metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(μ-2-{1-[2-(di­methyl­amino)­ethyl­imino]­eth­yl}phenolato)bis­­[bromido­copper(II)] monohydrate

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: khaledi@siswa.um.edu.my

(Received 14 April 2011; accepted 7 June 2011; online 18 June 2011)

In the centrosymmetric dinuclear copper(II) title complex, [Cu2Br2(C12H17N2O)2]·H2O, each CuII ion is five coordinated in a square-pyramidal geometry by the N,N′,O-tridentate Schiff base, one Br atom and the bridging O atom of the centrosymmetrically related Schiff base. In the crystal, the water mol­ecules link the complex mol­ecules into infinite chains along the b axis via O—H⋯Br and C—H⋯O hydrogen bonds.

Related literature

For the structures of some similar doubly bridged copper(II) complexes, see: Li et al. (2000[Li, P., Solanki, N. K., Ehrenberg, H., Feeder, N., Davies, J. E., Rawson, J. M. & Halcrow, M. A. (2000). J. Chem. Soc. Dalton Trans. pp. 1559-1565.]); Rigamonti et al. (2008[Rigamonti, L., Cinti, A., Forni, A., Pasini, A. & Piovesana, O. (2008). Eur. J. Inorg. Chem. pp. 3633-3647.]); Suo (2008[Suo, J. (2008). Acta Cryst. E64, m1046.]). For a description of the geometry of complexes with five-coordinate metal atoms, see: Addison et al. (1984[Addison, A. W., Rao, T. N., Reedijk, J., Rijn, V. J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2Br2(C12H17N2O)2]·H2O

  • Mr = 715.47

  • Monoclinic, C 2/c

  • a = 20.754 (4) Å

  • b = 8.2492 (16) Å

  • c = 18.521 (4) Å

  • β = 119.528 (2)°

  • V = 2759.1 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.47 mm−1

  • T = 100 K

  • 0.19 × 0.14 × 0.09 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.484, Tmax = 0.689

  • 10414 measured reflections

  • 3007 independent reflections

  • 2623 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.060

  • S = 1.05

  • 3007 reflections

  • 165 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.51 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11B⋯O2i 0.98 2.40 3.299 (3) 152
O2—H2O⋯Br1 0.83 (2) 2.62 (2) 3.4269 (14) 167 (3)
Symmetry code: (i) x, y-1, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]; Atwood & Barbour, 2003[Atwood, J. L. & Barbour, L. J. (2003). Cryst. Growth Des. 3, 3-8.]); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The title dimeric copper(II) complex was synthesized through the reaction of the in situ prepared Schiff base, N,N-dimethyl-N'-[methyl(2-phenolyl)methylene]ethane-1,2-diamine, with copper(I) bromide. Under the reaction conditions, the CuI ion was oxidized to CuII and chelated by the deprotonated N,N',O-tridentate Schiff base. Pairs of metal centers are doubly bridged via the phenoxide O atoms around centers of inversion. Within the formed dimer, the Cu···.Cu distance [2.9935 (8) Å] is comparable to those reported for similar structures (Li et al., 2000; Rigamonti et al., 2008; Suo, 2008). The square-pyramidal geometry (τ = 0.11, Addison et al., 1984) around each CuII ion is completed by one apically positioned Br atom. The dimeric complex is cocrystallized with one molecule of water whose oxygen atom is situated on a 2-fold rotational axis. In the crystal, the water molecules link the dimers into infinite chains along the b axis via O—H···Br and C—H···O interactions.

Related literature top

For the structures of some similar doubly bridged copper(II) complexes, see: Li et al. (2000); Rigamonti et al. (2008); Suo (2008). For a description of the geometry of complexes with five-coordinate metal atoms, see: Addison et al. (1984).

Experimental top

A solution of 2-acetylpyridine (0.20 g, 1.65 mmol) and N,N-dimethylethyldiamine (0.14 g, 1.65 mmol) in ethanol (20 ml) was stirred at reflux for 2 hr. Then, a solution of copper (I) bromide (0.21 g, 1.65 mmol) in a minimum amount of ethanol was added. The resulting mixture was refluxed for 30 min, and then left at room temperature. The crystals of the title complex were obtained in a few days.

Refinement top

The C-bound H atoms were placed at calculated positions at distances C—H = 0.95, 0.98 and 0.99 Å for aryl, methyl and methylene type H-atoms, respectively. The O-bound H atom was placed in a difference Fourier map, and was refined with distance restraint of O—H 0.84 (2) Å. For all hydrogen atoms Uiso(H) were set to 1.2–1.5 times Ueq(carrier atom).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001; Atwood & Barbour, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot of the title compound at the 50% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius. Symmetry code: ' = -x, y, -z + 1/2.
Bis(µ-2-{1-[2-(dimethylamino)ethylimino]ethyl}phenolato)bis[bromidocopper(II)] monohydrate top
Crystal data top
[Cu2Br2(C12H17N2O)2]·H2OF(000) = 1440
Mr = 715.47Dx = 1.722 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3159 reflections
a = 20.754 (4) Åθ = 2.4–30.5°
b = 8.2492 (16) ŵ = 4.47 mm1
c = 18.521 (4) ÅT = 100 K
β = 119.528 (2)°Block, green
V = 2759.1 (9) Å30.19 × 0.14 × 0.09 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
3007 independent reflections
Radiation source: fine-focus sealed tube2623 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
ϕ and ω scansθmax = 27.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2626
Tmin = 0.484, Tmax = 0.689k = 1010
10414 measured reflectionsl = 2123
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.060H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0216P)2 + 1.9328P]
where P = (Fo2 + 2Fc2)/3
3007 reflections(Δ/σ)max = 0.001
165 parametersΔρmax = 0.36 e Å3
1 restraintΔρmin = 0.51 e Å3
Crystal data top
[Cu2Br2(C12H17N2O)2]·H2OV = 2759.1 (9) Å3
Mr = 715.47Z = 4
Monoclinic, C2/cMo Kα radiation
a = 20.754 (4) ŵ = 4.47 mm1
b = 8.2492 (16) ÅT = 100 K
c = 18.521 (4) Å0.19 × 0.14 × 0.09 mm
β = 119.528 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
3007 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2623 reflections with I > 2σ(I)
Tmin = 0.484, Tmax = 0.689Rint = 0.042
10414 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0251 restraint
wR(F2) = 0.060H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.36 e Å3
3007 reflectionsΔρmin = 0.51 e Å3
165 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.073508 (14)0.69663 (3)0.253261 (16)0.01063 (8)
Br10.150450 (12)0.94932 (3)0.260812 (15)0.01679 (8)
O10.03282 (8)0.75649 (19)0.32448 (10)0.0119 (3)
N10.14514 (10)0.5556 (2)0.34424 (12)0.0137 (4)
N20.08944 (10)0.5480 (2)0.17527 (12)0.0152 (4)
C10.07547 (12)0.7880 (3)0.40514 (14)0.0117 (4)
C20.05469 (13)0.9126 (3)0.44099 (15)0.0168 (5)
H20.01190.97560.40730.020*
C30.09599 (13)0.9446 (3)0.52491 (16)0.0196 (5)
H30.08101.02870.54840.024*
C40.15940 (13)0.8552 (3)0.57543 (15)0.0190 (5)
H40.18750.87780.63310.023*
C50.18105 (12)0.7334 (3)0.54092 (15)0.0167 (5)
H50.22460.67320.57550.020*
C60.14031 (12)0.6961 (3)0.45577 (14)0.0124 (5)
C70.16441 (12)0.5626 (3)0.42169 (15)0.0145 (5)
C80.21248 (14)0.4320 (3)0.48106 (17)0.0226 (6)
H8A0.19510.32540.45540.034*
H8B0.20960.43810.53220.034*
H8C0.26390.44760.49410.034*
C90.17044 (13)0.4215 (3)0.31143 (16)0.0188 (5)
H9A0.13960.32400.30260.023*
H9B0.22250.39380.35140.023*
C100.16385 (13)0.4758 (3)0.23030 (16)0.0185 (5)
H10A0.20270.55710.24120.022*
H10B0.17160.38200.20210.022*
C110.03162 (13)0.4203 (3)0.14254 (16)0.0194 (5)
H11A0.01640.46910.10440.029*
H11B0.02900.36880.18870.029*
H11C0.04410.33860.11300.029*
C120.09097 (15)0.6276 (3)0.10441 (16)0.0221 (6)
H12A0.10350.54750.07420.033*
H12B0.12820.71400.12510.033*
H12C0.04220.67410.06700.033*
O20.00001.1437 (3)0.25000.0347 (7)
H2O0.0349 (14)1.085 (3)0.257 (2)0.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.00875 (14)0.01254 (15)0.01042 (16)0.00081 (10)0.00458 (12)0.00042 (11)
Br10.01330 (12)0.01715 (13)0.01898 (14)0.00367 (9)0.00723 (10)0.00097 (9)
O10.0089 (7)0.0168 (8)0.0090 (8)0.0009 (6)0.0035 (6)0.0008 (6)
N10.0113 (9)0.0135 (10)0.0164 (11)0.0011 (8)0.0069 (8)0.0003 (8)
N20.0124 (9)0.0188 (11)0.0146 (11)0.0004 (8)0.0068 (8)0.0015 (8)
C10.0090 (10)0.0151 (12)0.0110 (11)0.0012 (9)0.0050 (9)0.0005 (9)
C20.0143 (11)0.0203 (12)0.0152 (13)0.0019 (9)0.0068 (10)0.0009 (10)
C30.0194 (12)0.0242 (14)0.0182 (13)0.0022 (10)0.0114 (11)0.0063 (11)
C40.0176 (12)0.0292 (14)0.0099 (12)0.0067 (10)0.0066 (10)0.0032 (10)
C50.0109 (11)0.0228 (13)0.0144 (13)0.0012 (9)0.0047 (10)0.0042 (10)
C60.0114 (10)0.0149 (11)0.0122 (12)0.0020 (9)0.0068 (9)0.0014 (9)
C70.0088 (10)0.0151 (12)0.0184 (13)0.0003 (9)0.0057 (10)0.0037 (10)
C80.0238 (13)0.0204 (14)0.0224 (14)0.0074 (11)0.0105 (12)0.0074 (11)
C90.0161 (12)0.0170 (12)0.0203 (13)0.0050 (10)0.0067 (11)0.0038 (10)
C100.0122 (11)0.0230 (13)0.0192 (14)0.0031 (10)0.0068 (10)0.0043 (11)
C110.0172 (12)0.0189 (13)0.0200 (13)0.0019 (10)0.0075 (11)0.0063 (10)
C120.0251 (13)0.0281 (14)0.0180 (14)0.0015 (11)0.0144 (11)0.0019 (11)
O20.0404 (18)0.0183 (15)0.059 (2)0.0000.0349 (17)0.000
Geometric parameters (Å, º) top
Cu1—O11.9480 (15)C5—C61.408 (3)
Cu1—N11.983 (2)C5—H50.9500
Cu1—O1i2.0138 (15)C6—C71.474 (3)
Cu1—N22.042 (2)C7—C81.512 (3)
Cu1—Br12.5874 (5)C8—H8A0.9800
O1—C11.334 (3)C8—H8B0.9800
O1—Cu1i2.0138 (15)C8—H8C0.9800
N1—C71.287 (3)C9—C101.508 (4)
N1—C91.478 (3)C9—H9A0.9900
N2—C121.482 (3)C9—H9B0.9900
N2—C111.483 (3)C10—H10A0.9900
N2—C101.492 (3)C10—H10B0.9900
C1—C21.402 (3)C11—H11A0.9800
C1—C61.422 (3)C11—H11B0.9800
C2—C31.381 (3)C11—H11C0.9800
C2—H20.9500C12—H12A0.9800
C3—C41.392 (4)C12—H12B0.9800
C3—H30.9500C12—H12C0.9800
C4—C51.379 (3)O2—H2O0.827 (17)
C4—H40.9500
O1—Cu1—N188.11 (7)C5—C6—C1118.2 (2)
O1—Cu1—O1i74.57 (7)C5—C6—C7120.0 (2)
N1—Cu1—O1i148.18 (7)C1—C6—C7121.8 (2)
O1—Cu1—N2155.03 (7)N1—C7—C6121.8 (2)
N1—Cu1—N286.20 (8)N1—C7—C8120.7 (2)
O1i—Cu1—N298.28 (7)C6—C7—C8117.6 (2)
O1—Cu1—Br1102.77 (5)C7—C8—H8A109.5
N1—Cu1—Br1104.03 (6)C7—C8—H8B109.5
O1i—Cu1—Br1105.71 (5)H8A—C8—H8B109.5
N2—Cu1—Br1102.19 (6)C7—C8—H8C109.5
C1—O1—Cu1122.55 (13)H8A—C8—H8C109.5
C1—O1—Cu1i137.48 (13)H8B—C8—H8C109.5
Cu1—O1—Cu1i98.14 (7)N1—C9—C10108.1 (2)
C7—N1—C9120.9 (2)N1—C9—H9A110.1
C7—N1—Cu1127.71 (16)C10—C9—H9A110.1
C9—N1—Cu1111.06 (15)N1—C9—H9B110.1
C12—N2—C11108.61 (19)C10—C9—H9B110.1
C12—N2—C10108.36 (18)H9A—C9—H9B108.4
C11—N2—C10110.64 (19)N2—C10—C9110.74 (18)
C12—N2—Cu1116.21 (15)N2—C10—H10A109.5
C11—N2—Cu1109.58 (14)C9—C10—H10A109.5
C10—N2—Cu1103.31 (14)N2—C10—H10B109.5
O1—C1—C2118.9 (2)C9—C10—H10B109.5
O1—C1—C6121.6 (2)H10A—C10—H10B108.1
C2—C1—C6119.4 (2)N2—C11—H11A109.5
C3—C2—C1120.5 (2)N2—C11—H11B109.5
C3—C2—H2119.7H11A—C11—H11B109.5
C1—C2—H2119.7N2—C11—H11C109.5
C2—C3—C4120.8 (2)H11A—C11—H11C109.5
C2—C3—H3119.6H11B—C11—H11C109.5
C4—C3—H3119.6N2—C12—H12A109.5
C5—C4—C3119.4 (2)N2—C12—H12B109.5
C5—C4—H4120.3H12A—C12—H12B109.5
C3—C4—H4120.3N2—C12—H12C109.5
C4—C5—C6121.7 (2)H12A—C12—H12C109.5
C4—C5—H5119.1H12B—C12—H12C109.5
C6—C5—H5119.1
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11B···O2ii0.982.403.299 (3)152
O2—H2O···Br10.83 (2)2.62 (2)3.4269 (14)167 (3)
Symmetry code: (ii) x, y1, z.

Experimental details

Crystal data
Chemical formula[Cu2Br2(C12H17N2O)2]·H2O
Mr715.47
Crystal system, space groupMonoclinic, C2/c
Temperature (K)100
a, b, c (Å)20.754 (4), 8.2492 (16), 18.521 (4)
β (°) 119.528 (2)
V3)2759.1 (9)
Z4
Radiation typeMo Kα
µ (mm1)4.47
Crystal size (mm)0.19 × 0.14 × 0.09
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.484, 0.689
No. of measured, independent and
observed [I > 2σ(I)] reflections
10414, 3007, 2623
Rint0.042
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.060, 1.05
No. of reflections3007
No. of parameters165
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.36, 0.51

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), X-SEED (Barbour, 2001; Atwood & Barbour, 2003), SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11B···O2i0.982.403.299 (3)152
O2—H2O···Br10.827 (17)2.617 (18)3.4269 (14)167 (3)
Symmetry code: (i) x, y1, z.
 

Acknowledgements

The authors thank the University of Malaya for funding this study (FRGS grant No. FP004/2010B).

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., Rijn, V. J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationAtwood, J. L. & Barbour, L. J. (2003). Cryst. Growth Des. 3, 3–8.  Web of Science CrossRef CAS Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLi, P., Solanki, N. K., Ehrenberg, H., Feeder, N., Davies, J. E., Rawson, J. M. & Halcrow, M. A. (2000). J. Chem. Soc. Dalton Trans. pp. 1559–1565.  CrossRef Google Scholar
First citationRigamonti, L., Cinti, A., Forni, A., Pasini, A. & Piovesana, O. (2008). Eur. J. Inorg. Chem. pp. 3633–3647.  CrossRef Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuo, J. (2008). Acta Cryst. E64, m1046.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds