metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 7| July 2011| Pages m989-m990

catena-Poly[[[aqua­(di-2-pyridyl­amine-κ2N2,N2′)manganese(II)]-μ-5-ferrocenyl­benzene-1,3-di­carboxyl­ato-κ3O1,O1′:O3] methanol monosolvate monohydrate]

aDepartment of Chemistry and Chemical Engineering, Henan University of Urban Construction, Pingdingshan, Henan 467044, People's Republic of China
*Correspondence e-mail: liuwei@hncj.edu.cn

(Received 2 June 2011; accepted 13 June 2011; online 25 June 2011)

In the title coordination polymer, {[FeMn(C5H5)(C13H7O4)(C10H9N3)(H2O)]·CH3OH·H2O}n, the MnII ion has a distorted octa­hedral coordination geometry and is ligated by two N atoms from two di-2-pyridyl­amine mol­ecules, three O atoms from two 5-ferrocenyl­benzene-1,3-dicarboxyl­ate anions and one O atom from a coordinated water mol­ecule. The Mn—O distances range from 2.151 (2) to 2.5093 (19) Å, while the Mn—N distances are 2.226 (2) and 2.248 (2) Å. Each 5-ferrocenyl­benzene-1,5-dicarboxyl­ate anion links to two MnII ions, resulting in a chain along the b axis. A three-dimensional network of N—H⋯O and O—H⋯O hydrogen bonds helps to stabilize the crystal packing.

Related literature

For the chemical, stereochemical, and electrochemical properties of ferrocene and its derivatives, see: Togni & Hayashi (1995[Togni, A. & Hayashi, T. (1995). Ferrocenes: Homogeneous Catalysis, Organic Synthesis, Materials Science. New York: VCH Publishers.]). In coordination chemistry, there is much inter­est in the introduction of ferrocenyl groups into a ligand framework with the objective of generating materials possessing desired properties, see: Fang et al. (2001[Fang, C. J., Duan, C. Y., Guo, D., He, C., Meng, Q. J., Wang, Z. M. & Yan, C. H. (2001). Chem. Commun. pp. 2540-2541.]); Hudson (2001[Hudson, R. D. A. (2001). J. Organomet. Chem. 47, 637-639.]); Li et al. (2003[Li, G., Song, Y. L., Hou, H. W., Li, L. K., Fan, Y. T., Zhu, Y., Meng, X. R. & Mi, L. W. (2003). Inorg. Chem. 42, 913-920.]). We have recently employed a V-shaped ferrocene-containing dicarboxyl­ate ligand, 5-ferrocenyl­benzene-1,5-dicarb­oxy­lic acid, in the construction of discrete or one-dimensional coordination compounds, see: Li et al. (2008[Li, X., Liu, W., Zhang, H. Y. & Wu, B. L. (2008). J. Organomet. Chem. 693, 3295-3302.], 2009[Li, X., Wu, B. L., Liu, W., Niu, C. Y., Niu, Y. Y. & Zhang, H. Y. (2009). J. Coord. Chem. 62, 3142-3156.]). For a related structure, see: Sengupta et al. (2001[Sengupta, P., Dinda, R., Ghosh, S. & Sheldrick, W. S. (2001). Polyhedron, 20, 3349-3354.]).

[Scheme 1]

Experimental

Crystal data
  • [FeMn(C5H5)(C13H7O4)(C10H9N3)(H2O)]·CH4O·H2O

  • Mr = 642.34

  • Triclinic, [P \overline 1]

  • a = 9.4550 (19) Å

  • b = 10.174 (2) Å

  • c = 15.153 (3) Å

  • α = 93.03 (3)°

  • β = 99.94 (3)°

  • γ = 94.72 (3)°

  • V = 1427.5 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.00 mm−1

  • T = 173 K

  • 0.24 × 0.20 × 0.15 mm

Data collection
  • Rigaku Mercury CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2000[Rigaku (2000). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.798, Tmax = 0.866

  • 8342 measured reflections

  • 5520 independent reflections

  • 4259 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.096

  • S = 1.03

  • 5520 reflections

  • 430 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.46 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H10⋯O7i 0.81 (3) 2.01 (3) 2.816 (4) 173 (3)
O7—H7A⋯O3ii 0.75 (4) 2.03 (4) 2.693 (3) 148 (4)
O5—H3⋯O1iii 0.89 (4) 1.84 (4) 2.731 (3) 177 (4)
O6—H6A⋯O4iii 0.85 (1) 1.86 (2) 2.685 (3) 162 (4)
O5—H5⋯O6 0.78 (3) 1.88 (3) 2.655 (4) 171 (3)
O7—H7B⋯O2 0.86 (6) 1.94 (6) 2.753 (4) 156 (5)
Symmetry codes: (i) x-1, y, z; (ii) x, y+1, z; (iii) -x+2, -y, -z.

Data collection: CrystalClear (Rigaku, 2000[Rigaku (2000). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Ferrocene and its derivates have been extensively studied due to their special chemical, stereochemical, and electrochemical properties (Togni et al., 1995). In the field of coordination chemistry, chemists are strongly interested in introducing ferrocenyl groups into a ligand framework with the objective of generating materials possessing desired properties (Hudson et al., 2001; Fang et al., 2001; Li et al., 2003). Recently, we have been employed a V-shaped ferrocene-containing dicarboxylate ligand 5-ferrocenylbenzene-1,5-dicarboxylic acid to construct discrete or one-dimentional coordination compounds (Li et al., 2008; Li et al., 2009). As our continuing work for this ligand, we report here the synthesis and crystal structure of the title compound.

In the title coordination polymer, {[MnFe(C18H12O4)(C10H9N3)(H2O)].CH3OH.H2O}n, the MnII ion is six coordinated and located in a distorted octahedral geometry ligated by two nitrogen atoms from two 2,2'-dipyridylamine molecules, three oxygen atoms from two 5-ferrocenylbenzene-1,5-dicarboxylate anions and one oxygen atom from one coordinated water molecule (Fig. 1). The O2, O3, O4 and N3 atoms form an equatorial plane (the deviation of the plane being 0.0666 Å), and O5 and N1 occupy the axial position (O5—Mn1—N1 175.65 (9) °). The Mn—O distances range from 2.151 (2) to 2.5093 (19) Å, while Mn—N distances are 2.226 (2) and 2.248 (2) Å, respectively (Table 1). Each 5-ferrocenylbenzene-1,5-dicarboxylate anion links to two MnII ions resulting a chain along the b axis. A three-dimensional network of N—H···O and O—H···O hydrogen bonds (Table 2) help to stabilize the crystal packing.

Related literature top

For the chemical, stereochemical, and electrochemical properties of ferrocene and its derivatives, see: Togni & Hayashi (1995). In coordination chemistry, there is much interest in the introduction of ferrocenyl groups into a ligand framework with the objective of generating materials possessing desired properties, see: Fang et al. (2001); Hudson (2001); Li et al. (2003). We have recently employed a V-shaped ferrocene-containing dicarboxylate ligand, 5-ferrocenylbenzene-1,5-dicarboxylic acid, in the construction of discrete or one-dimensional coordination compounds, see: Li et al. (2008, 2009). For related literature [on what subject?], see: Sengupta et al. (2001).

Experimental top

A methanol solution (5 ml) of 2,2'-dipyridylamine (0.0171 g, 0.1 mmol) was added dropwise to an aqueous solution (5 ml) of MnCl2 (0.0198 g, 0.1 mmol), and then a methanol solution (10 ml) of 5-ferrocenylbenzene-1,5-dicarboxylic acid (0.035 g, 0.1 mmol)(Li et al., 2008) was added slowly to the above mixture solution. Finally, the pH value of the mixture was adjusted to about 7 with NaOH aqueous solution, and the resulting orange solution was allowed to slowly evaporate at ambient temperature. Two weeks later, orange block crystals suitable for X-ray single-crystal diffraction analysis were obtained in 48% yield based on Mn. Analysis calculated for C29H29FeMnN3O7: C 54.23, H 4.55, N 6.54; found: C 54.46, H 4.50, N 6.42.

Refinement top

Water H atoms and the methanol H atom were located from difference Fourier maps and refined with a DFIX restraint of 0.86 (2) Å. Aromatic H atoms were positioned geometrically with C—H = 0.95 Å and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrystalClear (Rigaku, 2000); cell refinement: CrystalClear (Rigaku, 2000); data reduction: CrystalClear (Rigaku, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXS97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atomic numbering and 30% probability displacement ellipsoids.
catena-Poly[[[aqua(di-2-pyridylamine- κ2N2,N2')manganese(II)]-µ- 5-ferrocenylbenzene-1,3-dicarboxylato- κ3O1,O1':O3] methanol monosolvate monohydrate] top
Crystal data top
[FeMn(C5H5)(C13H7O4)(C10H9N3)(H2O)]·CH4O·H2OZ = 2
Mr = 642.34F(000) = 662
Triclinic, P1Dx = 1.494 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.4550 (19) ÅCell parameters from 2530 reflections
b = 10.174 (2) Åθ = 2.2–29.8°
c = 15.153 (3) ŵ = 1.00 mm1
α = 93.03 (3)°T = 173 K
β = 99.94 (3)°Block, orange
γ = 94.72 (3)°0.24 × 0.20 × 0.15 mm
V = 1427.5 (5) Å3
Data collection top
Rigaku Mercury CCD
diffractometer
5520 independent reflections
Radiation source: fine-focus sealed tube4259 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
ω scansθmax = 26.0°, θmin = 2.2°
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2000)
h = 1111
Tmin = 0.798, Tmax = 0.866k = 1212
8342 measured reflectionsl = 1318
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0422P)2 + 0.5123P]
where P = (Fo2 + 2Fc2)/3
5520 reflections(Δ/σ)max = 0.001
430 parametersΔρmax = 0.46 e Å3
1 restraintΔρmin = 0.46 e Å3
Crystal data top
[FeMn(C5H5)(C13H7O4)(C10H9N3)(H2O)]·CH4O·H2Oγ = 94.72 (3)°
Mr = 642.34V = 1427.5 (5) Å3
Triclinic, P1Z = 2
a = 9.4550 (19) ÅMo Kα radiation
b = 10.174 (2) ŵ = 1.00 mm1
c = 15.153 (3) ÅT = 173 K
α = 93.03 (3)°0.24 × 0.20 × 0.15 mm
β = 99.94 (3)°
Data collection top
Rigaku Mercury CCD
diffractometer
5520 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2000)
4259 reflections with I > 2σ(I)
Tmin = 0.798, Tmax = 0.866Rint = 0.017
8342 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0381 restraint
wR(F2) = 0.096H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.46 e Å3
5520 reflectionsΔρmin = 0.46 e Å3
430 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe11.65507 (4)0.26160 (4)0.36749 (3)0.04720 (13)
Mn10.96915 (4)0.19655 (4)0.15479 (3)0.03679 (12)
O10.9617 (2)0.05825 (18)0.11693 (13)0.0529 (5)
N10.8703 (2)0.1942 (2)0.27946 (14)0.0463 (5)
C11.8357 (6)0.3356 (8)0.3390 (3)0.110 (2)
H11.899 (5)0.372 (5)0.375 (3)0.127 (18)*
O21.1190 (2)0.06247 (17)0.21790 (14)0.0554 (5)
N20.6291 (3)0.2135 (2)0.21420 (16)0.0491 (6)
C21.7141 (7)0.4008 (5)0.2832 (3)0.0996 (15)
H21.663 (4)0.485 (4)0.291 (2)0.077 (12)*
O31.1239 (2)0.63879 (17)0.22317 (15)0.0571 (5)
N30.7391 (2)0.1676 (2)0.08758 (14)0.0411 (5)
C31.6431 (5)0.3073 (4)0.2337 (2)0.0747 (10)
H31.060 (4)0.160 (4)0.011 (3)0.095 (13)*
O40.9379 (2)0.56199 (18)0.14381 (14)0.0557 (5)
C41.7244 (5)0.1831 (5)0.2583 (3)0.0858 (12)
H41.689 (6)0.104 (6)0.235 (4)0.18 (3)*
O51.0750 (3)0.2110 (2)0.04046 (15)0.0577 (6)
C51.8422 (5)0.2019 (8)0.3250 (3)0.1049 (17)
H51.106 (3)0.283 (3)0.034 (2)0.051 (9)*
O61.1854 (4)0.4444 (3)0.0007 (2)0.1308 (14)
C61.6383 (4)0.2896 (4)0.4971 (2)0.0688 (10)
H61.703 (4)0.339 (4)0.541 (3)0.098 (12)*
H6A1.129 (4)0.476 (4)0.041 (2)0.117*
O71.3625 (3)0.2353 (4)0.2701 (2)0.0782 (8)
C71.6525 (4)0.1553 (4)0.4846 (2)0.0688 (10)
H71.726 (4)0.096 (3)0.516 (2)0.073 (10)*
H7A1.320 (4)0.291 (4)0.255 (3)0.080 (15)*
H7B1.304 (6)0.168 (6)0.248 (4)0.16 (3)*
C81.5133 (4)0.3473 (4)0.4380 (2)0.0621 (8)
H81.476 (4)0.435 (4)0.436 (3)0.102 (14)*
C91.5376 (3)0.1274 (3)0.4181 (2)0.0600 (8)
H91.521 (4)0.046 (4)0.394 (2)0.092 (13)*
C101.4492 (3)0.2464 (3)0.38753 (18)0.0456 (6)
H100.551 (3)0.225 (3)0.227 (2)0.061 (10)*
C111.3176 (3)0.2627 (2)0.31824 (17)0.0395 (6)
H111.553 (4)0.320 (4)0.193 (3)0.098 (13)*
C121.2505 (3)0.3877 (2)0.28748 (17)0.0403 (6)
H121.29160.46330.31120.048*
C131.1256 (3)0.4054 (2)0.22338 (17)0.0383 (6)
H131.927 (6)0.135 (5)0.358 (3)0.15 (2)*
C141.0659 (3)0.2948 (2)0.18762 (17)0.0372 (5)
H140.98050.30550.14350.045*
C151.2554 (3)0.1541 (2)0.28156 (17)0.0396 (6)
H151.29870.06770.30140.048*
C161.1309 (3)0.1694 (2)0.21635 (17)0.0377 (6)
C171.0656 (3)0.0489 (2)0.18024 (19)0.0426 (6)
C181.0570 (3)0.5430 (2)0.19399 (19)0.0435 (6)
C190.9681 (3)0.1930 (4)0.3560 (2)0.0725 (10)
H191.06510.18180.35080.087*
C200.9361 (4)0.2066 (5)0.4390 (2)0.0949 (14)
H201.00860.20380.49070.114*
C210.7960 (4)0.2246 (5)0.4475 (2)0.0861 (12)
H210.77080.23540.50530.103*
C220.6945 (3)0.2267 (3)0.3727 (2)0.0633 (9)
H220.59730.23850.37720.076*
C230.7362 (3)0.2111 (3)0.28820 (17)0.0422 (6)
C240.6225 (3)0.1900 (2)0.12293 (18)0.0412 (6)
C250.4855 (3)0.1898 (3)0.06901 (19)0.0500 (7)
H250.40420.20640.09550.060*
C260.4707 (3)0.1657 (3)0.0214 (2)0.0588 (8)
H260.37920.16650.05880.071*
C270.5903 (3)0.1399 (3)0.0581 (2)0.0594 (8)
H270.58250.12130.12100.071*
C280.7196 (3)0.1417 (3)0.00215 (19)0.0522 (7)
H280.80130.12370.02790.063*
C291.3128 (4)0.5007 (4)0.0283 (3)0.1060 (16)
H29A1.30730.59440.04490.159*
H29B1.36970.49300.01970.159*
H29C1.35890.45790.08080.159*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0463 (2)0.0580 (3)0.0374 (2)0.00879 (19)0.00588 (17)0.00370 (18)
Mn10.0336 (2)0.0335 (2)0.0426 (2)0.00235 (15)0.00380 (16)0.00664 (16)
O10.0594 (12)0.0446 (11)0.0572 (12)0.0205 (9)0.0079 (10)0.0115 (9)
N10.0376 (12)0.0610 (15)0.0393 (12)0.0068 (10)0.0023 (9)0.0052 (10)
C10.080 (3)0.196 (7)0.063 (3)0.077 (4)0.010 (2)0.010 (4)
O20.0693 (13)0.0268 (9)0.0705 (13)0.0113 (9)0.0098 (10)0.0051 (9)
N20.0354 (13)0.0649 (16)0.0469 (14)0.0095 (11)0.0056 (11)0.0023 (11)
C20.134 (4)0.095 (4)0.078 (3)0.047 (3)0.030 (3)0.012 (3)
O30.0541 (12)0.0265 (9)0.0891 (15)0.0068 (8)0.0058 (11)0.0087 (9)
N30.0377 (11)0.0407 (12)0.0438 (13)0.0029 (9)0.0043 (9)0.0035 (9)
C30.085 (3)0.098 (3)0.0412 (19)0.020 (2)0.0085 (18)0.0030 (19)
O40.0537 (12)0.0394 (11)0.0687 (13)0.0041 (9)0.0004 (10)0.0040 (9)
C40.087 (3)0.120 (4)0.050 (2)0.012 (3)0.017 (2)0.014 (2)
O50.0727 (15)0.0466 (13)0.0551 (14)0.0106 (11)0.0225 (11)0.0039 (11)
C50.063 (3)0.189 (6)0.062 (3)0.011 (3)0.026 (2)0.008 (3)
O60.122 (3)0.120 (2)0.118 (3)0.069 (2)0.051 (2)0.076 (2)
C60.056 (2)0.109 (3)0.0413 (18)0.006 (2)0.0053 (15)0.0189 (19)
O70.0418 (13)0.106 (2)0.0865 (19)0.0194 (16)0.0062 (12)0.0025 (18)
C70.0521 (19)0.093 (3)0.054 (2)0.0016 (18)0.0001 (15)0.0222 (19)
C80.0581 (19)0.073 (2)0.0550 (19)0.0021 (17)0.0048 (15)0.0300 (17)
C90.0588 (19)0.055 (2)0.062 (2)0.0056 (15)0.0033 (16)0.0125 (16)
C100.0444 (15)0.0498 (16)0.0431 (15)0.0056 (12)0.0088 (12)0.0021 (12)
C110.0415 (14)0.0389 (14)0.0395 (14)0.0052 (11)0.0098 (11)0.0028 (11)
C120.0441 (14)0.0287 (13)0.0494 (15)0.0083 (11)0.0080 (12)0.0085 (11)
C130.0406 (14)0.0295 (13)0.0468 (15)0.0059 (10)0.0114 (11)0.0045 (11)
C140.0387 (13)0.0306 (13)0.0438 (14)0.0077 (10)0.0090 (11)0.0054 (10)
C150.0478 (15)0.0274 (12)0.0453 (15)0.0008 (11)0.0143 (12)0.0034 (11)
C160.0451 (14)0.0276 (12)0.0442 (14)0.0082 (10)0.0153 (11)0.0063 (10)
C170.0519 (16)0.0312 (14)0.0515 (16)0.0099 (11)0.0227 (13)0.0096 (12)
C180.0479 (16)0.0297 (13)0.0544 (17)0.0018 (11)0.0142 (13)0.0037 (12)
C190.0440 (17)0.128 (3)0.0448 (18)0.0180 (18)0.0018 (14)0.0019 (18)
C200.058 (2)0.183 (5)0.0413 (19)0.024 (2)0.0028 (16)0.001 (2)
C210.069 (2)0.148 (4)0.0433 (19)0.016 (2)0.0141 (17)0.000 (2)
C220.0462 (16)0.096 (3)0.0490 (18)0.0079 (16)0.0111 (14)0.0012 (17)
C230.0372 (14)0.0453 (15)0.0433 (15)0.0031 (11)0.0054 (11)0.0041 (12)
C240.0402 (14)0.0355 (14)0.0461 (15)0.0031 (11)0.0019 (12)0.0069 (11)
C250.0394 (14)0.0560 (17)0.0529 (17)0.0061 (12)0.0007 (12)0.0116 (13)
C260.0496 (17)0.065 (2)0.0562 (19)0.0036 (14)0.0079 (14)0.0146 (15)
C270.0612 (19)0.070 (2)0.0425 (17)0.0005 (15)0.0009 (14)0.0063 (14)
C280.0462 (16)0.0612 (18)0.0484 (17)0.0049 (13)0.0067 (13)0.0007 (14)
C290.064 (2)0.086 (3)0.167 (5)0.002 (2)0.010 (3)0.052 (3)
Geometric parameters (Å, º) top
Fe1—C82.025 (3)C6—C71.388 (5)
Fe1—C12.025 (4)C6—C81.418 (5)
Fe1—C62.030 (3)C6—H61.00 (4)
Fe1—C92.030 (3)O7—H7A0.75 (4)
Fe1—C22.033 (4)O7—H7B0.86 (6)
Fe1—C72.034 (3)C7—C91.408 (5)
Fe1—C102.038 (3)C7—H70.92 (3)
Fe1—C32.038 (3)C8—C101.425 (4)
Fe1—C52.043 (4)C8—H80.93 (4)
Fe1—C42.057 (4)C9—C101.421 (4)
Mn1—O52.151 (2)C9—H90.94 (4)
Mn1—O22.184 (2)C10—C111.475 (4)
Mn1—O3i2.216 (2)C11—C151.391 (3)
Mn1—N32.226 (2)C11—C121.393 (3)
Mn1—N12.248 (2)C12—C131.386 (3)
Mn1—O4i2.5093 (19)C12—H120.9500
O1—C171.243 (3)C13—C141.393 (3)
N1—C231.322 (3)C13—C181.505 (3)
N1—C191.353 (4)C14—C161.384 (3)
C1—C51.386 (8)C14—H140.9500
C1—C21.398 (7)C15—C161.392 (4)
C1—H10.86 (5)C15—H150.9500
O2—C171.265 (3)C16—C171.504 (3)
N2—C231.378 (3)C19—C201.347 (5)
N2—C241.381 (3)C19—H190.9500
N2—H100.81 (3)C20—C211.379 (5)
C2—C31.388 (6)C20—H200.9500
C2—H20.97 (3)C21—C221.355 (4)
O3—C181.263 (3)C21—H210.9500
O3—Mn1ii2.216 (2)C22—C231.408 (4)
N3—C241.337 (3)C22—H220.9500
N3—C281.349 (3)C24—C251.407 (4)
C3—C41.420 (6)C25—C261.359 (4)
C3—H110.96 (4)C25—H250.9500
O4—C181.239 (3)C26—C271.382 (4)
O4—Mn1ii2.5093 (19)C26—H260.9500
C4—C51.402 (6)C27—C281.360 (4)
C4—H40.96 (6)C27—H270.9500
O5—H30.89 (4)C28—H280.9500
O5—H50.78 (3)C29—H29A0.9800
C5—H131.05 (5)C29—H29B0.9800
O6—C291.281 (4)C29—H29C0.9800
O6—H6A0.850 (10)
C8—Fe1—C1126.6 (3)C1—C5—C4107.2 (5)
C8—Fe1—C640.93 (13)C1—C5—Fe169.4 (3)
C1—Fe1—C6109.8 (2)C4—C5—Fe170.6 (2)
C8—Fe1—C968.16 (15)C1—C5—H13122 (3)
C1—Fe1—C9156.3 (2)C4—C5—H13131 (3)
C6—Fe1—C967.87 (16)Fe1—C5—H13128 (3)
C8—Fe1—C2109.4 (2)C29—O6—H6A120 (3)
C1—Fe1—C240.3 (2)C7—C6—C8108.1 (3)
C6—Fe1—C2123.8 (2)C7—C6—Fe170.2 (2)
C9—Fe1—C2160.71 (19)C8—C6—Fe169.33 (18)
C8—Fe1—C768.07 (16)C7—C6—H6127 (2)
C1—Fe1—C7122.37 (18)C8—C6—H6125 (2)
C6—Fe1—C739.93 (15)Fe1—C6—H6127 (2)
C9—Fe1—C740.53 (13)H7A—O7—H7B102 (4)
C2—Fe1—C7158.02 (18)C6—C7—C9108.4 (3)
C8—Fe1—C1041.07 (12)C6—C7—Fe169.9 (2)
C1—Fe1—C10162.3 (2)C9—C7—Fe169.60 (18)
C6—Fe1—C1069.14 (13)C6—C7—H7125 (2)
C9—Fe1—C1040.89 (12)C9—C7—H7127 (2)
C2—Fe1—C10124.6 (2)Fe1—C7—H7126 (2)
C7—Fe1—C1068.90 (12)C6—C8—C10108.6 (3)
C8—Fe1—C3121.96 (17)C6—C8—Fe169.74 (19)
C1—Fe1—C367.35 (18)C10—C8—Fe169.97 (17)
C6—Fe1—C3158.14 (18)C6—C8—H8125 (2)
C9—Fe1—C3123.82 (15)C10—C8—H8126 (2)
C2—Fe1—C339.88 (17)Fe1—C8—H8130 (3)
C7—Fe1—C3160.37 (18)C7—C9—C10109.0 (3)
C10—Fe1—C3106.68 (15)C7—C9—Fe169.88 (19)
C8—Fe1—C5162.1 (2)C10—C9—Fe169.85 (16)
C1—Fe1—C539.8 (2)C7—C9—H9128 (2)
C6—Fe1—C5124.67 (17)C10—C9—H9123 (2)
C9—Fe1—C5120.6 (2)Fe1—C9—H9124 (2)
C2—Fe1—C567.7 (3)C9—C10—C8105.9 (3)
C7—Fe1—C5107.52 (19)C9—C10—C11127.3 (3)
C10—Fe1—C5155.4 (2)C8—C10—C11126.8 (3)
C3—Fe1—C568.09 (18)C9—C10—Fe169.25 (17)
C8—Fe1—C4156.93 (16)C8—C10—Fe168.95 (17)
C1—Fe1—C466.7 (2)C11—C10—Fe1126.56 (18)
C6—Fe1—C4160.19 (17)C15—C11—C12117.5 (2)
C9—Fe1—C4107.04 (19)C15—C11—C10121.4 (2)
C2—Fe1—C467.2 (2)C12—C11—C10121.1 (2)
C7—Fe1—C4123.89 (19)C13—C12—C11122.1 (2)
C10—Fe1—C4120.44 (16)C13—C12—H12118.9
C3—Fe1—C440.59 (16)C11—C12—H12118.9
C5—Fe1—C439.98 (19)C12—C13—C14119.1 (2)
O5—Mn1—O292.67 (9)C12—C13—C18119.5 (2)
O5—Mn1—O3i88.03 (9)C14—C13—C18121.3 (2)
O2—Mn1—O3i87.14 (7)C16—C14—C13120.1 (2)
O5—Mn1—N3100.83 (9)C16—C14—H14120.0
O2—Mn1—N3132.97 (8)C13—C14—H14120.0
O3i—Mn1—N3137.62 (7)C11—C15—C16121.4 (2)
O5—Mn1—N1175.65 (9)C11—C15—H15119.3
O2—Mn1—N187.16 (8)C16—C15—H15119.3
O3i—Mn1—N187.62 (8)C14—C16—C15119.8 (2)
N3—Mn1—N182.40 (8)C14—C16—C17120.7 (2)
O5—Mn1—O4i86.57 (9)C15—C16—C17119.5 (2)
O2—Mn1—O4i141.61 (7)O1—C17—O2121.2 (2)
O3i—Mn1—O4i54.48 (7)O1—C17—C16121.4 (2)
N3—Mn1—O4i84.49 (8)O2—C17—C16117.4 (2)
N1—Mn1—O4i90.86 (8)O4—C18—O3121.0 (2)
C23—N1—C19117.0 (2)O4—C18—C13121.2 (2)
C23—N1—Mn1128.75 (18)O3—C18—C13117.8 (2)
C19—N1—Mn1113.56 (18)C20—C19—N1124.0 (3)
C5—C1—C2109.4 (5)C20—C19—H19118.0
C5—C1—Fe170.8 (3)N1—C19—H19118.0
C2—C1—Fe170.1 (2)C19—C20—C21118.6 (3)
C5—C1—H1125 (3)C19—C20—H20120.7
C2—C1—H1126 (3)C21—C20—H20120.7
Fe1—C1—H1127 (3)C22—C21—C20119.5 (3)
C17—O2—Mn1102.52 (17)C22—C21—H21120.3
C23—N2—C24134.0 (2)C20—C21—H21120.3
C23—N2—H10113 (2)C21—C22—C23118.6 (3)
C24—N2—H10113 (2)C21—C22—H22120.7
C3—C2—C1107.9 (5)C23—C22—H22120.7
C3—C2—Fe170.3 (2)N1—C23—N2121.2 (2)
C1—C2—Fe169.5 (2)N1—C23—C22122.3 (2)
C3—C2—H2120 (2)N2—C23—C22116.4 (2)
C1—C2—H2128 (2)N3—C24—N2122.1 (2)
Fe1—C2—H2108 (2)N3—C24—C25121.7 (2)
C18—O3—Mn1ii98.82 (16)N2—C24—C25116.2 (2)
C24—N3—C28117.2 (2)C26—C25—C24119.4 (3)
C24—N3—Mn1127.89 (17)C26—C25—H25120.3
C28—N3—Mn1114.26 (18)C24—C25—H25120.3
C2—C3—C4107.4 (4)C25—C26—C27119.2 (3)
C2—C3—Fe169.9 (2)C25—C26—H26120.4
C4—C3—Fe170.4 (2)C27—C26—H26120.4
C2—C3—H11128 (2)C28—C27—C26118.4 (3)
C4—C3—H11124 (2)C28—C27—H27120.8
Fe1—C3—H11122 (2)C26—C27—H27120.8
C18—O4—Mn1ii85.66 (15)N3—C28—C27124.1 (3)
C5—C4—C3108.1 (5)N3—C28—H28117.9
C5—C4—Fe169.4 (2)C27—C28—H28117.9
C3—C4—Fe169.0 (2)O6—C29—H29A109.5
C5—C4—H4131 (4)O6—C29—H29B109.5
C3—C4—H4121 (4)H29A—C29—H29B109.5
Fe1—C4—H4121 (4)O6—C29—H29C109.5
Mn1—O5—H3129 (2)H29A—C29—H29C109.5
Mn1—O5—H5114 (2)H29B—C29—H29C109.5
H3—O5—H5112 (3)
O2—Mn1—N1—C23151.6 (2)C3—Fe1—C7—C6162.7 (4)
O3i—Mn1—N1—C23121.1 (2)C5—Fe1—C7—C6123.5 (3)
N3—Mn1—N1—C2317.6 (2)C4—Fe1—C7—C6164.4 (2)
O4i—Mn1—N1—C2366.7 (2)C8—Fe1—C7—C981.6 (2)
O2—Mn1—N1—C1938.1 (2)C1—Fe1—C7—C9158.0 (3)
O3i—Mn1—N1—C1949.2 (2)C6—Fe1—C7—C9119.6 (3)
N3—Mn1—N1—C19172.1 (2)C2—Fe1—C7—C9169.3 (5)
O4i—Mn1—N1—C19103.6 (2)C10—Fe1—C7—C937.3 (2)
C8—Fe1—C1—C5163.7 (3)C3—Fe1—C7—C943.1 (6)
C6—Fe1—C1—C5120.8 (3)C5—Fe1—C7—C9116.9 (3)
C9—Fe1—C1—C540.9 (6)C4—Fe1—C7—C976.0 (3)
C2—Fe1—C1—C5120.0 (5)C7—C6—C8—C100.3 (4)
C7—Fe1—C1—C578.3 (4)Fe1—C6—C8—C1059.4 (2)
C10—Fe1—C1—C5155.9 (5)C7—C6—C8—Fe159.7 (2)
C3—Fe1—C1—C582.5 (3)C1—Fe1—C8—C677.7 (3)
C4—Fe1—C1—C538.2 (3)C9—Fe1—C8—C680.9 (2)
C8—Fe1—C1—C276.4 (4)C2—Fe1—C8—C6119.5 (3)
C6—Fe1—C1—C2119.2 (3)C7—Fe1—C8—C637.1 (2)
C9—Fe1—C1—C2160.9 (4)C10—Fe1—C8—C6119.7 (3)
C7—Fe1—C1—C2161.8 (3)C3—Fe1—C8—C6161.9 (2)
C10—Fe1—C1—C235.9 (8)C5—Fe1—C8—C641.9 (8)
C3—Fe1—C1—C237.5 (3)C4—Fe1—C8—C6163.2 (4)
C5—Fe1—C1—C2120.0 (5)C1—Fe1—C8—C10162.6 (2)
C4—Fe1—C1—C281.7 (4)C6—Fe1—C8—C10119.7 (3)
O5—Mn1—O2—C1783.68 (17)C9—Fe1—C8—C1038.77 (18)
O3i—Mn1—O2—C17171.57 (17)C2—Fe1—C8—C10120.8 (2)
N3—Mn1—O2—C1723.8 (2)C7—Fe1—C8—C1082.6 (2)
N1—Mn1—O2—C17100.67 (17)C3—Fe1—C8—C1078.4 (2)
O4i—Mn1—O2—C17171.54 (15)C5—Fe1—C8—C10161.6 (7)
C5—C1—C2—C30.1 (5)C4—Fe1—C8—C1043.5 (5)
Fe1—C1—C2—C360.0 (3)C6—C7—C9—C100.3 (4)
C5—C1—C2—Fe160.1 (3)Fe1—C7—C9—C1059.0 (2)
C8—Fe1—C2—C3116.9 (3)C6—C7—C9—Fe159.3 (2)
C1—Fe1—C2—C3118.8 (5)C8—Fe1—C9—C781.3 (2)
C6—Fe1—C2—C3160.2 (3)C1—Fe1—C9—C752.0 (6)
C9—Fe1—C2—C337.7 (8)C6—Fe1—C9—C737.0 (2)
C7—Fe1—C2—C3163.7 (4)C2—Fe1—C9—C7167.9 (6)
C10—Fe1—C2—C373.6 (4)C10—Fe1—C9—C7120.3 (3)
C5—Fe1—C2—C382.0 (3)C3—Fe1—C9—C7164.0 (3)
C4—Fe1—C2—C338.6 (3)C5—Fe1—C9—C781.2 (3)
C8—Fe1—C2—C1124.2 (4)C4—Fe1—C9—C7122.6 (3)
C6—Fe1—C2—C180.9 (4)C8—Fe1—C9—C1038.94 (18)
C9—Fe1—C2—C1156.5 (6)C1—Fe1—C9—C10172.3 (5)
C7—Fe1—C2—C144.8 (8)C6—Fe1—C9—C1083.2 (2)
C10—Fe1—C2—C1167.5 (4)C2—Fe1—C9—C1047.6 (7)
C3—Fe1—C2—C1118.8 (5)C7—Fe1—C9—C10120.3 (3)
C5—Fe1—C2—C136.8 (3)C3—Fe1—C9—C1075.8 (3)
C4—Fe1—C2—C180.3 (4)C5—Fe1—C9—C10158.5 (2)
O5—Mn1—N3—C24158.7 (2)C4—Fe1—C9—C10117.1 (2)
O2—Mn1—N3—C2497.2 (2)C7—C9—C10—C80.5 (3)
O3i—Mn1—N3—C2459.7 (3)Fe1—C9—C10—C859.5 (2)
N1—Mn1—N3—C2418.3 (2)C7—C9—C10—C11179.9 (3)
O4i—Mn1—N3—C2473.3 (2)Fe1—C9—C10—C11120.8 (3)
O5—Mn1—N3—C2811.4 (2)C7—C9—C10—Fe159.1 (2)
O2—Mn1—N3—C2892.6 (2)C6—C8—C10—C90.4 (3)
O3i—Mn1—N3—C28110.5 (2)Fe1—C8—C10—C959.7 (2)
N1—Mn1—N3—C28171.5 (2)C6—C8—C10—C11179.9 (3)
O4i—Mn1—N3—C2896.87 (19)Fe1—C8—C10—C11120.6 (3)
C1—C2—C3—C41.1 (5)C6—C8—C10—Fe159.3 (2)
Fe1—C2—C3—C460.7 (3)C8—Fe1—C10—C9117.4 (3)
C1—C2—C3—Fe159.6 (3)C1—Fe1—C10—C9169.8 (5)
C8—Fe1—C3—C282.2 (4)C6—Fe1—C10—C979.9 (2)
C1—Fe1—C3—C237.9 (4)C2—Fe1—C10—C9162.8 (2)
C6—Fe1—C3—C249.0 (6)C7—Fe1—C10—C937.0 (2)
C9—Fe1—C3—C2165.9 (3)C3—Fe1—C10—C9122.8 (2)
C7—Fe1—C3—C2161.7 (5)C5—Fe1—C10—C949.1 (4)
C10—Fe1—C3—C2124.5 (3)C4—Fe1—C10—C980.8 (3)
C5—Fe1—C3—C281.1 (4)C1—Fe1—C10—C852.4 (6)
C4—Fe1—C3—C2117.9 (5)C6—Fe1—C10—C837.5 (2)
C8—Fe1—C3—C4159.8 (3)C9—Fe1—C10—C8117.4 (3)
C1—Fe1—C3—C480.1 (4)C2—Fe1—C10—C879.9 (3)
C6—Fe1—C3—C4167.0 (4)C7—Fe1—C10—C880.4 (2)
C9—Fe1—C3—C476.1 (3)C3—Fe1—C10—C8119.8 (2)
C2—Fe1—C3—C4117.9 (5)C5—Fe1—C10—C8166.5 (4)
C7—Fe1—C3—C443.8 (6)C4—Fe1—C10—C8161.8 (2)
C10—Fe1—C3—C4117.6 (3)C8—Fe1—C10—C11120.9 (3)
C5—Fe1—C3—C436.9 (3)C1—Fe1—C10—C1168.5 (6)
C2—C3—C4—C51.8 (5)C6—Fe1—C10—C11158.4 (3)
Fe1—C3—C4—C558.6 (3)C9—Fe1—C10—C11121.7 (3)
C2—C3—C4—Fe160.4 (3)C2—Fe1—C10—C1141.1 (3)
C8—Fe1—C4—C5168.3 (5)C7—Fe1—C10—C11158.7 (3)
C1—Fe1—C4—C538.1 (3)C3—Fe1—C10—C111.1 (3)
C6—Fe1—C4—C545.7 (7)C5—Fe1—C10—C1172.6 (5)
C9—Fe1—C4—C5117.6 (4)C4—Fe1—C10—C1140.9 (3)
C2—Fe1—C4—C582.0 (4)C9—C10—C11—C157.8 (4)
C7—Fe1—C4—C576.3 (4)C8—C10—C11—C15171.8 (3)
C10—Fe1—C4—C5160.1 (3)Fe1—C10—C11—C1598.4 (3)
C3—Fe1—C4—C5120.0 (5)C9—C10—C11—C12172.6 (3)
C8—Fe1—C4—C348.4 (6)C8—C10—C11—C127.8 (4)
C1—Fe1—C4—C381.9 (3)Fe1—C10—C11—C1282.0 (3)
C6—Fe1—C4—C3165.7 (4)C15—C11—C12—C130.6 (4)
C9—Fe1—C4—C3122.5 (3)C10—C11—C12—C13179.0 (2)
C2—Fe1—C4—C337.9 (3)C11—C12—C13—C140.8 (4)
C7—Fe1—C4—C3163.7 (2)C11—C12—C13—C18179.0 (2)
C10—Fe1—C4—C380.0 (3)C12—C13—C14—C160.2 (4)
C5—Fe1—C4—C3120.0 (5)C18—C13—C14—C16179.6 (2)
C2—C1—C5—C41.0 (5)C12—C11—C15—C160.2 (4)
Fe1—C1—C5—C460.8 (3)C10—C11—C15—C16179.8 (2)
C2—C1—C5—Fe159.7 (3)C13—C14—C16—C150.5 (4)
C3—C4—C5—C11.7 (5)C13—C14—C16—C17178.3 (2)
Fe1—C4—C5—C160.0 (3)C11—C15—C16—C140.7 (4)
C3—C4—C5—Fe158.3 (3)C11—C15—C16—C17178.6 (2)
C8—Fe1—C5—C147.2 (8)Mn1—O2—C17—O16.6 (3)
C6—Fe1—C5—C179.3 (4)Mn1—O2—C17—C16172.10 (18)
C9—Fe1—C5—C1162.2 (3)C14—C16—C17—O18.1 (4)
C2—Fe1—C5—C137.3 (3)C15—C16—C17—O1174.0 (2)
C7—Fe1—C5—C1119.9 (3)C14—C16—C17—O2170.6 (2)
C10—Fe1—C5—C1162.7 (3)C15—C16—C17—O27.2 (4)
C3—Fe1—C5—C180.5 (3)Mn1ii—O4—C18—O31.4 (3)
C4—Fe1—C5—C1117.9 (5)Mn1ii—O4—C18—C13179.6 (2)
C8—Fe1—C5—C4165.0 (5)Mn1ii—O3—C18—O41.6 (3)
C1—Fe1—C5—C4117.9 (5)Mn1ii—O3—C18—C13179.37 (19)
C6—Fe1—C5—C4162.8 (3)C12—C13—C18—O4172.6 (3)
C9—Fe1—C5—C479.9 (4)C14—C13—C18—O47.2 (4)
C2—Fe1—C5—C480.6 (3)C12—C13—C18—O36.4 (4)
C7—Fe1—C5—C4122.2 (3)C14—C13—C18—O3173.7 (2)
C10—Fe1—C5—C444.8 (6)C23—N1—C19—C200.6 (6)
C3—Fe1—C5—C437.4 (3)Mn1—N1—C19—C20172.1 (4)
C8—Fe1—C6—C7119.3 (3)N1—C19—C20—C210.8 (7)
C1—Fe1—C6—C7117.1 (3)C19—C20—C21—C220.7 (7)
C9—Fe1—C6—C737.6 (2)C20—C21—C22—C230.3 (6)
C2—Fe1—C6—C7159.9 (3)C19—N1—C23—N2179.9 (3)
C10—Fe1—C6—C781.7 (2)Mn1—N1—C23—N210.1 (4)
C3—Fe1—C6—C7164.5 (4)C19—N1—C23—C220.3 (4)
C5—Fe1—C6—C775.2 (4)Mn1—N1—C23—C22170.3 (2)
C4—Fe1—C6—C741.1 (6)C24—N2—C23—N16.8 (5)
C1—Fe1—C6—C8123.6 (3)C24—N2—C23—C22172.8 (3)
C9—Fe1—C6—C881.7 (2)C21—C22—C23—N10.1 (5)
C2—Fe1—C6—C880.8 (3)C21—C22—C23—N2179.8 (3)
C7—Fe1—C6—C8119.3 (3)C28—N3—C24—N2178.0 (2)
C10—Fe1—C6—C837.6 (2)Mn1—N3—C24—N212.0 (4)
C3—Fe1—C6—C845.2 (5)C28—N3—C24—C251.4 (4)
C5—Fe1—C6—C8165.5 (3)Mn1—N3—C24—C25168.53 (19)
C4—Fe1—C6—C8160.4 (5)C23—N2—C24—N35.8 (5)
C8—C6—C7—C90.0 (4)C23—N2—C24—C25173.6 (3)
Fe1—C6—C7—C959.2 (2)N3—C24—C25—C260.3 (4)
C8—C6—C7—Fe159.1 (2)N2—C24—C25—C26179.2 (3)
C8—Fe1—C7—C638.0 (2)C24—C25—C26—C271.0 (4)
C1—Fe1—C7—C682.4 (4)C25—C26—C27—C281.0 (5)
C9—Fe1—C7—C6119.6 (3)C24—N3—C28—C271.4 (4)
C2—Fe1—C7—C649.7 (6)Mn1—N3—C28—C27169.9 (2)
C10—Fe1—C7—C682.3 (2)C26—C27—C28—N30.2 (5)
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H10···O7iii0.81 (3)2.01 (3)2.816 (4)173 (3)
O7—H7A···O3i0.75 (4)2.03 (4)2.693 (3)148 (4)
O5—H3···O1iv0.89 (4)1.84 (4)2.731 (3)177 (4)
O6—H6A···O4iv0.85 (1)1.86 (2)2.685 (3)162 (4)
O5—H5···O60.78 (3)1.88 (3)2.655 (4)171 (3)
O7—H7B···O20.86 (6)1.94 (6)2.753 (4)156 (5)
Symmetry codes: (i) x, y+1, z; (iii) x1, y, z; (iv) x+2, y, z.

Experimental details

Crystal data
Chemical formula[FeMn(C5H5)(C13H7O4)(C10H9N3)(H2O)]·CH4O·H2O
Mr642.34
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)9.4550 (19), 10.174 (2), 15.153 (3)
α, β, γ (°)93.03 (3), 99.94 (3), 94.72 (3)
V3)1427.5 (5)
Z2
Radiation typeMo Kα
µ (mm1)1.00
Crystal size (mm)0.24 × 0.20 × 0.15
Data collection
DiffractometerRigaku Mercury CCD
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2000)
Tmin, Tmax0.798, 0.866
No. of measured, independent and
observed [I > 2σ(I)] reflections
8342, 5520, 4259
Rint0.017
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.096, 1.03
No. of reflections5520
No. of parameters430
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.46, 0.46

Computer programs: CrystalClear (Rigaku, 2000), SHELXS97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H10···O7i0.81 (3)2.01 (3)2.816 (4)173 (3)
O7—H7A···O3ii0.75 (4)2.03 (4)2.693 (3)148 (4)
O5—H3···O1iii0.89 (4)1.84 (4)2.731 (3)177 (4)
O6—H6A···O4iii0.850 (10)1.863 (17)2.685 (3)162 (4)
O5—H5···O60.78 (3)1.88 (3)2.655 (4)171 (3)
O7—H7B···O20.86 (6)1.94 (6)2.753 (4)156 (5)
Symmetry codes: (i) x1, y, z; (ii) x, y+1, z; (iii) x+2, y, z.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (20771094, 20671083), the Science and Technology Key Task of Henan Province (0524270061) and the China Postdoctoral Science Foundation (20070410877).

References

First citationFang, C. J., Duan, C. Y., Guo, D., He, C., Meng, Q. J., Wang, Z. M. & Yan, C. H. (2001). Chem. Commun. pp. 2540–2541.  Google Scholar
First citationHudson, R. D. A. (2001). J. Organomet. Chem. 47, 637–639.  Google Scholar
First citationLi, X., Liu, W., Zhang, H. Y. & Wu, B. L. (2008). J. Organomet. Chem. 693, 3295–3302.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, G., Song, Y. L., Hou, H. W., Li, L. K., Fan, Y. T., Zhu, Y., Meng, X. R. & Mi, L. W. (2003). Inorg. Chem. 42, 913–920.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLi, X., Wu, B. L., Liu, W., Niu, C. Y., Niu, Y. Y. & Zhang, H. Y. (2009). J. Coord. Chem. 62, 3142–3156.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (2000). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSengupta, P., Dinda, R., Ghosh, S. & Sheldrick, W. S. (2001). Polyhedron, 20, 3349–3354.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTogni, A. & Hayashi, T. (1995). Ferrocenes: Homogeneous Catalysis, Organic Synthesis, Materials Science. New York: VCH Publishers.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 7| July 2011| Pages m989-m990
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds