organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-{[{2-Hy­dr­oxy-3-[2-methyl-5-(propan-2-yl)phen­­oxy]prop­yl}(pyridin-2-ylmeth­yl)amino]­meth­yl}phenol

aSchool of Chemical Sciences, North Maharashtra University, Jalgaon 425 001, India, and bSolid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, Karnataka, India
*Correspondence e-mail: bendrers@rediffmail.com

(Received 4 May 2011; accepted 31 May 2011; online 11 June 2011)

In the title racemic compound, C26H32N2O3, an intra­molecular O—H⋯N hydrogen bond is formed between the phenolic OH group and the tertiary amine N atom. Another O—H⋯N hydrogen bond that is formed between the OH group and the pyridine N atom links the mol­ecules into a polymeric chain extending along the a axis. The structure is further stabilized by intramolecular and intermolecular C—H⋯O interactions.

Related literature

For the synthesis of the title compound, see: Rossi et al. (2005[Rossi, L. M., Neves, A., Bartoluzzi, A. J., Horner, R., Szpoganicz, B., Terenzi, H., Mangrich, A. S., Pereira-Maia, E., Castellano, E. E. & Haase, W. (2005). Inorg. Chim. Acta, 358, 1807-1822.]). For related structures, see: Butcher et al. (2005[Butcher, R. J., Bendre, R. S. & Kuwar, A. S. (2005). Acta Cryst. E61, o3511-o3513.], 2007[Butcher, R. J., Bendre, R. S. & Kuwar, A. S. (2007). Acta Cryst. E63, o3360.]). For the activities of related metal complexes, see: Ruiz et al. (2010[Ruiz, R., Garcia, B., Garcia-Tojal, J., Busto, N., Ibeas, S., Leal, J. M., Martins, C., Gaspar, J., Borras, J., Gil-Garcia, R. & Gonzalez-Alvarez, M. (2010). J. Biol. Inorg. Chem. 15, 515-532.]); Yajima et al. (2002[Yajima, T., Shimazaki, Y., Ishigami, N., Odani, A. & Yamauchi, O. (2002). Inorg. Chim. Acta, 337, 193-202.]); Sarkar et al. (2006[Sarkar, S., Mondal, A., Chopra, D., Ribas, J. & Rajak, K. K. (2006). Eur. J. Inorg Chem. pp. 3510-3516.]); Neves et al. (1999[Neves, A., Verani, C. N., de Brito, M. A., Vencato, I., Mangrich, A., Oliva, G., Souza, D. D. H. F. & Batista, A. A. (1999). Inorg. Chim. Acta, 290, 207-212.]).

[Scheme 1]

Experimental

Crystal data
  • C26H32N2O3

  • Mr = 420.54

  • Triclinic, [P \overline 1]

  • a = 8.0940 (6) Å

  • b = 11.3611 (7) Å

  • c = 13.7625 (10) Å

  • α = 79.944 (6)°

  • β = 82.915 (6)°

  • γ = 71.745 (6)°

  • V = 1180.21 (15) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 120 K

  • 0.30 × 0.30 × 0.20 mm

Data collection
  • Oxford Xcalibur Eos (Nova) CCD detector diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]) Tmin = 0.977, Tmax = 0.985

  • 23864 measured reflections

  • 4083 independent reflections

  • 3232 reflections with I > 2σ(I)

  • Rint = 0.063

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.163

  • S = 1.06

  • 4083 reflections

  • 285 parameters

  • H-atom parameters constrained

  • Δρmax = 0.99 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2O⋯N2i 0.82 2.09 2.897 (2) 166
O3—H3⋯N1 0.82 1.99 2.721 (2) 147
C14—H14A⋯O2 0.97 2.51 3.199 (3) 128
C23—H23⋯O3ii 0.93 2.47 3.114 (3) 127
Symmetry codes: (i) x-1, y, z; (ii) -x+2, -y, -z+1.

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and CAMERON (Watkin et al., 1993[Watkin, D. M., Pearce, L. & Prout, C. K. (1993). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The chemistry of asymmetric polydentate ligands evokes interest, mainly towards the synthesis of biologically active coordination compounds. DNA metallointercalators have received considerable attention over the past few years because of their possible uses as new therapeutic agents and also for their interesting photochemical properties (Ruiz et al., 2010; Yajima et al., 2002; Sarkar et al., 2006). There are several reports on copper complexes of the asymmetrical ligands exhibiting important biological activities such as genomic and plasmid DNA cleavage and cytotoxic activity (Neves et al., 1999; Rossi et al., 2005).

The title compound was synthesized for preparation of metal complexes which would act as chemical nucleases. The ligand coordinates with a metal ion through its N2O2 donor set along with an additional halide ligand to form a complex with distorted trigonal bipyramidal geometry. The molecular conformation of the ligand is nonplanar with O—H···N and C—H···O intramolecular hydrogen bonds, both forming the six-membered rings (Fig. 1, Table 1). Packing of the molecules is mainly guided by the intermolecular O—H···N hydrogen bonds connecting the 1-(5-isopropyl-2-methylphenoxy)propan-2-ol fragment of one molecule to the pyridine fragment of the other.

Related literature top

For the synthesis of the title compound, see: Rossi et al. (2005). For related crystal structures, see: Butcher et al. (2005, 2007). For activities of related metal complexes, see: Ruiz et al. (2010); Yajima et al. (2002); Sarkar et al. (2006); Neves et al. (1999).

Experimental top

The title compound was synthesized by the reaction of 2-[(5-isopropyl-2-methylphenoxy)methyl]oxirane (5.8 mmol, 1.20 g) with N-(2-hydroxybenzyl)-N-(2-pyridylmethyl)amine (5.8 mmol, 1.23 g) in methanol under reflux condition at 70°C for 8 h. The reaction mixture was cooled, filtered and the precipitated product was washed with cold methanol in order to remove the impurities (yield 66%, m.p. 407K). Crystals suitable for X-ray diffraction were obtained by slow evaporation of the saturated solution in acetonitrile at room temperature.

Refinement top

All H atoms were positioned geometrically (C—H = 0.93-0.97 Å, O—H = 0.82 Å) and refined using a riding model with Uiso(H)= 1.2Ueq(C,O).

The high residual peak of 0.99 e Å-3 observed in a difference map was located at a distance of 1.05 Å from C12 and it may represent O atom of the OH group of the opposite enantiomer located at the same site in crystal. No reasonable model of the disorder could be obtained as the occupancy of the minor enantiomer should be only a few percent, with a significant overlap of the atomic positions.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and CAMERON (Watkin et al., 1993); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing intramolecular O—H···N hydrogen bond. Displacement ellipsoids are drawn at the 50% probability level. The H atom involved in intramolecular hydrogen bond is shown as a sphere of arbitrary radius.
[Figure 2] Fig. 2. Packing of the title compound viewed down the b axis. The dotted lines indicate intermolecular O—H···N interactions.
2-{[{2-Hydroxy-3-[2-methyl-5-(propan-2-yl)phenoxy]propyl}(pyridin-2- ylmethyl)amino]methyl}phenol top
Crystal data top
C26H32N2O3Z = 2
Mr = 420.54F(000) = 452
Triclinic, P1Dx = 1.183 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.0940 (6) ÅCell parameters from 23864 reflections
b = 11.3611 (7) Åθ = 2.6–25.0°
c = 13.7625 (10) ŵ = 0.08 mm1
α = 79.944 (6)°T = 120 K
β = 82.915 (6)°Block, colourless
γ = 71.745 (6)°0.30 × 0.30 × 0.20 mm
V = 1180.21 (15) Å3
Data collection top
Oxford Xcalibur Eos (Nova) CCD detector
diffractometer
4083 independent reflections
Radiation source: Enhance (Mo) X-ray Source3232 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.063
ω scansθmax = 25.0°, θmin = 2.6°
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
h = 99
Tmin = 0.977, Tmax = 0.985k = 1313
23864 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.163H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0984P)2 + 0.1634P]
where P = (Fo2 + 2Fc2)/3
4083 reflections(Δ/σ)max < 0.001
285 parametersΔρmax = 0.99 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C26H32N2O3γ = 71.745 (6)°
Mr = 420.54V = 1180.21 (15) Å3
Triclinic, P1Z = 2
a = 8.0940 (6) ÅMo Kα radiation
b = 11.3611 (7) ŵ = 0.08 mm1
c = 13.7625 (10) ÅT = 120 K
α = 79.944 (6)°0.30 × 0.30 × 0.20 mm
β = 82.915 (6)°
Data collection top
Oxford Xcalibur Eos (Nova) CCD detector
diffractometer
4083 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
3232 reflections with I > 2σ(I)
Tmin = 0.977, Tmax = 0.985Rint = 0.063
23864 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.163H-atom parameters constrained
S = 1.06Δρmax = 0.99 e Å3
4083 reflectionsΔρmin = 0.27 e Å3
285 parameters
Special details top

Experimental. 1H NMR (p.p.m., CDCl3): 1.20 (d, 6H, 2-CH3), 2.08 (s, 3H, –CH3), 2.84 (d, 2H, –CH2), 3.10 (m, 1H, –CH), 3.90 (m, 4H 2-CH2), 4.10(d, 2H, –CH2), 4.25 (m, 1H, –CH), 4.58 (bs, 1H, Ar—OH), 6.7 to 7.7 Ar—H. (Found: C 74.54, H 7.37, N 6.67%; Calcd. for C26H31O3N2: C 74.44, H 7.44, N 7.05%) IR (cm-l): ? (CC) 1586, ? (C—O—C) 1151. MS (m/z): 421[M]+

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7021 (3)0.58331 (18)0.23411 (15)0.0272 (5)
H10.60490.58970.27890.033*
C20.6851 (3)0.65628 (19)0.14101 (15)0.0289 (5)
C30.8326 (3)0.6470 (2)0.07647 (15)0.0308 (5)
H3A0.82400.69560.01440.037*
C40.9931 (3)0.5658 (2)0.10358 (16)0.0317 (5)
H41.09040.56130.05910.038*
C51.0125 (3)0.49111 (18)0.19502 (16)0.0287 (5)
C60.8624 (3)0.50136 (18)0.26044 (15)0.0260 (5)
C70.5086 (3)0.7432 (2)0.11150 (16)0.0323 (5)
H70.52430.78250.04310.039*
C80.4387 (3)0.8471 (2)0.17527 (18)0.0375 (5)
H8A0.42490.81120.24320.056*
H8B0.32780.90060.15400.056*
H8C0.51910.89520.16890.056*
C90.3783 (3)0.6693 (2)0.11357 (17)0.0360 (5)
H9A0.42140.60930.06830.054*
H9B0.26780.72600.09450.054*
H9C0.36430.62660.17920.054*
C101.1857 (3)0.4025 (2)0.22438 (18)0.0381 (5)
H10A1.27310.40770.17120.057*
H10B1.17800.31850.23830.057*
H10C1.21680.42460.28230.057*
C110.7519 (3)0.43452 (19)0.42513 (16)0.0290 (5)
H11A0.64810.43020.39920.035*
H11B0.72420.51310.45110.035*
C120.8149 (3)0.32503 (19)0.50560 (16)0.0300 (5)
H120.85120.24780.47570.036*
C130.9716 (3)0.33436 (18)0.55172 (15)0.0249 (4)
H13A1.05160.35890.49950.030*
H13B0.93210.39920.59400.030*
C140.9973 (3)0.20672 (18)0.71470 (14)0.0253 (4)
H14A0.87100.23860.71830.030*
H14B1.04010.25830.74840.030*
C151.0514 (2)0.07363 (18)0.76661 (14)0.0247 (4)
C161.0327 (3)0.02368 (19)0.72237 (15)0.0271 (5)
C171.0661 (3)0.1443 (2)0.77277 (17)0.0345 (5)
H171.04980.20740.74360.041*
C181.1244 (3)0.1707 (2)0.86749 (17)0.0392 (6)
H181.14630.25150.90180.047*
C191.1499 (3)0.0776 (2)0.91064 (17)0.0404 (6)
H191.19280.09600.97290.048*
C201.1114 (3)0.0433 (2)0.86082 (15)0.0326 (5)
H201.12600.10610.89120.039*
C211.2544 (2)0.19811 (18)0.60307 (14)0.0239 (4)
H21A1.30810.12790.65170.029*
H21B1.27440.27220.61890.029*
C221.3400 (2)0.17410 (17)0.50250 (14)0.0227 (4)
C231.2875 (3)0.10394 (18)0.44568 (15)0.0273 (5)
H231.19550.07160.46940.033*
C241.3720 (3)0.08254 (19)0.35424 (15)0.0290 (5)
H241.33690.03680.31530.035*
C251.5104 (3)0.13057 (19)0.32132 (16)0.0298 (5)
H251.57070.11770.26020.036*
C261.5555 (3)0.19783 (19)0.38222 (15)0.0296 (5)
H261.64860.22950.36030.036*
N11.0650 (2)0.21620 (14)0.61015 (12)0.0226 (4)
N21.4744 (2)0.22078 (16)0.47087 (13)0.0275 (4)
O10.89021 (18)0.42567 (13)0.34963 (11)0.0313 (4)
O20.67674 (19)0.31938 (15)0.57718 (11)0.0354 (4)
H2O0.60560.29610.55410.053*
O30.9810 (2)0.00092 (14)0.62858 (11)0.0341 (4)
H30.99300.06620.60080.051*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0266 (11)0.0251 (10)0.0336 (11)0.0092 (9)0.0063 (9)0.0082 (9)
C20.0310 (11)0.0274 (11)0.0339 (11)0.0117 (9)0.0080 (9)0.0095 (9)
C30.0360 (12)0.0321 (11)0.0292 (11)0.0144 (10)0.0062 (9)0.0069 (9)
C40.0331 (12)0.0330 (12)0.0339 (12)0.0137 (9)0.0015 (9)0.0118 (9)
C50.0284 (11)0.0240 (11)0.0388 (12)0.0095 (9)0.0058 (9)0.0130 (9)
C60.0299 (11)0.0211 (10)0.0311 (11)0.0110 (8)0.0077 (9)0.0046 (8)
C70.0294 (12)0.0343 (12)0.0348 (12)0.0112 (9)0.0108 (9)0.0002 (9)
C80.0324 (12)0.0311 (12)0.0490 (14)0.0083 (10)0.0068 (10)0.0054 (10)
C90.0305 (12)0.0404 (13)0.0405 (13)0.0115 (10)0.0118 (10)0.0067 (10)
C100.0310 (12)0.0325 (12)0.0520 (14)0.0095 (10)0.0037 (10)0.0089 (10)
C110.0221 (10)0.0265 (11)0.0411 (12)0.0101 (8)0.0090 (9)0.0017 (9)
C120.0243 (11)0.0282 (11)0.0400 (12)0.0124 (9)0.0072 (9)0.0004 (9)
C130.0250 (10)0.0218 (10)0.0299 (11)0.0093 (8)0.0039 (8)0.0037 (8)
C140.0224 (10)0.0273 (11)0.0295 (11)0.0098 (8)0.0028 (8)0.0080 (8)
C150.0205 (10)0.0268 (11)0.0284 (11)0.0096 (8)0.0007 (8)0.0051 (8)
C160.0210 (10)0.0309 (11)0.0324 (11)0.0130 (8)0.0009 (8)0.0049 (9)
C170.0313 (12)0.0284 (12)0.0455 (14)0.0137 (9)0.0033 (10)0.0056 (10)
C180.0390 (13)0.0298 (12)0.0408 (13)0.0083 (10)0.0062 (10)0.0056 (10)
C190.0426 (14)0.0411 (14)0.0304 (12)0.0066 (11)0.0015 (10)0.0017 (10)
C200.0313 (12)0.0357 (12)0.0307 (11)0.0089 (9)0.0001 (9)0.0079 (9)
C210.0192 (10)0.0240 (10)0.0324 (11)0.0092 (8)0.0057 (8)0.0064 (8)
C220.0180 (9)0.0196 (10)0.0316 (11)0.0063 (8)0.0064 (8)0.0018 (8)
C230.0221 (10)0.0275 (11)0.0375 (12)0.0123 (8)0.0034 (9)0.0083 (9)
C240.0245 (10)0.0284 (11)0.0370 (12)0.0064 (9)0.0058 (9)0.0131 (9)
C250.0230 (10)0.0302 (11)0.0348 (12)0.0049 (9)0.0009 (9)0.0076 (9)
C260.0233 (10)0.0336 (12)0.0362 (12)0.0141 (9)0.0013 (9)0.0080 (9)
N10.0183 (8)0.0230 (8)0.0288 (9)0.0082 (7)0.0039 (7)0.0042 (7)
N20.0230 (9)0.0280 (9)0.0362 (10)0.0127 (7)0.0032 (7)0.0073 (7)
O10.0266 (8)0.0294 (8)0.0365 (8)0.0063 (6)0.0073 (6)0.0015 (6)
O20.0309 (9)0.0410 (9)0.0389 (9)0.0168 (7)0.0047 (7)0.0051 (7)
O30.0400 (9)0.0315 (8)0.0405 (9)0.0206 (7)0.0123 (7)0.0054 (7)
Geometric parameters (Å, º) top
C1—C61.386 (3)C13—H13B0.9700
C1—C21.396 (3)C14—N11.473 (3)
C1—H10.9300C14—C151.508 (3)
C2—C31.384 (3)C14—H14A0.9700
C2—C71.516 (3)C14—H14B0.9700
C3—C41.388 (3)C15—C201.389 (3)
C3—H3A0.9300C15—C161.407 (3)
C4—C51.386 (3)C16—O31.362 (2)
C4—H40.9300C16—C171.384 (3)
C5—C61.406 (3)C17—C181.392 (3)
C5—C101.502 (3)C17—H170.9300
C6—O11.369 (2)C18—C191.378 (3)
C7—C81.518 (3)C18—H180.9300
C7—C91.535 (3)C19—C201.382 (3)
C7—H70.9800C19—H190.9300
C8—H8A0.9600C20—H200.9300
C8—H8B0.9600C21—N11.474 (2)
C8—H8C0.9600C21—C221.499 (3)
C9—H9A0.9600C21—H21A0.9700
C9—H9B0.9600C21—H21B0.9700
C9—H9C0.9600C22—N21.348 (3)
C10—H10A0.9600C22—C231.393 (3)
C10—H10B0.9600C23—C241.379 (3)
C10—H10C0.9600C23—H230.9300
C11—O11.422 (3)C24—C251.389 (3)
C11—C121.515 (3)C24—H240.9300
C11—H11A0.9700C25—C261.376 (3)
C11—H11B0.9700C25—H250.9300
C12—O21.406 (3)C26—N21.339 (3)
C12—C131.526 (3)C26—H260.9300
C12—H120.9800O2—H2O0.8200
C13—N11.469 (2)O3—H30.8200
C13—H13A0.9700
C6—C1—C2120.7 (2)C12—C13—H13A109.0
C6—C1—H1119.7N1—C13—H13B109.0
C2—C1—H1119.7C12—C13—H13B109.0
C3—C2—C1118.5 (2)H13A—C13—H13B107.8
C3—C2—C7120.99 (19)N1—C14—C15111.99 (16)
C1—C2—C7120.52 (19)N1—C14—H14A109.2
C2—C3—C4120.6 (2)C15—C14—H14A109.2
C2—C3—H3A119.7N1—C14—H14B109.2
C4—C3—H3A119.7C15—C14—H14B109.2
C5—C4—C3121.9 (2)H14A—C14—H14B107.9
C5—C4—H4119.1C20—C15—C16117.71 (18)
C3—C4—H4119.1C20—C15—C14121.98 (18)
C4—C5—C6117.28 (19)C16—C15—C14120.21 (17)
C4—C5—C10122.1 (2)O3—C16—C17118.51 (19)
C6—C5—C10120.66 (19)O3—C16—C15120.51 (18)
O1—C6—C1124.48 (19)C17—C16—C15120.97 (19)
O1—C6—C5114.48 (18)C16—C17—C18119.5 (2)
C1—C6—C5121.04 (19)C16—C17—H17120.2
C2—C7—C8111.83 (17)C18—C17—H17120.2
C2—C7—C9110.83 (17)C19—C18—C17120.3 (2)
C8—C7—C9111.36 (19)C19—C18—H18119.8
C2—C7—H7107.5C17—C18—H18119.8
C8—C7—H7107.5C18—C19—C20119.7 (2)
C9—C7—H7107.5C18—C19—H19120.2
C7—C8—H8A109.5C20—C19—H19120.2
C7—C8—H8B109.5C19—C20—C15121.7 (2)
H8A—C8—H8B109.5C19—C20—H20119.1
C7—C8—H8C109.5C15—C20—H20119.1
H8A—C8—H8C109.5N1—C21—C22112.97 (15)
H8B—C8—H8C109.5N1—C21—H21A109.0
C7—C9—H9A109.5C22—C21—H21A109.0
C7—C9—H9B109.5N1—C21—H21B109.0
H9A—C9—H9B109.5C22—C21—H21B109.0
C7—C9—H9C109.5H21A—C21—H21B107.8
H9A—C9—H9C109.5N2—C22—C23121.50 (19)
H9B—C9—H9C109.5N2—C22—C21116.56 (16)
C5—C10—H10A109.5C23—C22—C21121.91 (17)
C5—C10—H10B109.5C24—C23—C22119.90 (19)
H10A—C10—H10B109.5C24—C23—H23120.1
C5—C10—H10C109.5C22—C23—H23120.1
H10A—C10—H10C109.5C23—C24—C25118.79 (19)
H10B—C10—H10C109.5C23—C24—H24120.6
O1—C11—C12106.52 (16)C25—C24—H24120.6
O1—C11—H11A110.4C26—C25—C24117.8 (2)
C12—C11—H11A110.4C26—C25—H25121.1
O1—C11—H11B110.4C24—C25—H25121.1
C12—C11—H11B110.4N2—C26—C25124.49 (19)
H11A—C11—H11B108.6N2—C26—H26117.8
O2—C12—C11109.42 (16)C25—C26—H26117.8
O2—C12—C13111.46 (17)C13—N1—C14112.26 (15)
C11—C12—C13111.23 (16)C13—N1—C21111.67 (15)
O2—C12—H12108.2C14—N1—C21110.08 (15)
C11—C12—H12108.2C26—N2—C22117.52 (17)
C13—C12—H12108.2C6—O1—C11119.89 (15)
N1—C13—C12112.82 (15)C12—O2—H2O109.5
N1—C13—H13A109.0C16—O3—H3109.5
C6—C1—C2—C31.4 (3)O3—C16—C17—C18177.95 (19)
C6—C1—C2—C7178.34 (17)C15—C16—C17—C182.0 (3)
C1—C2—C3—C40.7 (3)C16—C17—C18—C190.5 (3)
C7—C2—C3—C4179.02 (18)C17—C18—C19—C202.3 (3)
C2—C3—C4—C50.2 (3)C18—C19—C20—C151.7 (3)
C3—C4—C5—C60.5 (3)C16—C15—C20—C190.7 (3)
C3—C4—C5—C10179.60 (18)C14—C15—C20—C19175.7 (2)
C2—C1—C6—O1179.35 (17)N1—C21—C22—N2145.52 (17)
C2—C1—C6—C51.2 (3)N1—C21—C22—C2336.4 (2)
C4—C5—C6—O1179.73 (17)N2—C22—C23—C241.0 (3)
C10—C5—C6—O10.2 (3)C21—C22—C23—C24178.94 (18)
C4—C5—C6—C10.2 (3)C22—C23—C24—C250.9 (3)
C10—C5—C6—C1179.71 (18)C23—C24—C25—C260.2 (3)
C3—C2—C7—C8115.7 (2)C24—C25—C26—N20.4 (3)
C1—C2—C7—C864.5 (3)C12—C13—N1—C1490.37 (19)
C3—C2—C7—C9119.4 (2)C12—C13—N1—C21145.45 (17)
C1—C2—C7—C960.4 (3)C15—C14—N1—C13162.17 (15)
O1—C11—C12—O2172.92 (15)C15—C14—N1—C2172.78 (19)
O1—C11—C12—C1363.5 (2)C22—C21—N1—C1369.2 (2)
O2—C12—C13—N172.9 (2)C22—C21—N1—C14165.45 (15)
C11—C12—C13—N1164.73 (17)C25—C26—N2—C220.3 (3)
N1—C14—C15—C20136.15 (19)C23—C22—N2—C260.4 (3)
N1—C14—C15—C1647.5 (2)C21—C22—N2—C26178.44 (17)
C20—C15—C16—O3177.38 (18)C1—C6—O1—C114.5 (3)
C14—C15—C16—O36.1 (3)C5—C6—O1—C11175.02 (16)
C20—C15—C16—C172.6 (3)C12—C11—O1—C6170.36 (15)
C14—C15—C16—C17173.90 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2O···N2i0.822.092.897 (2)166
O3—H3···N10.821.992.721 (2)147
C14—H14A···O20.972.513.199 (3)128
C23—H23···O3ii0.932.473.114 (3)127
Symmetry codes: (i) x1, y, z; (ii) x+2, y, z+1.

Experimental details

Crystal data
Chemical formulaC26H32N2O3
Mr420.54
Crystal system, space groupTriclinic, P1
Temperature (K)120
a, b, c (Å)8.0940 (6), 11.3611 (7), 13.7625 (10)
α, β, γ (°)79.944 (6), 82.915 (6), 71.745 (6)
V3)1180.21 (15)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.30 × 0.30 × 0.20
Data collection
DiffractometerOxford Xcalibur Eos (Nova) CCD detector
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.977, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
23864, 4083, 3232
Rint0.063
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.163, 1.06
No. of reflections4083
No. of parameters285
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.99, 0.27

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and CAMERON (Watkin et al., 1993), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2O···N2i0.822.092.897 (2)166
O3—H3···N10.821.992.721 (2)147
C14—H14A···O20.972.513.199 (3)128
C23—H23···O3ii0.932.473.114 (3)127
Symmetry codes: (i) x1, y, z; (ii) x+2, y, z+1.
 

Acknowledgements

The authors thank the DST, India, for funding under DST-FIST (Level II) for the X-ray diffraction facility at SSCU, Indian Institute of Science, Bangalore.

References

First citationButcher, R. J., Bendre, R. S. & Kuwar, A. S. (2005). Acta Cryst. E61, o3511–o3513.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationButcher, R. J., Bendre, R. S. & Kuwar, A. S. (2007). Acta Cryst. E63, o3360.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationNeves, A., Verani, C. N., de Brito, M. A., Vencato, I., Mangrich, A., Oliva, G., Souza, D. D. H. F. & Batista, A. A. (1999). Inorg. Chim. Acta, 290, 207–212.  CrossRef CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationRossi, L. M., Neves, A., Bartoluzzi, A. J., Horner, R., Szpoganicz, B., Terenzi, H., Mangrich, A. S., Pereira-Maia, E., Castellano, E. E. & Haase, W. (2005). Inorg. Chim. Acta, 358, 1807–1822.  CrossRef CAS Google Scholar
First citationRuiz, R., Garcia, B., Garcia-Tojal, J., Busto, N., Ibeas, S., Leal, J. M., Martins, C., Gaspar, J., Borras, J., Gil-Garcia, R. & Gonzalez-Alvarez, M. (2010). J. Biol. Inorg. Chem. 15, 515–532.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSarkar, S., Mondal, A., Chopra, D., Ribas, J. & Rajak, K. K. (2006). Eur. J. Inorg Chem. pp. 3510–3516.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWatkin, D. M., Pearce, L. & Prout, C. K. (1993). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.  Google Scholar
First citationYajima, T., Shimazaki, Y., Ishigami, N., Odani, A. & Yamauchi, O. (2002). Inorg. Chim. Acta, 337, 193–202.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds