Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Diaquabis(4-carboxy-2-ethyl-1 H -imida-zole-5-carboxylato- $\kappa^{2} N^{3}, O^{4}$)manganese(II) N, N-dimethylformamide disolvate

Gang Zhang ${ }^{\text {a* }}$ and Yong Wang ${ }^{\text {b }}$

${ }^{\text {a Department of Chemistry and Chemical Engineering, Henan University of Urban }}$ Construction, Pingdingshan, Henan, People's Republic of China, and ${ }^{\mathbf{b}}$ Department of Chemical Engineering, Henan Polytechnic Institute, Nanyang, 473009, People's
Republic of China
Correspondence e-mail: zhanghn1010@163.com

Received 18 May 2011; accepted 26 May 2011
Key indicators: single-crystal X-ray study; $T=296 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$; R factor $=0.034 ; w R$ factor $=0.096$; data-to-parameter ratio $=13.4$.

In the title compound, $\left[\mathrm{Mn}\left(\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{~N}_{2} \mathrm{O}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot 2 \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}$, the central $\mathrm{Mn}^{\text {II }}$ ion, located on an inversion center, is hexacoordinated by four O atoms from two water molecules and two carboxylate groups, and two N atoms from two 4-carboxy-2-ethyl-1H-imidazole-5-carboxylate anions in a slightly distorted octahedral environment. The complex molecules and solvent molecules are connected via $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds into a two-dimensional polymeric structure parallel to (001).

Related literature

For coordination polymers built from 2-ethyl-4,5-imidazoledicarboxylic acid, see: Li et al. (2011); Wang et al. (2008); Zhang et al. (2010). For the structure of the analogous $\mathrm{Mn}^{\text {II }}$ complex with a 5-carboxy-2-ethyl-1H-imidazole-4-carboxylate ligand, see: Yan et al. (2010).

Experimental

Crystal data
$\left[\mathrm{Mn}\left(\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{~N}_{2} \mathrm{O}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$.
$2 \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}$
$\beta=77.780(1)^{\circ}$
$\gamma=70.132(1)^{\circ}$
$M_{r}=603.46$
Triclinic, $P \overline{1}$
$a=7.3246$ (2) \AA
$V=693.89(3) \AA^{3}$
$Z=1$
Mo $K \alpha$ radiation
$b=9.0070$ (2) \AA
$\mu=0.54 \mathrm{~mm}^{-1}$
$c=12.0541$ (3) A
$T=296 \mathrm{~K}$
$\alpha=68.841(1)^{\circ}$
$0.20 \times 0.20 \times 0.18 \mathrm{~mm}$
Data collection
Bruker APEXII area-detector diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.899, T_{\text {max }}=0.908$
5239 measured reflections 2447 independent reflections 2192 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.017$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.034 \quad 3$ restraints
$w R\left(F^{2}\right)=0.096 \quad \mathrm{H}$-atom parameters constrained
$S=1.04$
H-atom parameters
$\Delta \rho_{\text {max }}=0.33 \mathrm{e}^{-3}$
2447 reflections
182 parameters
$\Delta \rho_{\min }=-0.21 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O1 $W-\mathrm{H} 2 W \cdots{ }^{-}{ }^{\text {i }}{ }^{\mathrm{i}}$	0.80	1.92	$2.707(2)$	165
O1 $W-\mathrm{H} 1 W \cdots$ O2 $^{\text {ii }}$	0.82	1.96	$2.768(2)$	168
N2-H2 \cdots O5	0.86	1.89	$2.740(2)$	168
O3-H3 \cdots O2	0.82	1.64	$2.462(2)$	179

Symmetry codes: (i) $-x+1,-y+1,-z$; (ii) $x, y-1, z$.

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

The authors acknowledge Henan University of Urban Construction for supporting this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2378).

References

Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Li, S.-J., Ma, X.-T., Song, W.-D., Li, X.-F. \& Liu, J.-H. (2011). Acta Cryst. E67, m295-m296.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Wang, S., Zhang, L. R., Li, G. H., Huo, Q. S. \& Liu, Y. L. (2008). CrystEngComm, 10, 1662-1666.
Yan, J.-B., Li, S.-J., Song, W.-D., Wang, H. \& Miao, D.-L. (2010). Acta Cryst. E66, m99.
Zhang, F. W., Li, Z. F., Ge, T. Z., Yao, H. C., Li, G., Lu, H. J. \& Zhu, Y. Y. (2010). Inorg. Chem. 49, 3776-3788.

supporting information

Acta Cryst. (2011). E67, m828 [doi:10.1107/S1600536811020071]

Diaquabis(4-carboxy-2-ethyl-1 H-imidazole-5-carboxylato$\kappa^{2} N^{3}, O^{4}$)manganese(II) N, N-dimethylformamide disolvate

Gang Zhang and Yong Wang

S1. Comment

Self-assembly of supramolecular architectures based on imidazole carboxylate ligands has drawn much attention during recent decades. To the best of our knowledge, coordination polymers based on 2-ethyl-4,5-imidazoledicarboxylate ligand has been reperted only in recent years (Wang et al., 2008; Zhang et al., 2010; Li et al., 2011). Herein we report the title compound obtained by the reaction of manganese chloride with 2-ethyl-4,5-imidazoledicarboxylic acid ($\mathrm{H}_{3} \mathrm{EIDC}$) in a N, N-dimethylformamide solution under hydrothermal conditions.

The title compound, $\left[\mathrm{Mn}\left(\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{~N}_{2} \mathrm{O}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot 2 \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}$, depicted in Fig. 1. Each $\mathrm{Mn}^{\text {II }}$ is coordinated by two terminal water molecules, two nitrogen atoms and two oxygen atoms from two chelating 2-ethyl-4,5-imidazoledicarboxylate ligands, generating a distorted octahedral coordination environment. The N, N-dimethylformamide molecules are connected to the complex molecule via hydrogen bond between N 2 and O 6 atoms (Table 1). In each H_{2} EIDC ligand that chelates $\mathrm{Mn}^{\mathrm{II}}$ ion via its N, O atom there is a strong hydrogen bond between the carboxylic and carboxylate groups.
A two-dimensional suramolecular structure is consolidated by intermolecular hydrogen-bonding interactions $(\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$).
The structure of the title compound is very similar to that formed by 2-propyl-4,5-imidazoledicarboxylate ligand with Mn(II) (Yan et al., 2010).

S2. Experimental

A mixture of $\mathrm{MnCl}_{2}(0.5 \mathrm{mmol}, 0.06 \mathrm{~g})$ and 2-ethyl- 1 H -imidazole-4,5-dicarboxylic acid ($0.5 \mathrm{mmol}, 0.95 \mathrm{~g}$) in 15 ml of DMF solution was placed in a 23 ml Teflon-lined reactor, which was heated to 443 K for 4 days, and then cooled to room temperature at a rate of $5 \mathrm{~K} \mathrm{~h}^{-1}$. Crystals of the title compound were obtained by slow evaporation of the solvent at room temperature.

S3. Refinement

Carboxyl H atoms were located in a difference map but were refined as riding on the parent O atoms with $\mathrm{O}-\mathrm{H}=0.82 \AA$ and $U_{\mathrm{iso}}(\mathrm{H})=1.5 U_{\mathrm{eq}}(\mathrm{O})$. Carbon and nitrogen bound H atoms were placed at calculated positions and were treated as riding on the parent C or N atoms with $\mathrm{C}-\mathrm{H}=0.96$ (methyl), 0.97 (methylene) and $\mathrm{N}-\mathrm{H}=0.86 \AA, U_{\text {iso }}(\mathrm{H})=1.2$ or 1.5 $U_{\mathrm{eq}}(\mathrm{C}, \mathrm{N})$. H atoms of the water molecule were located in a difference Fourier map and refined as riding with an $\mathrm{O}-\mathrm{H}$ distance restraint of $0.84(1) \AA$, with $U_{\text {iso }}(H)=1.5 U_{\text {eq }}$.

Figure 1

The structure of the title compound showing 30% probability displacement ellipsoids [symmetry codes: (i) $2-x,-y,-z$.]

Diaquabis(4-carboxy-2-ethyl-1 H -imidazole-5-carboxylato- $\kappa^{2} N^{3}, O^{4}$)manganese(II) N, N-dimethylformamide disolvate

Crystal data

$\left[\mathrm{Mn}\left(\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{~N}_{2} \mathrm{O}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot 2 \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}$
$Z=1$
$M_{r}=603.46$
Triclinic, $P \overline{1}$
Hall symbol: -P 1
$a=7.3246$ (2) A
$b=9.0070(2) \AA$
$c=12.0541(3) \AA$
$\alpha=68.841(1)^{\circ}$
$\beta=77.780(1)^{\circ}$
$\gamma=70.132(1)^{\circ}$
$V=693.89(3) \AA^{3}$

Data collection

Bruker APEXII area-detector diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.899, T_{\text {max }}=0.908$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.034$
$w R\left(F^{2}\right)=0.096$
$S=1.04$
2447 reflections
182 parameters
3 restraints
Primary atom site location: structure-invariant direct methods
$F(000)=315$
$D_{\mathrm{x}}=1.444 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 5837 reflections
$\theta=2.8-27.9^{\circ}$
$\mu=0.54 \mathrm{~mm}^{-1}$
$T=296 \mathrm{~K}$
Block, colorless
$0.20 \times 0.20 \times 0.18 \mathrm{~mm}$

5239 measured reflections
2447 independent reflections
2192 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.017$
$\theta_{\text {max }}=25.0^{\circ}, \theta_{\text {min }}=1.8^{\circ}$
$h=-8 \rightarrow 8$
$k=-10 \rightarrow 10$
$l=-13 \rightarrow 14$

Secondary atom site location: difference Fourier
map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0528 P)^{2}+0.2406 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.33$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.21 \mathrm{e}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} U_{\mathrm{eq}}$
Mn1	1.0000	0.0000	0.0000	$0.03597(17)$
O1	$0.5096(2)$	$0.68752(18)$	$0.13763(14)$	$0.0455(4)$
O2	$0.6923(2)$	$0.70548(17)$	$-0.03711(13)$	$0.0431(4)$
O3	$0.8948(3)$	$0.52116(18)$	$-0.15377(14)$	$0.0483(4)$
H3	0.8284	0.5834	-0.1154	0.072^{*}
O4	$1.0038(2)$	$-0.25098(18)$	$0.12795(13)$	$0.0420(4)$
O5	$0.3937(3)$	$0.3980(3)$	$0.39973(17)$	$0.0701(6)$
N1	$0.8058(2)$	$0.17558(19)$	$0.09645(15)$	$0.0341(4)$
N2	$0.6175(3)$	$0.3399(2)$	$0.19823(15)$	$0.0362(4)$
H2	0.5413	0.3718	0.2554	0.043^{*}
N3	$0.2062(3)$	$0.5787(3)$	$0.49596(18)$	$0.0519(5)$
C1	$0.6958(3)$	$0.1811(3)$	$0.19781(18)$	$0.0387(5)$
C2	$0.6797(3)$	$0.4415(2)$	$0.09255(17)$	$0.0298(4)$
C3	$0.7965(3)$	$0.3374(2)$	$0.02988(17)$	$0.0292(4)$
C4	$0.6210(3)$	$0.6249(2)$	$0.06428(18)$	$0.0337(4)$
C5	$0.9031(3)$	$0.3697(2)$	$-0.09070(17)$	$0.0330(4)$
C6	$0.6624(4)$	$0.0344(3)$	$0.2986(2)$	$0.0594(7)$
H6A	0.7410	-0.0656	0.2792	0.071^{*}
H6B	0.7080	0.0322	0.3693	0.071^{*}
C7	$0.4567(6)$	$0.0304(5)$	$0.3278(4)$	$0.1004(13)$
H7A	0.3757	0.1320	0.3423	0.151^{*}
H7B	0.4466	-0.0620	0.3980	0.151^{*}
H7C	0.4145	0.0187	0.2620	0.151^{*}
C8	$0.2127(5)$	$0.4520(5)$	$0.6120(2)$	$0.0766(9)$
H8A	0.2852	0.3454	0.6029	0.115^{*}
H8B	0.0822	0.4508	0.6464	0.115^{*}
H8C	0.2748	0.4761	0.6634	0.115^{*}
C9	$0.1012(6)$	$0.7462(5)$	$0.4934(4)$	$0.1007(13)$
H9A	0.0953	0.8174	0.4120	0.151^{*}
H9B	0.1668	0.7829	0.5350	0.151^{*}
H9C	-0.0288	0.7505	0.5315	$0.0603(7)$
C10	$0.2976(4)$	$0.5403(4)$	0.6254	0.072^{*}
H10	0.2897	$0.0082(2)$	-0.0852	$0.0579(5)$
O1W	$0.7541(2)$	0.7407	0.0777^{*}	
H1W	$0.7272(18)$			

H 2 W	0.6611	0.0895	-0.0898

Atomic displacement parameters $\left(\hat{\AA}^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Mn1	$0.0376(3)$	$0.0226(2)$	$0.0446(3)$	$-0.00243(18)$	$0.00243(19)$	$-0.01653(19)$
O1	$0.0533(9)$	$0.0297(8)$	$0.0465(9)$	$0.0017(7)$	$0.0006(7)$	$-0.0197(7)$
O2	$0.0565(9)$	$0.0226(7)$	$0.0465(9)$	$-0.0090(7)$	$0.0017(7)$	$-0.0127(7)$
O3	$0.0653(11)$	$0.0272(8)$	$0.0415(8)$	$-0.0125(7)$	$0.0157(7)$	$-0.0109(7)$
O4	$0.0489(9)$	$0.0306(8)$	$0.0404(8)$	$-0.0073(7)$	$0.0118(7)$	$-0.0173(6)$
O5	$0.0795(13)$	$0.0729(14)$	$0.0570(11)$	$-0.0180(11)$	$0.0185(10)$	$-0.0372(10)$
N1	$0.0374(9)$	$0.0228(8)$	$0.0362(9)$	$-0.0041(7)$	$0.0038(7)$	$-0.0110(7)$
N2	$0.0416(9)$	$0.0293(9)$	$0.0313(9)$	$-0.0032(7)$	$0.0044(7)$	$-0.0131(7)$
N3	$0.0464(11)$	$0.0616(13)$	$0.0494(12)$	$-0.0141(10)$	$0.0077(9)$	$-0.0278(10)$
C1	$0.0434(12)$	$0.0274(11)$	$0.0364(11)$	$-0.0047(9)$	$0.0022(9)$	$-0.0086(9)$
C2	$0.0311(10)$	$0.0254(10)$	$0.0317(10)$	$-0.0042(8)$	$-0.0032(8)$	$-0.0112(8)$
C3	$0.0304(9)$	$0.0224(9)$	$0.0331(10)$	$-0.0047(7)$	$-0.0007(8)$	$-0.0108(8)$
C4	$0.0360(10)$	$0.0267(10)$	$0.0382(11)$	$-0.0031(8)$	$-0.0064(9)$	$-0.0141(9)$
C5	$0.0358(10)$	$0.0265(10)$	$0.0346(10)$	$-0.0080(8)$	$0.0020(8)$	$-0.0114(8)$
C6	$0.0736(18)$	$0.0351(13)$	$0.0485(14)$	$-0.0099(12)$	$0.0116(12)$	$-0.0043(11)$
C7	$0.109(3)$	$0.093(3)$	$0.088(2)$	$-0.064(2)$	$-0.007(2)$	$0.014(2)$
C8	$0.091(2)$	$0.096(2)$	$0.0454(15)$	$-0.0368(19)$	$0.0138(15)$	$-0.0275(16)$
C9	$0.085(2)$	$0.084(3)$	$0.129(3)$	$-0.006(2)$	$0.011(2)$	$-0.058(3)$
C10	$0.0607(16)$	$0.072(2)$	$0.0449(14)$	$-0.0210(14)$	$0.0073(12)$	$-0.0204(13)$
O1W	$0.0502(9)$	$0.0266(8)$	$0.0991(14)$	$-0.0010(7)$	$-0.0228(9)$	$-0.0230(9)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

Mn1-O1W ${ }^{\text {i }}$	2.1683 (17)	C1-C6	1.489 (3)
Mn1-O1W	2.1683 (17)	C2-C3	1.369 (3)
$\mathrm{Mn} 1-\mathrm{O} 4^{\text {i }}$	2.2244 (15)	C2-C4	1.484 (3)
Mn1-O4	2.2244 (15)	C3-C5	1.475 (3)
$\mathrm{Mn} 1-\mathrm{N} 1^{\text {i }}$	2.2302 (15)	C5-O4 ${ }^{\text {i }}$	1.238 (2)
Mn1-N1	2.2302 (15)	C6-C7	1.483 (5)
O1-C4	1.228 (2)	C6-H6A	0.9700
O2-C4	1.281 (3)	C6-H6B	0.9700
O3-C5	1.287 (2)	C7-H7A	0.9600
$\mathrm{O} 3-\mathrm{H} 3$	0.8200	C7-H7B	0.9600
O4-C5 ${ }^{\text {i }}$	1.238 (2)	C7-H7C	0.9600
O5-C10	1.235 (4)	C8-H8A	0.9600
N1-C1	1.321 (3)	С8-H8B	0.9600
N1-C3	1.373 (2)	C8-H8C	0.9600
N2-C1	1.350 (3)	C9-H9A	0.9600
N2-C2	1.365 (3)	C9-H9B	0.9600
N2-H2	0.8600	C9-H9C	0.9600
N3-C10	1.309 (3)	C10-H10	0.9300
N3-C9	1.434 (4)	O1W-H1W	0.8200
N3-C8	1.449 (4)	O1W-H2W	0.8047

O1W ${ }^{\text {i }}$-Mn1-O1W	180.00 (10)
$\mathrm{O} 1 \mathrm{~W}^{\mathrm{i}}-\mathrm{Mn} 1-\mathrm{O} 4^{\text {i }}$	90.79 (6)
O1W-Mn1-O4 ${ }^{\text {i }}$	89.21 (6)
O1W ${ }^{\text {i }}$-Mn1-O4	89.21 (6)
$\mathrm{O} 1 \mathrm{~W}-\mathrm{Mn} 1-\mathrm{O} 4$	90.79 (6)
$\mathrm{O} 4{ }^{\text {i }} \mathrm{Mn} 1-\mathrm{O} 4$	180.00 (11)
$\mathrm{O} 1 \mathrm{~W}^{\mathrm{i}}-\mathrm{Mn} 1-\mathrm{N} 1^{\mathrm{i}}$	90.95 (6)
$\mathrm{O} 1 \mathrm{~W}-\mathrm{Mn} 1-\mathrm{N} 1^{\text {i }}$	89.05 (6)
$\mathrm{O} 4{ }^{\mathrm{i}}-\mathrm{Mn} 1-\mathrm{N} 1^{\mathrm{i}}$	104.47 (5)
$\mathrm{O} 4-\mathrm{Mn} 1-\mathrm{N} 1^{\text {i }}$	75.53 (5)
O1W ${ }^{\text {i }}$-Mn1-N1	89.05 (6)
O1W-Mn1-N1	90.95 (6)
$\mathrm{O} 4{ }^{\text {i }}$-Mn1-N1	75.53 (5)
$\mathrm{O} 4-\mathrm{Mn} 1-\mathrm{N} 1$	104.47 (5)
N1 ${ }^{\text {i }}$-Mn1- 1	180.00 (7)
C5-O3-H3	109.5
C 5 - $\mathrm{O} 4-\mathrm{Mn} 1$	115.88 (12)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 3$	106.19 (16)
C1-N1-Mn1	142.61 (14)
C3-N1-Mn1	111.18 (12)
$\mathrm{C} 1-\mathrm{N} 2-\mathrm{C} 2$	108.45 (17)
$\mathrm{C} 1-\mathrm{N} 2-\mathrm{H} 2$	125.8
$\mathrm{C} 2-\mathrm{N} 2-\mathrm{H} 2$	125.8
$\mathrm{C} 10-\mathrm{N} 3-\mathrm{C} 9$	122.6 (3)
C10-N3-C8	120.8 (3)
C9-N3-C8	116.6 (3)
N1-C1-N2	110.34 (18)
N1-C1-C6	125.5 (2)
N2-C1-C6	124.14 (19)
N2-C2-C3	105.31 (17)
N2-C2-C4	122.29 (17)
C3-C2-C4	132.40 (18)
C2-C3-N1	109.70 (16)
C2-C3-C5	132.07 (18)
N1-C3-C5	118.21 (16)
$\mathrm{O} 1-\mathrm{C} 4-\mathrm{O} 2$	125.24 (19)

O1-C4-C2	118.76 (18)
$\mathrm{O} 2-\mathrm{C} 4-\mathrm{C} 2$	116.00 (17)
O4-- 5 - ${ }^{\text {- }} 3$	122.34 (18)
O4-C5-C3	119.06 (18)
O3-C5-C3	118.59 (17)
C7-C6-C1	115.0 (2)
C7-C6-H6A	108.5
C1-C6-H6A	108.5
C7-C6-H6B	108.5
C1-C6-H6B	108.5
H6A-C6-H6B	107.5
C6-C7-H7A	109.5
C6-C7-H7B	109.5
H7A-C7-H7B	109.5
C6- $\mathrm{C} 7-\mathrm{H} 7 \mathrm{C}$	109.5
H7A-C7- 77 C	109.5
H7B-C7-H7C	109.5
N3-C8-H8A	109.5
N3-C8-H8B	109.5
H8A-C8-H8B	109.5
N3-C8-H8C	109.5
H8A-C8-H8C	109.5
H8B-C8-H8C	109.5
N3-C9-H9A	109.5
N3-C9-H9B	109.5
H9A-C9-H9B	109.5
N3-C9-H9C	109.5
H9A-C9-H9C	109.5
H9B-C9-H9C	109.5
O5-C10-N3	124.1 (3)
O5-C10-H10	118.0
N3-C10-H10	118.0
Mn1-O1W-H1W	109.5
Mn1-O1W-H2W	120.7
H1W-O1W-H2W	120.8

Symmetry code: (i) $-x+2,-y,-z$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1 W — \mathrm{H} 2 W \cdots \mathrm{O}^{1 \mathrm{ii}}$	0.80	1.92	$2.707(2)$	165
$\mathrm{O} 1 W — \mathrm{H} 1 W \cdots \mathrm{O}^{2 i i}$	0.82	1.96	$2.768(2)$	168
$\mathrm{~N} 2 — \mathrm{H} 2 \cdots \mathrm{O} 5$	0.86	1.89	$2.740(2)$	168
$\mathrm{O} 3 — \mathrm{H} 3 \cdots \mathrm{O} 2$	0.82	1.64	$2.462(2)$	179

[^0]
[^0]: Symmetry codes: (ii) $-x+1,-y+1,-z$; (iii) $x, y-1, z$.

