organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(2-Bromo­benz­yl)-1-methyl-1H-imidazol-3-ium bromide

aDepartment of Chemistry, University of Science & Technology of China, Hefei, Anhui 230026, People's Republic of China
*Correspondence e-mail: jianyud@mail.ustc.edu.cn

(Received 14 May 2011; accepted 25 May 2011; online 4 June 2011)

In the title compound, C11H12BrN2+·Br, the imidazole and phenyl rings are nearly perpendicular, making a dihedral angle of 87.71 (7)°. The crystal structure is stabilized by non-classical inter­molecular C—H⋯Br hydrogen bonds and inversion-related mol­ecules are linked through ππ inter­actions between the imidazole ring systems [centroid–centroid distance = 3.472 (6) Å].

Related literature

Imidazolium salts are used to obtain transition metal complexes of N-heterocyclic carbenes, which have become an important class of catalysts in organometallic chemistry and organic synthesis, see: Marion & Nolan (2008[Marion, N. & Nolan, S. P. (2008). Acc. Chem. Res. 41, 1440-1449.]); Herrmann (2002[Herrmann, W. A. (2002). Angew. Chem. Int. Ed. 41, 1290-1309.]); Qin et al. (2006[Qin, D. B., Xu, F. B. W. X. J., Zhao, Y. J. & Zhang, Z. Z. (2006). Tetrahedron Lett. 47, 5641-5643.]). For related structures, Guo et al. (2008[Guo, L.-H., Qin, D.-B., Gu, S.-J., Wang, G.-Y. & Luo, J.-W. (2008). Acta Cryst. E64, o189.]); Liu et al. (2003[Liu, Q. X., Xu, F. B., Li, Q. S., Zeng, X. S., Leng, X. B., Chou, Y. L. & Zhang, Z. Z. (2003). Organometallics, 22, 309-314.]).

[Scheme 1]

Experimental

Crystal data
  • C11H12BrN2+·Br

  • Mr = 332.05

  • Orthorhombic, P b c a

  • a = 8.4548 (10) Å

  • b = 13.9166 (13) Å

  • c = 20.831 (2) Å

  • V = 2451.1 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 6.58 mm−1

  • T = 298 K

  • 0.42 × 0.40 × 0.21 mm

Data collection
  • Bruker SMART 1K CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.169, Tmax = 0.339

  • 9279 measured reflections

  • 2158 independent reflections

  • 1530 reflections with I > 2σ(I)

  • Rint = 0.126

Refinement
  • R[F2 > 2σ(F2)] = 0.064

  • wR(F2) = 0.130

  • S = 1.19

  • 2158 reflections

  • 138 parameters

  • H-atom parameters constrained

  • Δρmax = 0.74 e Å−3

  • Δρmin = −0.65 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4A⋯Br2i 0.97 2.86 3.662 (6) 141
Symmetry code: (i) x+1, y, z.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Imidazolium salts or its derivatives are used as ionic liquids, and in many organic transformations. They are used to obtain transition metal complexes of N-heterocyclic carbenes which have become a very important class of catalysts in organometallic chemistry and organic synthesis (Herrmann, 2002, Marion & Nolan, 2008). We here report the crystal structure of the title compound.

Bond lengths and angles in the title molecule (Fig. 1) are within normal ranges. The imidazole and the phenyl ring are nearly perpendicular, with a dihedral angle of 87.71 (2)°.

The molecular structure is stabilized by C—H···Br hydrogen bonds (Table 1). The crystal structure is stabilized by π-π interactions between the imidazole ring systems of the inversion related molecules, with a Cg1···Cg1i distance of 3.472 (6) Å [symmetry code: (i) 1-x, -y, 1-z].

Related literature top

Imidazolium salts are used to obtain transition metal complexes of N-heterocyclic carbenes, which have become an important class of catalysts in organometallic chemistry and organic synthesis, see: Marion & Nolan (2008); Herrmann et al. (2002); Qin et al. (2006). For related structures, Guo et al. (2008); Liu et al. (2003).

Experimental top

1-methyl-1H-imidazole (0.615 g, 7.5 mmol) and 1-bromo-2-(bromomethyl)benzene (1.25 g, 5 mmol) in 20 ml of dioxane were refluxed for 12 h. After cooling the solution to room temperature, the mixture was filtered and afforded a colorless solid. Colourless single crystals suitable for X-ray diffraction were obtained by recrystallization from acetonitrile and diethyl ether.

Refinement top

H atoms were placed in calculated positions with C—H = 0.95–0.99 Å, and refined in riding mode with Uiso(H) = 1.2–1.5Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids.
3-(2-Bromobenzyl)-1-methyl-1H-imidazol-3-ium bromide top
Crystal data top
C11H12BrN2+·BrDx = 1.800 Mg m3
Mr = 332.05Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 992 reflections
a = 8.4548 (10) Åθ = 2.6–25.2°
b = 13.9166 (13) ŵ = 6.58 mm1
c = 20.831 (2) ÅT = 298 K
V = 2451.1 (5) Å3Block, colourless
Z = 80.42 × 0.40 × 0.21 mm
F(000) = 1296
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
2158 independent reflections
Radiation source: fine-focus sealed tube1530 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.126
ϕ and ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 109
Tmin = 0.169, Tmax = 0.339k = 1516
9279 measured reflectionsl = 1524
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.064H-atom parameters constrained
wR(F2) = 0.130 w = 1/[σ2(Fo2) + (0.0439P)2 + 1.6882P]
where P = (Fo2 + 2Fc2)/3
S = 1.19(Δ/σ)max < 0.001
2158 reflectionsΔρmax = 0.74 e Å3
138 parametersΔρmin = 0.65 e Å3
0 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0051 (4)
Crystal data top
C11H12BrN2+·BrV = 2451.1 (5) Å3
Mr = 332.05Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 8.4548 (10) ŵ = 6.58 mm1
b = 13.9166 (13) ÅT = 298 K
c = 20.831 (2) Å0.42 × 0.40 × 0.21 mm
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
2158 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1530 reflections with I > 2σ(I)
Tmin = 0.169, Tmax = 0.339Rint = 0.126
9279 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0640 restraints
wR(F2) = 0.130H-atom parameters constrained
S = 1.19Δρmax = 0.74 e Å3
2158 reflectionsΔρmin = 0.65 e Å3
138 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.76580 (9)0.05373 (6)0.26368 (5)0.0618 (4)
Br20.09361 (7)0.16571 (5)0.46240 (4)0.0464 (3)
N10.6110 (5)0.0692 (4)0.4078 (3)0.0320 (14)
N20.4228 (6)0.0365 (4)0.4189 (3)0.0346 (14)
C10.4546 (7)0.0545 (5)0.4031 (3)0.0329 (17)
H10.38030.10020.39080.039*
C20.5601 (8)0.0806 (5)0.4353 (4)0.0444 (19)
H20.57160.14380.44900.053*
C30.6759 (8)0.0158 (5)0.4282 (4)0.0434 (19)
H30.78270.02670.43590.052*
C40.6935 (7)0.1600 (5)0.3952 (4)0.0393 (19)
H4A0.80590.14730.39130.047*
H4B0.67850.20260.43150.047*
C50.6377 (6)0.2087 (5)0.3363 (4)0.0337 (18)
C60.6590 (7)0.1733 (5)0.2750 (4)0.041 (2)
C70.6039 (9)0.2206 (8)0.2210 (4)0.061 (2)
H70.61850.19450.18030.073*
C80.5265 (10)0.3076 (8)0.2288 (6)0.069 (3)
H80.48870.34040.19300.083*
C90.5056 (9)0.3454 (7)0.2885 (6)0.068 (3)
H90.45430.40400.29330.082*
C100.5604 (8)0.2968 (5)0.3419 (4)0.049 (2)
H100.54540.32330.38240.059*
C110.2652 (7)0.0794 (6)0.4187 (4)0.056 (2)
H11A0.18780.03080.42790.084*
H11B0.25990.12880.45080.084*
H11C0.24420.10680.37730.084*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0619 (5)0.0619 (6)0.0615 (8)0.0090 (4)0.0169 (4)0.0205 (5)
Br20.0390 (4)0.0502 (5)0.0500 (7)0.0086 (3)0.0099 (3)0.0048 (4)
N10.030 (3)0.041 (3)0.025 (4)0.007 (3)0.002 (2)0.000 (3)
N20.041 (3)0.035 (3)0.029 (4)0.001 (3)0.002 (3)0.000 (3)
C10.031 (3)0.045 (4)0.023 (5)0.006 (3)0.005 (3)0.002 (3)
C20.049 (4)0.042 (4)0.043 (6)0.010 (4)0.003 (3)0.002 (4)
C30.041 (4)0.056 (5)0.034 (5)0.020 (4)0.003 (3)0.003 (4)
C40.034 (3)0.045 (4)0.039 (6)0.005 (3)0.005 (3)0.003 (4)
C50.025 (3)0.039 (4)0.037 (6)0.011 (3)0.002 (3)0.004 (4)
C60.032 (3)0.044 (4)0.048 (6)0.019 (3)0.004 (3)0.002 (4)
C70.055 (5)0.094 (7)0.033 (6)0.031 (5)0.003 (4)0.013 (5)
C80.051 (5)0.087 (8)0.069 (9)0.010 (5)0.003 (5)0.045 (6)
C90.057 (5)0.066 (6)0.081 (9)0.003 (4)0.010 (5)0.030 (6)
C100.045 (4)0.051 (5)0.052 (7)0.005 (3)0.000 (4)0.005 (4)
C110.045 (4)0.062 (5)0.060 (7)0.015 (4)0.001 (4)0.005 (5)
Geometric parameters (Å, º) top
Br1—C61.908 (7)C5—C61.380 (10)
N1—C11.342 (7)C5—C101.393 (9)
N1—C31.372 (8)C6—C71.385 (11)
N1—C41.466 (8)C7—C81.386 (13)
N2—C11.336 (9)C7—H70.9300
N2—C21.357 (8)C8—C91.362 (14)
N2—C111.460 (8)C8—H80.9300
C1—H10.9300C9—C101.382 (12)
C2—C31.338 (10)C9—H90.9300
C2—H20.9300C10—H100.9300
C3—H30.9300C11—H11A0.9600
C4—C51.480 (10)C11—H11B0.9600
C4—H4A0.9700C11—H11C0.9600
C4—H4B0.9700
C1—N1—C3106.5 (6)C10—C5—C4118.9 (7)
C1—N1—C4126.0 (5)C5—C6—C7122.6 (8)
C3—N1—C4127.5 (5)C5—C6—Br1119.2 (6)
C1—N2—C2108.6 (5)C7—C6—Br1118.2 (7)
C1—N2—C11124.8 (6)C6—C7—C8118.6 (9)
C2—N2—C11126.6 (6)C6—C7—H7120.7
N2—C1—N1109.0 (5)C8—C7—H7120.7
N2—C1—H1125.5C9—C8—C7120.4 (9)
N1—C1—H1125.5C9—C8—H8119.8
C3—C2—N2107.1 (6)C7—C8—H8119.8
C3—C2—H2126.5C8—C9—C10120.2 (9)
N2—C2—H2126.5C8—C9—H9119.9
C2—C3—N1108.8 (6)C10—C9—H9119.9
C2—C3—H3125.6C9—C10—C5121.3 (9)
N1—C3—H3125.6C9—C10—H10119.3
N1—C4—C5113.1 (5)C5—C10—H10119.3
N1—C4—H4A109.0N2—C11—H11A109.5
C5—C4—H4A109.0N2—C11—H11B109.5
N1—C4—H4B109.0H11A—C11—H11B109.5
C5—C4—H4B109.0N2—C11—H11C109.5
H4A—C4—H4B107.8H11A—C11—H11C109.5
C6—C5—C10116.9 (7)H11B—C11—H11C109.5
C6—C5—C4124.2 (7)
C2—N2—C1—N11.3 (8)N1—C4—C5—C10114.2 (7)
C11—N2—C1—N1179.2 (7)C10—C5—C6—C71.5 (9)
C3—N1—C1—N20.9 (8)C4—C5—C6—C7179.4 (6)
C4—N1—C1—N2179.3 (6)C10—C5—C6—Br1179.4 (4)
C1—N2—C2—C31.1 (8)C4—C5—C6—Br10.3 (8)
C11—N2—C2—C3179.4 (7)C5—C6—C7—C81.0 (10)
N2—C2—C3—N10.5 (9)Br1—C6—C7—C8179.8 (5)
C1—N1—C3—C20.3 (8)C6—C7—C8—C90.0 (11)
C4—N1—C3—C2178.6 (7)C7—C8—C9—C100.5 (12)
C1—N1—C4—C544.1 (9)C8—C9—C10—C50.0 (11)
C3—N1—C4—C5137.9 (7)C6—C5—C10—C91.0 (10)
N1—C4—C5—C666.7 (8)C4—C5—C10—C9179.9 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4A···Br2i0.972.863.662 (6)141
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC11H12BrN2+·Br
Mr332.05
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)298
a, b, c (Å)8.4548 (10), 13.9166 (13), 20.831 (2)
V3)2451.1 (5)
Z8
Radiation typeMo Kα
µ (mm1)6.58
Crystal size (mm)0.42 × 0.40 × 0.21
Data collection
DiffractometerBruker SMART 1K CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.169, 0.339
No. of measured, independent and
observed [I > 2σ(I)] reflections
9279, 2158, 1530
Rint0.126
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.130, 1.19
No. of reflections2158
No. of parameters138
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.74, 0.65

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4A···Br2i0.972.863.662 (6)141
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

The authors thank the National Natural Science Foundation of China (20872129).

References

First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGuo, L.-H., Qin, D.-B., Gu, S.-J., Wang, G.-Y. & Luo, J.-W. (2008). Acta Cryst. E64, o189.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHerrmann, W. A. (2002). Angew. Chem. Int. Ed. 41, 1290–1309.  Web of Science CrossRef CAS Google Scholar
First citationLiu, Q. X., Xu, F. B., Li, Q. S., Zeng, X. S., Leng, X. B., Chou, Y. L. & Zhang, Z. Z. (2003). Organometallics, 22, 309–314.  Web of Science CSD CrossRef CAS Google Scholar
First citationMarion, N. & Nolan, S. P. (2008). Acc. Chem. Res. 41, 1440–1449.  Web of Science CrossRef PubMed CAS Google Scholar
First citationQin, D. B., Xu, F. B. W. X. J., Zhao, Y. J. & Zhang, Z. Z. (2006). Tetrahedron Lett. 47, 5641–5643.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds