ovchynnikov, O., Sliva, T., Amirkhanov, V. & Skopenko, V. (2009). Zh. Dopov. Nac. Akad. Nauk, 5, 179-185.]). For a description of the attractive inter­action in thia­zole compounds, see: Burling & Goldstein (1992[Burling, F. T. & Goldstein, B. M. (1992). J. Am. Chem. Soc. 114, 2313-2320.]); Angyan et al. (1987[Angyan, J. G., Poirier, R. A., Kucsman, A. & Csizmadia, I. G. (1987). J. Am. Chem. Soc. 109, 2237-2245.]).

[Scheme 1]

Experimental

Crystal data
  • C4H6N3OS+·H2PO4

  • Mr = 241.16

  • Monoclinic, P 21 /c

  • a = 11.9038 (11) Å

  • b = 9.7936 (10) Å

  • c = 8.1914 (12) Å

  • β = 97.231 (9)°

  • V = 947.37 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.51 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Siemens SMART CCD area-detector diffractometer

  • Absorption correction: empirical (using intensity measurements) (SADABS; Bruker, 1999[Bruker (1999). SMART-NT, SAINT-Plus-NT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. ]) Tmin = 0.861, Tmax = 0.904

  • 2644 measured reflections

  • 2239 independent reflections

  • 1893 reflections with I > 2σ(I)

  • Rint = 0.014

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.109

  • S = 1.05

  • 2239 reflections

  • 150 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.58 e Å−3

  • Δρmin = −0.43 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O2 0.86 1.93 2.697 (2) 148
N3—H3⋯O3 0.80 (3) 1.91 (3) 2.710 (2) 174 (3)
N1—H1A⋯O1i 0.87 (3) 2.09 (3) 2.898 (2) 155 (2)
N1—H1B⋯O5ii 0.82 (3) 2.20 (3) 3.007 (2) 170 (3)
O5—H5⋯O2iii 0.81 (4) 1.77 (4) 2.546 (2) 162 (4)
O4—H4⋯O3iv 0.80 (4) 1.82 (4) 2.613 (2) 170 (4)
Symmetry codes: (i) [-x+2, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iv) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART-NT (Bruker, 1999[Bruker (1999). SMART-NT, SAINT-Plus-NT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. ]); cell refinement: SAINT-NT (Bruker, 1999[Bruker (1999). SMART-NT, SAINT-Plus-NT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. ]); data reduction: SAINT-NT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP within SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The compound N-1,3-thiazol-2-yl-urea phosphate (I) can be synthesized by hydrolyzation of the [(1,3-thiazol-2-ylamino)carbonyl]phosphoramidic acid (II) in the water solution by heating (Scheme 1). The crystal structure investigation shows that the break up of N—P bond in [(1,3-thiazol-2-ylamino)carbonyl]phosphoramidic leads to the forming of substituted carbamide (Fig.1).

The proton of the phosphoric acid locates at the nitrogen atom of the heterocyclic ring from difference-Fourier map. The molecules of substituted urea connected by hydrogen bonds O(4)H(4)O(3) and O(5)H(5)O(2) into unlimited planes (Table 1). In turn those planes are connected to each other forming three-dimensional polymer via hydrogen bonds with molecules of phosphoric acid: N(3)H(3)O(3), N(2)H(2)O(2) and N(1)H(1 A)O(1), N(1)H(1B)O(5) (Table 1, Fig.2). The interaction of nonbonded S and O atoms can be described as attractive (Angyan, et al., 1987). In the molecule the S O nonbonded distances are significantly shorter (2.653 Å) than the sum of the corresponding van der Waals radii (3.25 Å).

Related literature top

For background to the chemistry of phosphorus–organic compounds, see: Ly & Woollins (1998). For details of the synthesis and properties of the [(1,3-thiazol-2-ylamino)carbonyl]phosphoramidic acid, see: Kirsanov & Levchenko (1957); Smaliy et al.(2003). For structural analogues of phosphorylated carbacylamides and their properties, see: Amirkhanov et al. (1997). For a structural investigation of phosphortriamidic compounds, see: Ovchynnikov et al. (1997). For the synthesis of the aminothiazol-containing phosphortiamides, see: Shatrava et al. (2009). For a description of the attractive interaction in thiazole compounds, see: Burling & Goldstein (1992); Angyan et al. (1987).

Experimental top

The synthesis of [(1,3-thiazol-2-ylamino)carbonyl]phosphoramidic acid (II) was carried out according to the method described by Kirsanov (Kirsanov & Levchenko, 1957). The compound N-1,3-thiazol-2-yl-urea phosphate (I) was obtained due to hydrolyzation of (II) in the water solution (Smaliy et al., 2003). The crystals (I) suitable for X-ray analysis were obtained by heating of [(1,3-thiazol-2-ylamino)carbonyl]phosphoramidic acid in water and evaporating the solvent at room temperature for about 2 days.

Refinement top

H2,H3A and H4A atoms were included in the refinement in the riding motion approximation but with refined isotropic thermal parameter. Other hydrogen atoms were refine isotropically.

Computing details top

Data collection: SMART-NT (Bruker, 1999); cell refinement: SAINT-NT (Bruker, 1999); data reduction: SAINT-NT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP within SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of N-1,3-thiazol-2-yl-urea phosphate with the atom labeling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii. Hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. three-dimensional-view of the N-1,3-thiazol-2-yl-urea phosphate.
[Figure 3] Fig. 3. The formation of the title compound.
2-ureido-1,3-thiazol-3-ium dihydrogen phosphate top
Crystal data top
C4H6N3OS+·H2PO4F(000) = 496
Mr = 241.16Dx = 1.691 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2646 reflections
a = 11.9038 (11) Åθ = 1.7–28.0°
b = 9.7936 (10) ŵ = 0.51 mm1
c = 8.1914 (12) ÅT = 293 K
β = 97.231 (9)°Block, colourless
V = 947.37 (19) Å30.30 × 0.20 × 0.20 mm
Z = 4
Data collection top
Siemens SMART CCD area-detector
diffractometer
2239 independent reflections
Radiation source: fine-focus sealed tube1893 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.014
ω scansθmax = 28.0°, θmin = 1.7°
Absorption correction: empirical (using intensity measurements)
(SADABS; Bruker, 1999)
h = 1415
Tmin = 0.861, Tmax = 0.904k = 1210
2644 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0666P)2 + 0.4134P]
where P = (Fo2 + 2Fc2)/3
2239 reflections(Δ/σ)max = 0.001
150 parametersΔρmax = 0.58 e Å3
0 restraintsΔρmin = 0.43 e Å3
Crystal data top
C4H6N3OS+·H2PO4V = 947.37 (19) Å3
Mr = 241.16Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.9038 (11) ŵ = 0.51 mm1
b = 9.7936 (10) ÅT = 293 K
c = 8.1914 (12) Å0.30 × 0.20 × 0.20 mm
β = 97.231 (9)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
2239 independent reflections
Absorption correction: empirical (using intensity measurements)
(SADABS; Bruker, 1999)
1893 reflections with I > 2σ(I)
Tmin = 0.861, Tmax = 0.904Rint = 0.014
2644 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.109H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.58 e Å3
2239 reflectionsΔρmin = 0.43 e Å3
150 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.76064 (4)0.11536 (5)0.89426 (7)0.03929 (16)
O10.93971 (13)0.18350 (15)0.7497 (2)0.0487 (4)
N11.00646 (16)0.3959 (2)0.7104 (3)0.0450 (4)
C10.93508 (16)0.30721 (18)0.7630 (2)0.0343 (4)
P10.71692 (4)0.70375 (4)0.89068 (5)0.02801 (15)
N20.84692 (14)0.36706 (16)0.8367 (2)0.0341 (3)
H20.84380.45450.84480.061 (8)*
C20.76722 (15)0.29001 (18)0.8948 (2)0.0302 (4)
O20.77229 (12)0.62295 (13)0.76649 (16)0.0368 (3)
N30.68142 (13)0.34568 (18)0.9603 (2)0.0341 (3)
C30.63845 (18)0.1230 (2)0.9884 (3)0.0456 (5)
H3A0.59880.04671.01730.076 (9)*
O30.66290 (12)0.61762 (13)1.01208 (16)0.0357 (3)
C40.60814 (17)0.2511 (2)1.0144 (3)0.0414 (4)
H4A0.54460.27451.06360.062 (8)*
O40.62286 (13)0.79913 (17)0.80225 (19)0.0460 (4)
O50.80967 (14)0.79873 (16)0.98184 (19)0.0457 (4)
H1A1.001 (2)0.483 (3)0.731 (3)0.042 (6)*
H1B1.054 (3)0.359 (3)0.660 (3)0.053 (8)*
H30.676 (2)0.427 (3)0.969 (3)0.041 (6)*
H40.633 (3)0.815 (4)0.710 (5)0.080 (11)*
H50.800 (3)0.806 (4)1.077 (4)0.077 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0400 (3)0.0256 (2)0.0531 (3)0.00031 (17)0.0089 (2)0.00314 (18)
O10.0451 (8)0.0277 (7)0.0769 (11)0.0041 (6)0.0221 (8)0.0017 (7)
N10.0420 (9)0.0316 (9)0.0659 (12)0.0008 (7)0.0243 (9)0.0012 (8)
C10.0320 (9)0.0295 (9)0.0424 (10)0.0045 (7)0.0085 (7)0.0015 (7)
P10.0337 (3)0.0256 (3)0.0268 (2)0.00013 (16)0.01202 (17)0.00036 (15)
N20.0372 (8)0.0241 (7)0.0433 (8)0.0027 (6)0.0138 (7)0.0017 (6)
C20.0316 (8)0.0272 (9)0.0320 (8)0.0023 (6)0.0052 (7)0.0016 (6)
O20.0511 (8)0.0299 (7)0.0328 (7)0.0094 (5)0.0179 (6)0.0025 (5)
N30.0340 (8)0.0306 (8)0.0390 (8)0.0012 (6)0.0099 (6)0.0002 (6)
C30.0366 (10)0.0407 (11)0.0605 (13)0.0074 (8)0.0107 (9)0.0076 (9)
O30.0473 (8)0.0300 (7)0.0328 (6)0.0065 (5)0.0171 (6)0.0001 (5)
C40.0321 (9)0.0472 (12)0.0461 (11)0.0024 (8)0.0102 (8)0.0043 (9)
O40.0461 (8)0.0575 (10)0.0377 (8)0.0196 (7)0.0185 (6)0.0120 (6)
O50.0513 (9)0.0550 (10)0.0337 (7)0.0228 (7)0.0174 (6)0.0071 (6)
Geometric parameters (Å, º) top
S1—C21.7122 (18)N2—C21.345 (2)
S1—C31.732 (2)N2—H20.8600
O1—C11.218 (2)C2—N31.329 (2)
N1—C11.324 (3)N3—C41.383 (3)
N1—H1A0.87 (3)N3—H30.80 (3)
N1—H1B0.82 (3)C3—C41.330 (3)
C1—N21.403 (2)C3—H3A0.9300
P1—O21.5048 (12)C4—H4A0.9300
P1—O31.5083 (13)O4—H40.80 (4)
P1—O51.5602 (16)O5—H50.81 (4)
P1—O41.5642 (15)
C2—S1—C389.80 (10)C1—N2—H2119.4
C1—N1—H1A121.0 (16)N3—C2—N2121.65 (17)
C1—N1—H1B113 (2)N3—C2—S1111.93 (14)
H1A—N1—H1B126 (3)N2—C2—S1126.41 (14)
O1—C1—N1125.79 (19)C2—N3—C4113.74 (18)
O1—C1—N2119.90 (17)C2—N3—H3120.7 (19)
N1—C1—N2114.29 (17)C4—N3—H3125.5 (18)
O2—P1—O3114.27 (8)C4—C3—S1111.84 (15)
O2—P1—O5107.05 (9)C4—C3—H3A124.1
O3—P1—O5110.65 (8)S1—C3—H3A124.1
O2—P1—O4110.48 (8)C3—C4—N3112.69 (18)
O3—P1—O4107.43 (8)C3—C4—H4A123.7
O5—P1—O4106.73 (10)N3—C4—H4A123.7
C2—N2—C1121.12 (16)P1—O4—H4112 (3)
C2—N2—H2119.4P1—O5—H5110 (3)
O1—C1—N2—C20.6 (3)N2—C2—N3—C4179.63 (17)
N1—C1—N2—C2179.39 (19)S1—C2—N3—C40.8 (2)
C1—N2—C2—N3177.96 (17)C2—S1—C3—C40.44 (19)
C1—N2—C2—S11.6 (3)S1—C3—C4—N30.1 (3)
C3—S1—C2—N30.69 (15)C2—N3—C4—C30.4 (3)
C3—S1—C2—N2179.74 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O20.861.932.697 (2)148
N3—H3···O30.80 (3)1.91 (3)2.710 (2)174 (3)
N1—H1A···O1i0.87 (3)2.09 (3)2.898 (2)155 (2)
N1—H1B···O5ii0.82 (3)2.20 (3)3.007 (2)170 (3)
O5—H5···O2iii0.81 (4)1.77 (4)2.546 (2)162 (4)
O4—H4···O3iv0.80 (4)1.82 (4)2.613 (2)170 (4)
Symmetry codes: (i) x+2, y+1/2, z+3/2; (ii) x+2, y1/2, z+3/2; (iii) x, y+3/2, z+1/2; (iv) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC4H6N3OS+·H2PO4
Mr241.16
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)11.9038 (11), 9.7936 (10), 8.1914 (12)
β (°) 97.231 (9)
V3)947.37 (19)
Z4
Radiation typeMo Kα
µ (mm1)0.51
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerSiemens SMART CCD area-detector
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(SADABS; Bruker, 1999)
Tmin, Tmax0.861, 0.904
No. of measured, independent and
observed [I > 2σ(I)] reflections
2644, 2239, 1893
Rint0.014
(sin θ/λ)max1)0.660
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.109, 1.05
No. of reflections2239
No. of parameters150
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.58, 0.43

Computer programs: SMART-NT (Bruker, 1999), SAINT-NT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP within SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O20.861.932.697 (2)147.9
N3—H3···O30.80 (3)1.91 (3)2.710 (2)174 (3)
N1—H1A···O1i0.87 (3)2.09 (3)2.898 (2)155 (2)
N1—H1B···O5ii0.82 (3)2.20 (3)3.007 (2)170 (3)
O5—H5···O2iii0.81 (4)1.77 (4)2.546 (2)162 (4)
O4—H4···O3iv0.80 (4)1.82 (4)2.613 (2)170 (4)
Symmetry codes: (i) x+2, y+1/2, z+3/2; (ii) x+2, y1/2, z+3/2; (iii) x, y+3/2, z+1/2; (iv) x, y+3/2, z1/2.
 

References

First citationAmirkhanov, V. M., Ovchynnikov, V. A., Glowiak, T. & Kozlowski, H. (1997). Z. Naturforsh. Teil B, 52, 1331–1336.  CAS Google Scholar
First citationAngyan, J. G., Poirier, R. A., Kucsman, A. & Csizmadia, I. G. (1987). J. Am. Chem. Soc. 109, 2237–2245.  CrossRef CAS Google Scholar
First citationBruker (1999). SMART-NT, SAINT-Plus-NT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurling, F. T. & Goldstein, B. M. (1992). J. Am. Chem. Soc. 114, 2313–2320.  CrossRef CAS Web of Science Google Scholar
First citationKirsanov, A. & Levchenko, V. (1957). Zh. Obshch. Khim. 27, 2313–2320.  Google Scholar
First citationLy, T. Q. & Woollins, J. D. (1998). Coord. Chem. Rev. 176, 451–481.  Web of Science CrossRef CAS Google Scholar
First citationOvchynnikov, V. A., Amirkhanov, V. M., Timoshenko, T. P., Glowiak, T. & Kozlowski, H. (1997). Z. Naturforsh. Teil B, 53, 481–484.  Google Scholar
First citationShatrava, I., Ovchynnikov, O., Sliva, T., Amirkhanov, V. & Skopenko, V. (2009). Zh. Dopov. Nac. Akad. Nauk, 5, 179–185.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmaliy, R. V., Chaikovskay, A. A., Pinchyk, A. M. & Tolmachev, A. A. (2003). Synthesis, 16, 2525–2529.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds