organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Cyclo­benzaprinium salicylate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and cDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India
*Correspondence e-mail: hkfun@usm.my

(Received 26 May 2011; accepted 30 May 2011; online 4 June 2011)

In the title mol­ecular salt [systematic name: 3-(5H-di­benzo[a,d]cyclo­hepten-5-yl­idene)-N,N-dimethyl-1-propanaminium 2-hy­droxy­benzoate], C20H22N+·C7H5O3, the benzene rings of the cyclo­benzaprinium cation are inclined with a dihedral angle of 61.66 (7)°. An intra­molecular O—H⋯O hydrogen bond occurs within the salicylate anion, generating an S(6) ring. In the crystal, the cation and anion are linked by an N—H⋯O inter­action.

Related literature

For background to cyclo­benzaprine, see: Commissiong et al. (1981[Commissiong, J. W., Karoum, F., Reiffenstein, R. J. & Neff, N. H. (1981). Can. J. Physiol. Pharmacol. 59, 37-44.]); Katz & Dube (1988[Katz, W. A. & Dube, J. (1988). Clin. Ther. 10, 216-228.]); Cimolai (2009[Cimolai, N. (2009). Expert Rev. Clin. Pharmacol. 2, 255-263.]). For related structures, see: Bindya et al., (2007[Bindya, S., Wong, W.-T., Ashok, M. A., Yathirajan, H. S. & Rathore, R. S. (2007). Acta Cryst. C63, o546-o548.]); Hemamalini & Fun (2010[Hemamalini, M. & Fun, H.-K. (2010). Acta Cryst. E66, o1418-o1419.]); Kolev et al. (2009[Kolev, T., Koleva, B. B., Seidel, R. W., Spiteller, M. & Sheldrick, W. S. (2009). Struct. Chem. 20, 533-536.]); Thanigaimani et al. (2007[Thanigaimani, K., Muthiah, P. T. & Lynch, D. E. (2007). Acta Cryst. E63, o4555-o4556.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C20H22N+·C7H5O3

  • Mr = 413.50

  • Triclinic, [P \overline 1]

  • a = 7.4700 (8) Å

  • b = 10.8408 (12) Å

  • c = 14.9724 (16) Å

  • α = 76.073 (2)°

  • β = 77.357 (1)°

  • γ = 72.574 (2)°

  • V = 1108.6 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.37 × 0.21 × 0.15 mm

Data collection
  • Bruker APEXII DUO CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.971, Tmax = 0.988

  • 22974 measured reflections

  • 6461 independent reflections

  • 4411 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.134

  • S = 1.04

  • 6461 reflections

  • 280 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯O1 0.91 1.75 2.6439 (16) 167
O3—H1O3⋯O2 0.99 1.55 2.4890 (19) 157

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Cyclobenzaprine is a muscle relaxant medication used to relieve skeletal muscle spasms and associated pain in acute musculoskeletal conditions. It is the most well studied drug for this application and it also has been used off-label for fibromyalgia treatment. Cyclobenzaprine has been considered structurally related to the first-generation tricyclic antidepressants (Commissiong et al., 1981; Katz & Dube, 1988; Cimolai, 2009). The crystal structures of amitriptylinium picrate (Bindya et al., 2007), benzamidinium salicylate (Kolev et al., 2009), 2-amino-5-chloropyridinium salicylate (Hemamalini & Fun, 2010) and 2-amino-4,6-dimethoxypyrimidinium salicylate (Thanigaimani et al., 2007) have been reported. We now report the crystal structure of the title compound, C20H22N+.C7H5O3-.

The asymmetric unit of the title compound consists of one cyclobenzaprinium cation and one salicylate anion (Fig. 1). The hydrogen atom of the carboxylic acid COOH group is deprotonated to the N1 atom. The two fused benzene rings of the cation make a dihedral angle of 61.66 (7)° whereas the salicylate anion is almost planar with maximum deviation of 0.063 (1) Å for atom O1. The aminium atom adopts a pyramidal conformation. The cation and anion are interconnected by N1—H1N1···O1 interaction (Table 1). An intramolecular O3—H1O3···O2 hydrogen bond (Table 1) stabilize the molecular structure of the anion molecule generating S(6) ring motif (Bernstein et al., 1995).

Related literature top

For background on cyclobenzaprine, see: Commissiong et al. (1981); Katz & Dube (1988); Cimolai (2009). For related structures, see: Bindya et al., (2007); Hemamalini & Fun (2010); Kolev et al. (2009); Thanigaimani et al. (2007). fro graph-set notation, see: Bernstein et al. (1995).

Experimental top

Cyclobenzaprine (10 g, 0.04 mol) and salicylic acid (5.6 g, 0.04 mol) were dissolved in 50 ml of dichloromethane taken in a 100 ml round bottomed flask. Dichloromethane was distilled off under vacuum and 50 ml of ethyl acetate was added and then the flask was cooled to 278–283 K. The product formed was filtered and re-crystallized from dichloromethane to yield colourless blocks of (I) (M.p.: 415–416 K).

Refinement top

The O-bound and N-bound hydrogen atoms were located from difference Fourier map and refined as riding on their parent atom, with Uiso(H) = 1.2 or 1.5 Ueq(N or O). The rest of the hydrogen atoms were positioned geomatrically [C–H = 0.93–0.97 Å] and refined using a riding model, with Uiso(H) = 1.2 or 1.5 Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with 30% probability ellipsoids for non-H atoms. Hydrogen bonds (dashed lines) are shown.
3-(5H-Dibenzo[a,d]cyclohepten-5-ylidene)- N,N-dimethyl-1-propanaminium 2-hydroxybenzoate top
Crystal data top
C20H22N+·C7H5O3Z = 2
Mr = 413.50F(000) = 440
Triclinic, P1Dx = 1.239 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.4700 (8) ÅCell parameters from 5425 reflections
b = 10.8408 (12) Åθ = 2.2–29.5°
c = 14.9724 (16) ŵ = 0.08 mm1
α = 76.073 (2)°T = 296 K
β = 77.357 (1)°Block, colourless
γ = 72.574 (2)°0.37 × 0.21 × 0.15 mm
V = 1108.6 (2) Å3
Data collection top
Bruker APEXII DUO CCD
diffractometer
6461 independent reflections
Radiation source: fine-focus sealed tube4411 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ϕ and ω scansθmax = 30.1°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1010
Tmin = 0.971, Tmax = 0.988k = 1515
22974 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.134H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0573P)2 + 0.147P]
where P = (Fo2 + 2Fc2)/3
6461 reflections(Δ/σ)max < 0.001
280 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C20H22N+·C7H5O3γ = 72.574 (2)°
Mr = 413.50V = 1108.6 (2) Å3
Triclinic, P1Z = 2
a = 7.4700 (8) ÅMo Kα radiation
b = 10.8408 (12) ŵ = 0.08 mm1
c = 14.9724 (16) ÅT = 296 K
α = 76.073 (2)°0.37 × 0.21 × 0.15 mm
β = 77.357 (1)°
Data collection top
Bruker APEXII DUO CCD
diffractometer
6461 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
4411 reflections with I > 2σ(I)
Tmin = 0.971, Tmax = 0.988Rint = 0.028
22974 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.134H-atom parameters constrained
S = 1.04Δρmax = 0.21 e Å3
6461 reflectionsΔρmin = 0.18 e Å3
280 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.33126 (15)0.09099 (10)0.18470 (7)0.0423 (2)
H1N10.22750.05470.21330.051*
C10.05014 (15)0.33798 (12)0.18708 (8)0.0361 (3)
C20.10142 (17)0.26220 (14)0.11781 (9)0.0431 (3)
H2A0.06750.18330.12950.052*
C30.2020 (2)0.30282 (17)0.03200 (10)0.0564 (4)
H3A0.23530.25130.01360.068*
C40.2527 (2)0.41904 (18)0.01409 (11)0.0640 (4)
H4A0.31990.44640.04370.077*
C50.2045 (2)0.49480 (15)0.08118 (12)0.0590 (4)
H5A0.23740.57430.06770.071*
C60.10616 (17)0.45507 (12)0.17007 (10)0.0438 (3)
C70.0743 (2)0.53280 (14)0.24161 (12)0.0537 (4)
H7A0.04420.62370.22220.064*
C80.0834 (2)0.48787 (15)0.33202 (12)0.0557 (4)
H8A0.06140.55100.36840.067*
C90.12425 (18)0.35065 (14)0.38045 (9)0.0457 (3)
C100.2302 (2)0.31229 (19)0.45369 (11)0.0607 (4)
H10A0.26670.37580.47230.073*
C110.2813 (2)0.1843 (2)0.49850 (11)0.0669 (5)
H11A0.35350.16130.54620.080*
C120.2254 (2)0.08934 (17)0.47281 (10)0.0594 (4)
H12A0.26080.00200.50280.071*
C130.11665 (18)0.12385 (14)0.40225 (9)0.0457 (3)
H13A0.07820.05960.38570.055*
C140.06458 (16)0.25355 (13)0.35607 (8)0.0376 (3)
C150.05187 (16)0.28950 (11)0.28004 (8)0.0347 (2)
C160.22561 (17)0.27224 (12)0.29535 (9)0.0392 (3)
H16A0.26780.23220.35530.047*
C170.36111 (17)0.30986 (13)0.22713 (10)0.0436 (3)
H17A0.29280.33190.16500.052*
H17B0.45860.38840.24040.052*
C180.45677 (17)0.20412 (13)0.22789 (10)0.0434 (3)
H18A0.50510.17070.29190.052*
H18B0.56480.24410.19510.052*
C190.2757 (2)0.12856 (18)0.08299 (10)0.0621 (4)
H19A0.19360.05310.05880.093*
H19B0.21010.19620.07040.093*
H19C0.38740.16080.05370.093*
C200.4273 (3)0.01685 (17)0.20561 (14)0.0736 (5)
H20A0.34580.08950.17800.110*
H20B0.54400.01430.18050.110*
H20C0.45400.04500.27190.110*
O10.05304 (14)0.04235 (10)0.28085 (7)0.0564 (3)
O20.10069 (17)0.09085 (12)0.14508 (7)0.0724 (4)
O30.42092 (17)0.24876 (12)0.13184 (7)0.0674 (3)
H1O30.29800.18500.12040.101*
C210.22965 (19)0.23076 (12)0.37511 (9)0.0433 (3)
H21A0.12210.18790.41150.052*
C220.3758 (2)0.32023 (15)0.41757 (11)0.0570 (4)
H22A0.36650.33780.48210.068*
C230.5356 (2)0.38335 (15)0.36347 (12)0.0601 (4)
H23A0.63460.44290.39190.072*
C240.5504 (2)0.35955 (14)0.26882 (11)0.0540 (4)
H24A0.65910.40280.23320.065*
C250.40337 (18)0.27075 (13)0.22540 (9)0.0429 (3)
C260.24146 (16)0.20414 (11)0.27883 (8)0.0356 (2)
C270.08451 (18)0.10603 (12)0.23224 (9)0.0420 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0371 (5)0.0432 (6)0.0491 (6)0.0090 (4)0.0163 (4)0.0070 (5)
C10.0256 (5)0.0387 (6)0.0429 (6)0.0071 (4)0.0102 (4)0.0030 (5)
C20.0332 (6)0.0510 (7)0.0451 (7)0.0094 (5)0.0098 (5)0.0078 (6)
C30.0451 (8)0.0727 (10)0.0442 (7)0.0068 (7)0.0065 (6)0.0088 (7)
C40.0516 (9)0.0745 (11)0.0502 (9)0.0140 (8)0.0029 (7)0.0098 (8)
C50.0463 (8)0.0496 (8)0.0722 (10)0.0172 (7)0.0128 (7)0.0142 (7)
C60.0316 (6)0.0389 (6)0.0579 (8)0.0086 (5)0.0121 (5)0.0002 (5)
C70.0446 (7)0.0371 (7)0.0827 (11)0.0119 (6)0.0166 (7)0.0098 (7)
C80.0485 (8)0.0519 (8)0.0783 (11)0.0163 (6)0.0111 (7)0.0290 (7)
C90.0358 (6)0.0596 (8)0.0490 (7)0.0170 (6)0.0041 (5)0.0208 (6)
C100.0550 (9)0.0886 (12)0.0540 (9)0.0301 (8)0.0129 (7)0.0239 (8)
C110.0573 (9)0.1065 (14)0.0440 (8)0.0310 (9)0.0176 (7)0.0063 (8)
C120.0522 (8)0.0754 (10)0.0450 (8)0.0196 (8)0.0119 (6)0.0066 (7)
C130.0402 (7)0.0547 (8)0.0419 (7)0.0172 (6)0.0048 (5)0.0039 (6)
C140.0284 (5)0.0493 (7)0.0371 (6)0.0126 (5)0.0017 (4)0.0119 (5)
C150.0297 (5)0.0345 (6)0.0422 (6)0.0094 (4)0.0059 (4)0.0101 (5)
C160.0330 (6)0.0407 (6)0.0452 (7)0.0120 (5)0.0054 (5)0.0081 (5)
C170.0306 (6)0.0403 (6)0.0607 (8)0.0071 (5)0.0134 (5)0.0080 (6)
C180.0264 (5)0.0502 (7)0.0557 (7)0.0107 (5)0.0092 (5)0.0105 (6)
C190.0550 (9)0.0819 (11)0.0481 (8)0.0085 (8)0.0176 (7)0.0131 (7)
C200.0793 (12)0.0570 (10)0.1005 (14)0.0321 (9)0.0296 (10)0.0127 (9)
O10.0484 (6)0.0553 (6)0.0579 (6)0.0085 (5)0.0183 (5)0.0156 (5)
O20.0730 (8)0.0825 (8)0.0445 (6)0.0097 (6)0.0213 (5)0.0066 (5)
O30.0636 (7)0.0813 (8)0.0473 (6)0.0044 (6)0.0015 (5)0.0210 (5)
C210.0460 (7)0.0404 (7)0.0433 (7)0.0075 (5)0.0102 (5)0.0093 (5)
C220.0682 (10)0.0537 (8)0.0500 (8)0.0087 (7)0.0267 (7)0.0049 (6)
C230.0536 (9)0.0471 (8)0.0803 (11)0.0029 (7)0.0348 (8)0.0120 (7)
C240.0399 (7)0.0470 (8)0.0751 (10)0.0003 (6)0.0117 (7)0.0229 (7)
C250.0418 (7)0.0405 (7)0.0488 (7)0.0107 (5)0.0066 (5)0.0133 (5)
C260.0357 (6)0.0306 (5)0.0424 (6)0.0084 (4)0.0108 (5)0.0069 (5)
C270.0438 (7)0.0370 (6)0.0460 (7)0.0069 (5)0.0159 (5)0.0059 (5)
Geometric parameters (Å, º) top
N1—C191.4775 (18)C14—C151.4904 (16)
N1—C201.4855 (19)C15—C161.3291 (16)
N1—C181.4930 (17)C16—C171.4963 (17)
N1—H1N10.9057C16—H16A0.9300
C1—C21.3947 (18)C17—C181.5184 (18)
C1—C61.4026 (17)C17—H17A0.9700
C1—C151.4892 (17)C17—H17B0.9700
C2—C31.3828 (19)C18—H18A0.9700
C2—H2A0.9300C18—H18B0.9700
C3—C41.372 (2)C19—H19A0.9600
C3—H3A0.9300C19—H19B0.9600
C4—C51.369 (2)C19—H19C0.9600
C4—H4A0.9300C20—H20A0.9600
C5—C61.408 (2)C20—H20B0.9600
C5—H5A0.9300C20—H20C0.9600
C6—C71.455 (2)O1—C271.2457 (16)
C7—C81.333 (2)O2—C271.2586 (16)
C7—H7A0.9300O3—C251.3468 (16)
C8—C91.462 (2)O3—H1O30.9910
C8—H8A0.9300C21—C221.3819 (18)
C9—C101.4017 (19)C21—C261.3888 (17)
C9—C141.4061 (18)C21—H21A0.9300
C10—C111.367 (3)C22—C231.380 (2)
C10—H10A0.9300C22—H22A0.9300
C11—C121.378 (2)C23—C241.364 (2)
C11—H11A0.9300C23—H23A0.9300
C12—C131.3855 (19)C24—C251.3907 (19)
C12—H12A0.9300C24—H24A0.9300
C13—C141.3887 (19)C25—C261.3984 (17)
C13—H13A0.9300C26—C271.4988 (16)
C19—N1—C20110.16 (12)C1—C15—C14113.33 (9)
C19—N1—C18112.70 (11)C15—C16—C17127.45 (12)
C20—N1—C18109.75 (12)C15—C16—H16A116.3
C19—N1—H1N1110.9C17—C16—H16A116.3
C20—N1—H1N1103.5C16—C17—C18114.56 (11)
C18—N1—H1N1109.5C16—C17—H17A108.6
C2—C1—C6119.35 (12)C18—C17—H17A108.6
C2—C1—C15119.75 (11)C16—C17—H17B108.6
C6—C1—C15120.77 (11)C18—C17—H17B108.6
C3—C2—C1120.88 (14)H17A—C17—H17B107.6
C3—C2—H2A119.6N1—C18—C17114.71 (10)
C1—C2—H2A119.6N1—C18—H18A108.6
C4—C3—C2120.01 (15)C17—C18—H18A108.6
C4—C3—H3A120.0N1—C18—H18B108.6
C2—C3—H3A120.0C17—C18—H18B108.6
C5—C4—C3120.11 (14)H18A—C18—H18B107.6
C5—C4—H4A119.9N1—C19—H19A109.5
C3—C4—H4A119.9N1—C19—H19B109.5
C4—C5—C6121.47 (15)H19A—C19—H19B109.5
C4—C5—H5A119.3N1—C19—H19C109.5
C6—C5—H5A119.3H19A—C19—H19C109.5
C1—C6—C5118.11 (13)H19B—C19—H19C109.5
C1—C6—C7122.59 (12)N1—C20—H20A109.5
C5—C6—C7119.24 (13)N1—C20—H20B109.5
C8—C7—C6127.09 (13)H20A—C20—H20B109.5
C8—C7—H7A116.5N1—C20—H20C109.5
C6—C7—H7A116.5H20A—C20—H20C109.5
C7—C8—C9127.38 (13)H20B—C20—H20C109.5
C7—C8—H8A116.3C25—O3—H1O3102.1
C9—C8—H8A116.3C22—C21—C26120.81 (13)
C10—C9—C14117.85 (14)C22—C21—H21A119.6
C10—C9—C8119.14 (13)C26—C21—H21A119.6
C14—C9—C8123.00 (12)C23—C22—C21119.49 (14)
C11—C10—C9121.92 (15)C23—C22—H22A120.3
C11—C10—H10A119.0C21—C22—H22A120.3
C9—C10—H10A119.0C24—C23—C22120.90 (13)
C10—C11—C12119.78 (14)C24—C23—H23A119.5
C10—C11—H11A120.1C22—C23—H23A119.5
C12—C11—H11A120.1C23—C24—C25120.11 (13)
C11—C12—C13120.04 (15)C23—C24—H24A119.9
C11—C12—H12A120.0C25—C24—H24A119.9
C13—C12—H12A120.0O3—C25—C24119.13 (12)
C12—C13—C14120.62 (14)O3—C25—C26120.96 (12)
C12—C13—H13A119.7C24—C25—C26119.91 (12)
C14—C13—H13A119.7C21—C26—C25118.77 (11)
C13—C14—C9119.76 (12)C21—C26—C27121.09 (11)
C13—C14—C15120.17 (11)C25—C26—C27120.13 (11)
C9—C14—C15120.06 (11)O1—C27—O2123.33 (12)
C16—C15—C1124.75 (11)O1—C27—C26118.89 (11)
C16—C15—C14121.83 (11)O2—C27—C26117.77 (12)
C6—C1—C2—C31.77 (17)C6—C1—C15—C16118.97 (14)
C15—C1—C2—C3177.74 (11)C2—C1—C15—C14111.50 (12)
C1—C2—C3—C40.0 (2)C6—C1—C15—C1464.41 (14)
C2—C3—C4—C50.2 (2)C13—C14—C15—C1661.58 (16)
C3—C4—C5—C61.3 (2)C9—C14—C15—C16119.26 (14)
C2—C1—C6—C53.19 (17)C13—C14—C15—C1115.15 (12)
C15—C1—C6—C5179.12 (11)C9—C14—C15—C164.01 (14)
C2—C1—C6—C7173.92 (11)C1—C15—C16—C177.0 (2)
C15—C1—C6—C72.01 (17)C14—C15—C16—C17176.69 (11)
C4—C5—C6—C13.0 (2)C15—C16—C17—C18134.27 (14)
C4—C5—C6—C7174.19 (13)C19—N1—C18—C1767.76 (14)
C1—C6—C7—C836.3 (2)C20—N1—C18—C17169.07 (12)
C5—C6—C7—C8140.80 (16)C16—C17—C18—N173.67 (15)
C6—C7—C8—C91.2 (2)C26—C21—C22—C230.3 (2)
C7—C8—C9—C10144.17 (16)C21—C22—C23—C240.6 (2)
C7—C8—C9—C1434.8 (2)C22—C23—C24—C250.0 (2)
C14—C9—C10—C112.4 (2)C23—C24—C25—O3179.97 (14)
C8—C9—C10—C11176.58 (15)C23—C24—C25—C261.1 (2)
C9—C10—C11—C121.1 (3)C22—C21—C26—C250.73 (19)
C10—C11—C12—C130.5 (2)C22—C21—C26—C27179.26 (13)
C11—C12—C13—C140.7 (2)O3—C25—C26—C21179.66 (12)
C12—C13—C14—C90.62 (19)C24—C25—C26—C211.40 (19)
C12—C13—C14—C15179.78 (12)O3—C25—C26—C270.35 (19)
C10—C9—C14—C132.13 (18)C24—C25—C26—C27178.59 (12)
C8—C9—C14—C13176.83 (12)C21—C26—C27—O14.18 (19)
C10—C9—C14—C15178.71 (12)C25—C26—C27—O1175.80 (12)
C8—C9—C14—C152.33 (19)C21—C26—C27—O2176.97 (13)
C2—C1—C15—C1665.12 (16)C25—C26—C27—O23.04 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O10.911.752.6439 (16)167
O3—H1O3···O20.991.552.4890 (19)157

Experimental details

Crystal data
Chemical formulaC20H22N+·C7H5O3
Mr413.50
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)7.4700 (8), 10.8408 (12), 14.9724 (16)
α, β, γ (°)76.073 (2), 77.357 (1), 72.574 (2)
V3)1108.6 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.37 × 0.21 × 0.15
Data collection
DiffractometerBruker APEXII DUO CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.971, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
22974, 6461, 4411
Rint0.028
(sin θ/λ)max1)0.705
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.134, 1.04
No. of reflections6461
No. of parameters280
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.18

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O10.911.752.6439 (16)167
O3—H1O3···O20.991.552.4890 (19)157
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Thomson Reuters ResearcherID: A-5523-2009.

Acknowledgements

H-KF and CSY thank Universiti Sains Malaysia for the Research University Grant 1001/PFIZIK/811160. MSS thanks UOM for research facilities.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBindya, S., Wong, W.-T., Ashok, M. A., Yathirajan, H. S. & Rathore, R. S. (2007). Acta Cryst. C63, o546–o548.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCimolai, N. (2009). Expert Rev. Clin. Pharmacol. 2, 255–263.  CrossRef CAS PubMed Google Scholar
First citationCommissiong, J. W., Karoum, F., Reiffenstein, R. J. & Neff, N. H. (1981). Can. J. Physiol. Pharmacol. 59, 37–44.  CrossRef PubMed Web of Science Google Scholar
First citationHemamalini, M. & Fun, H.-K. (2010). Acta Cryst. E66, o1418–o1419.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKatz, W. A. & Dube, J. (1988). Clin. Ther. 10, 216–228.  CAS PubMed Web of Science Google Scholar
First citationKolev, T., Koleva, B. B., Seidel, R. W., Spiteller, M. & Sheldrick, W. S. (2009). Struct. Chem. 20, 533–536.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThanigaimani, K., Muthiah, P. T. & Lynch, D. E. (2007). Acta Cryst. E63, o4555–o4556.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds