metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Aceto­nitrile­dicarbon­yl(η5-penta­methyl­cyclo­penta­dien­yl)iron(II) tetra­fluorido­borate

aSchool of Chemistry, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban 4000, South Africa, and bChemistry Department, Kenyatta University, PO Box 43844, Nairobi, Kenya
*Correspondence e-mail: bala@ukzn.ac.za

(Received 20 May 2011; accepted 2 June 2011; online 18 June 2011)

In the structure of the title compound, [Fe{η5-C5(CH3)5}(NCCH3)(CO)2]BF4, the arrangement of ligands around the Fe atom is in a pseudo-octa­hedral three-legged piano-stool fashion in which the penta­methyl­cyclo­penta­dienyl (Cp*) ligand occupies three apical coordination sites, while the two carbonyl and one acetonitrile ligands form the basal axes of the coordination. The Fe—N bond length is 1.924 (3) Å and the Fe—Cp* centroid distance is 1.722 Å.

Related literature

For the synthetic route to the title compound, see: Catheline & Astruc (1984[Catheline, D. & Astruc, D. (1984). J. Organomet. Chem. 266, C11-C14.]). For the structures of related analogues based on the (η5-C5H5) moiety, see: Callan et al. (1987[Callan, B., Manning, A. R. & Stephens, F. S. (1987). J. Organomet. Chem. 331, 357-377.]) for aceto­nitrile coordination via carbon; Fadel et al. (1979[Fadel, S., Weidenheimer, K. & Ziegler, M. L. (1979). Z. Anorg. Allg. Chem. 453, 98-106.]) for aceto­nitrile coordination via nitro­gen. For our previous work in this area, see: M'thiruaine, Friedrich, Changamu & Bala (2011[M'thiruaine, C. M., Friedrich, H. B., Changamu, E. O. & Bala, M. D. (2011). Inorg. Chim. Acta, 366, 105-115.]); M'thiruaine, Friedrich, Changamu & Omondi (2011[M'thiruaine, C. M., Friedrich, H. B., Changamu, E. O. & Omondi, B. (2011). Acta Cryst. E67, m485.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe(C10H15)(C2H3N)(CO)2]BF4

  • Mr = 374.95

  • Orthorhombic, P n a 21

  • a = 17.6211 (17) Å

  • b = 6.5141 (7) Å

  • c = 14.5794 (13) Å

  • V = 1673.5 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.95 mm−1

  • T = 173 K

  • 0.54 × 0.34 × 0.12 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: integration (XPREP; Bruker, 2005[Bruker (2005). APEX2 and SAINT-Plus (includes XPREP). Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.629, Tmax = 0.895

  • 9060 measured reflections

  • 3496 independent reflections

  • 2941 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.120

  • S = 1.08

  • 3496 reflections

  • 214 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.76 e Å−3

  • Δρmin = −0.39 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 13942 Friedel pairs

  • Flack parameter: −0.02 (3)

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT-Plus (includes XPREP). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2005[Bruker (2005). APEX2 and SAINT-Plus (includes XPREP). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound (I) was obtained as a side product in our ongoing investigation of the reactions of substitutionally unsaturated metal complexes with nitrogen donor ligands (M'thiruaine, Friedrich, Changamu & Bala, 2011; M'thiruaine, Friedrich, Changamu & Omondi, 2011). The compound has been previously reported as the product of oxidative cleavage of the Fe—Fe bond in [η5-C5(CH3)5Fe(CO)2]2 in acetonitrile and also as a product of the reaction between [η5-C5(CH3)5Fe(CO)2(THF)]BF4 and acetonitrile (Catheline & Astruc 1984), but its crystal structure has not been reported. Compound (I) crystallizes in an orthorhombic Pna21 space group, with four discrete molecular cations and four counteranions in the unit cell. The arrangement of ligands around Fe is in a pseudo-octahedral 3-legged piano stool fashion in which the pentamethylcyclopentadienyl moiety occupies three coordination sites while the two carbonyl ligands and acetonitrile nitrogen complete the coordination. The Fe—N bond length of 1.924 (3) Å, is close to the 1.91 (1)Å reported for [η5-C5H5Fe(CO)2(NCCH3)]BF4 (Fadel et al. 1979) but shorter than Fe—N bonds found in the pyrrol complex, [η5-C5H5Fe(CO)2(C4H4N)] (1.962 (3) Å), and in the aminoalkane complexes, [η5-C5H5Fe(CO)2(NH2(CH2)nCH3)]BF4 (n=2,3) (2.017 (8), 2.013 (3) and 2.006 (2) Å) (M'thiruaine, Friedrich, Changamu & Bala, 2011) and [{η5-C5H5Fe(CO)2}2(µ-(NH2CH2CH2NH2)](BF4)2 (2.0134 (17) and 2.0085 (18) Å) (M'thiruaine, Friedrich, Changamu & Omondi, 2011). It is also interesting to note that both Fe—C (Callan et al. 1987) and Fe—N (Fadel et al. 1979) coordination of the acetonitrile (NCCH3) molecule to Fe has been reported for Cp based complexes.

Related literature top

For the synthetic route to the title compound, see: Catheline & Astruc (1984). For the structures of related analogues based on the (η5-C5H5) moiety, see: Callan et al. (1987) for acetonitrile coordination via carbon; Fadel et al. (1979) for acetonitrile coordination via nitrogen. For our previous work in this area, see: M'thiruaine, Friedrich, Changamu & Bala (2011); M'thiruaine, Friedrich, Changamu & Omondi (2011) .

Experimental top

The title compound (I) was synthesized following the method of Catheline & Astruc (1984). Compound (I) was obtained as a yellow microcrystalline solid in an isolated yield of 92%.

Anal. Calc. for C14H18BF4FeNO2: C, 44.80; H, 4.80; N, 3.73. Found: C, 44.95; H, 4.13; N, 3.76%.

1H-NMR (400 MHz, CDCl3): δ 2.48 (s, 3H, NCCH3), 1.85 (s, 15H, C5(CH3)5).

13C-NMR (400 MHz, CDCl3): δ 4.68 (NCCH3) 9.54 (C5(CH3)5), 99.19 (C5(CH3)5), 210.08 (CO).

IR (solid state, cm-1): ν(CO) 2044; 1992, v(CN) 2299.

Melting point = 158–160 °C.

Refinement top

All H-atoms were refined using a riding model, with C—H = 0.98 Å and Uiso(H) = 1.5Ueq(C) for CH3.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2005); data reduction: SAINT-Plus (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.
Acetonitriledicarbonyl(η5-pentamethylcyclopentadienyl)iron(II) tetrafluoridoborate top
Crystal data top
[Fe(C10H15)(C2H3N)(CO)2]BF4F(000) = 768
Mr = 374.95Dx = 1.488 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 3473 reflections
a = 17.6211 (17) Åθ = 2.3–28.2°
b = 6.5141 (7) ŵ = 0.95 mm1
c = 14.5794 (13) ÅT = 173 K
V = 1673.5 (3) Å3Plate, yellow
Z = 40.54 × 0.34 × 0.12 mm
Data collection top
Bruker APEXII CCD
diffractometer
3496 independent reflections
Radiation source: fine-focus sealed tube2941 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
ϕ and ω scansθmax = 28.0°, θmin = 2.3°
Absorption correction: integration
(XPREP; Bruker, 2005)
h = 2322
Tmin = 0.629, Tmax = 0.895k = 86
9060 measured reflectionsl = 1912
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.120 w = 1/[σ2(Fo2) + (0.0515P)2 + 1.372P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
3496 reflectionsΔρmax = 0.76 e Å3
214 parametersΔρmin = 0.39 e Å3
1 restraintAbsolute structure: Flack (1983), 13942 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.02 (3)
Crystal data top
[Fe(C10H15)(C2H3N)(CO)2]BF4V = 1673.5 (3) Å3
Mr = 374.95Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 17.6211 (17) ŵ = 0.95 mm1
b = 6.5141 (7) ÅT = 173 K
c = 14.5794 (13) Å0.54 × 0.34 × 0.12 mm
Data collection top
Bruker APEXII CCD
diffractometer
3496 independent reflections
Absorption correction: integration
(XPREP; Bruker, 2005)
2941 reflections with I > 2σ(I)
Tmin = 0.629, Tmax = 0.895Rint = 0.044
9060 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.120Δρmax = 0.76 e Å3
S = 1.08Δρmin = 0.39 e Å3
3496 reflectionsAbsolute structure: Flack (1983), 13942 Friedel pairs
214 parametersAbsolute structure parameter: 0.02 (3)
1 restraint
Special details top

Experimental. Face indexed absorption corrections carried out with XPREP (Bruker 2005).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.09216 (16)0.7960 (5)0.3098 (3)0.0239 (6)
C20.02658 (19)0.8041 (6)0.3681 (3)0.0262 (8)
C30.03861 (16)0.7629 (5)0.3117 (4)0.0257 (6)
C40.0122 (2)0.7201 (6)0.2209 (3)0.0260 (8)
C50.0690 (2)0.7432 (6)0.2201 (3)0.0254 (7)
C60.1726 (2)0.8390 (7)0.3396 (3)0.0400 (11)
H6A0.20670.73750.31210.060*
H6B0.17590.83060.40660.060*
H6C0.18730.97690.31950.060*
C70.0265 (3)0.8621 (8)0.4661 (3)0.0427 (11)
H7A0.03291.01110.47160.064*
H7B0.06840.79250.49750.064*
H7C0.02170.82140.49400.064*
C80.1200 (2)0.7710 (7)0.3400 (3)0.0426 (12)
H8A0.14020.90860.32820.064*
H8B0.12410.74000.40560.064*
H8C0.14910.66980.30480.064*
C90.0613 (3)0.6839 (7)0.1391 (3)0.0379 (10)
H9A0.07980.81570.11560.057*
H9B0.10460.59780.15660.057*
H9C0.03180.61430.09130.057*
C100.1205 (3)0.7291 (7)0.1393 (3)0.0405 (11)
H10A0.12730.86590.11260.061*
H10B0.09820.63710.09340.061*
H10C0.16980.67500.15880.061*
C110.0393 (2)0.3667 (7)0.3676 (3)0.0331 (9)
C120.0500 (2)0.3192 (6)0.2248 (3)0.0335 (9)
C130.1669 (2)0.3605 (6)0.4320 (3)0.0284 (8)
C140.2331 (2)0.3052 (8)0.4861 (4)0.0452 (12)
H14A0.27800.30250.44650.068*
H14B0.22550.16920.51330.068*
H14C0.24040.40650.53500.068*
B10.2910 (3)0.2863 (8)0.1717 (4)0.0432 (13)
N10.11513 (17)0.4097 (5)0.3903 (2)0.0265 (7)
O10.08715 (17)0.2810 (5)0.4027 (3)0.0530 (9)
O20.0583 (3)0.2069 (5)0.1657 (3)0.0575 (10)
F10.2517 (3)0.3976 (10)0.2318 (4)0.126 (2)
F20.2748 (3)0.0894 (7)0.1790 (5)0.1188 (19)
F30.3707 (2)0.3066 (8)0.1896 (4)0.1167 (19)
F40.2819 (4)0.3427 (15)0.0873 (5)0.189 (4)
Fe10.03492 (2)0.50825 (7)0.31236 (7)0.02001 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0235 (13)0.0212 (14)0.0270 (16)0.0015 (11)0.0006 (18)0.002 (2)
C20.0246 (16)0.0246 (18)0.029 (2)0.0019 (14)0.0012 (14)0.0014 (16)
C30.0218 (13)0.0250 (14)0.0302 (17)0.0031 (11)0.0037 (17)0.004 (2)
C40.0314 (17)0.0213 (18)0.0254 (19)0.0015 (14)0.0026 (15)0.0044 (15)
C50.0299 (17)0.0209 (17)0.0255 (19)0.0003 (14)0.0035 (15)0.0024 (15)
C60.0243 (16)0.034 (2)0.061 (3)0.0084 (16)0.0037 (16)0.001 (2)
C70.058 (3)0.043 (3)0.026 (2)0.009 (2)0.0010 (19)0.007 (2)
C80.0250 (17)0.044 (2)0.059 (3)0.0083 (16)0.0072 (17)0.008 (2)
C90.045 (2)0.035 (2)0.034 (2)0.0034 (19)0.0151 (19)0.0082 (19)
C100.046 (2)0.039 (2)0.037 (2)0.0038 (19)0.0203 (19)0.007 (2)
C110.0275 (17)0.030 (2)0.042 (3)0.0028 (15)0.0055 (16)0.0076 (19)
C120.044 (2)0.028 (2)0.028 (2)0.0049 (17)0.0081 (17)0.0039 (18)
C130.0223 (16)0.033 (2)0.030 (2)0.0013 (15)0.0033 (14)0.0001 (17)
C140.032 (2)0.055 (3)0.049 (3)0.015 (2)0.0176 (19)0.002 (2)
B10.056 (3)0.032 (3)0.042 (3)0.009 (2)0.013 (2)0.002 (2)
N10.0285 (15)0.0268 (16)0.0242 (17)0.0001 (13)0.0015 (12)0.0015 (13)
O10.0375 (16)0.052 (2)0.069 (2)0.0149 (15)0.0089 (17)0.0209 (19)
O20.096 (3)0.0380 (19)0.038 (2)0.0189 (19)0.0112 (19)0.0144 (17)
F10.094 (3)0.146 (4)0.137 (5)0.048 (3)0.003 (3)0.081 (4)
F20.100 (3)0.068 (3)0.188 (6)0.008 (3)0.037 (3)0.015 (4)
F30.067 (2)0.107 (4)0.175 (5)0.009 (2)0.000 (3)0.041 (4)
F40.192 (7)0.256 (9)0.120 (6)0.030 (6)0.020 (5)0.109 (6)
Fe10.01998 (19)0.0212 (2)0.0188 (2)0.00051 (17)0.0013 (3)0.0014 (2)
Geometric parameters (Å, º) top
C1—C51.413 (6)C8—H8B0.9800
C1—C21.436 (5)C8—H8C0.9800
C1—C61.508 (5)C9—H9A0.9800
C1—Fe12.129 (3)C9—H9B0.9800
C2—C31.438 (5)C9—H9C0.9800
C2—C71.477 (6)C10—H10A0.9800
C2—Fe12.097 (4)C10—H10B0.9800
C3—C41.431 (7)C10—H10C0.9800
C3—C81.493 (5)C11—O11.134 (5)
C3—Fe12.105 (3)C11—Fe11.791 (4)
C4—C51.439 (5)C12—O21.140 (6)
C4—C91.493 (6)C12—Fe11.793 (5)
C4—Fe12.091 (4)C13—N11.143 (5)
C5—C101.490 (5)C13—C141.453 (5)
C5—Fe12.124 (4)C14—H14A0.9800
C6—H6A0.9800C14—H14B0.9800
C6—H6B0.9800C14—H14C0.9800
C6—H6C0.9800B1—F41.295 (9)
C7—H7A0.9800B1—F21.318 (7)
C7—H7B0.9800B1—F11.332 (7)
C7—H7C0.9800B1—F31.433 (7)
C8—H8A0.9800N1—Fe11.924 (3)
C5—C1—C2108.9 (3)H9A—C9—H9C109.5
C5—C1—C6125.7 (4)H9B—C9—H9C109.5
C2—C1—C6125.4 (4)C5—C10—H10A109.5
C5—C1—Fe170.4 (2)C5—C10—H10B109.5
C2—C1—Fe168.9 (2)H10A—C10—H10B109.5
C6—C1—Fe1127.1 (3)C5—C10—H10C109.5
C1—C2—C3107.3 (4)H10A—C10—H10C109.5
C1—C2—C7125.6 (4)H10B—C10—H10C109.5
C3—C2—C7126.9 (4)O1—C11—Fe1178.5 (4)
C1—C2—Fe171.4 (2)O2—C12—Fe1176.2 (4)
C3—C2—Fe170.3 (2)N1—C13—C14178.0 (5)
C7—C2—Fe1127.6 (3)C13—C14—H14A109.5
C4—C3—C2107.8 (3)C13—C14—H14B109.5
C4—C3—C8125.1 (4)H14A—C14—H14B109.5
C2—C3—C8127.0 (5)C13—C14—H14C109.5
C4—C3—Fe169.5 (2)H14A—C14—H14C109.5
C2—C3—Fe169.69 (19)H14B—C14—H14C109.5
C8—C3—Fe1128.2 (3)F4—B1—F2109.0 (7)
C3—C4—C5108.1 (3)F4—B1—F1113.9 (6)
C3—C4—C9125.6 (4)F2—B1—F1111.4 (6)
C5—C4—C9125.9 (4)F4—B1—F3105.6 (6)
C3—C4—Fe170.6 (2)F2—B1—F3106.7 (5)
C5—C4—Fe171.3 (2)F1—B1—F3109.9 (5)
C9—C4—Fe1129.5 (3)C13—N1—Fe1174.2 (3)
C1—C5—C4107.8 (3)C11—Fe1—C1294.3 (2)
C1—C5—C10124.8 (4)C11—Fe1—N195.67 (17)
C4—C5—C10127.3 (4)C12—Fe1—N194.73 (16)
C1—C5—Fe170.8 (2)C11—Fe1—C4109.68 (17)
C4—C5—Fe168.8 (2)C12—Fe1—C493.34 (18)
C10—C5—Fe1128.9 (3)N1—Fe1—C4152.70 (14)
C1—C6—H6A109.5C11—Fe1—C2104.35 (18)
C1—C6—H6B109.5C12—Fe1—C2156.57 (19)
H6A—C6—H6B109.5N1—Fe1—C297.42 (15)
C1—C6—H6C109.5C4—Fe1—C267.22 (16)
H6A—C6—H6C109.5C11—Fe1—C387.62 (17)
H6B—C6—H6C109.5C12—Fe1—C3129.0 (2)
C2—C7—H7A109.5N1—Fe1—C3135.88 (18)
C2—C7—H7B109.5C4—Fe1—C339.87 (19)
H7A—C7—H7B109.5C2—Fe1—C340.03 (15)
C2—C7—H7C109.5C11—Fe1—C5149.54 (17)
H7A—C7—H7C109.5C12—Fe1—C590.14 (18)
H7B—C7—H7C109.5N1—Fe1—C5114.01 (14)
C3—C8—H8A109.5C4—Fe1—C539.90 (15)
C3—C8—H8B109.5C2—Fe1—C566.62 (15)
H8A—C8—H8B109.5C3—Fe1—C566.63 (16)
C3—C8—H8C109.5C11—Fe1—C1143.80 (19)
H8A—C8—H8C109.5C12—Fe1—C1121.48 (19)
H8B—C8—H8C109.5N1—Fe1—C187.48 (14)
C4—C9—H9A109.5C4—Fe1—C166.16 (15)
C4—C9—H9B109.5C2—Fe1—C139.71 (14)
H9A—C9—H9B109.5C3—Fe1—C166.28 (12)
C4—C9—H9C109.5C5—Fe1—C138.80 (17)
C5—C1—C2—C32.2 (4)C1—C2—Fe1—C479.6 (2)
C6—C1—C2—C3177.2 (3)C3—C2—Fe1—C437.4 (2)
Fe1—C1—C2—C361.4 (2)C7—C2—Fe1—C4159.4 (4)
C5—C1—C2—C7177.4 (4)C1—C2—Fe1—C3117.0 (4)
C6—C1—C2—C72.1 (6)C7—C2—Fe1—C3121.9 (5)
Fe1—C1—C2—C7123.4 (4)C1—C2—Fe1—C536.1 (2)
C5—C1—C2—Fe159.2 (2)C3—C2—Fe1—C581.0 (3)
C6—C1—C2—Fe1121.3 (4)C7—C2—Fe1—C5157.1 (4)
C1—C2—C3—C42.8 (4)C3—C2—Fe1—C1117.0 (4)
C7—C2—C3—C4177.9 (4)C7—C2—Fe1—C1121.0 (4)
Fe1—C2—C3—C459.3 (2)C4—C3—Fe1—C11125.1 (3)
C1—C2—C3—C8174.8 (3)C2—C3—Fe1—C11115.8 (3)
C7—C2—C3—C80.3 (7)C8—C3—Fe1—C115.9 (5)
Fe1—C2—C3—C8123.1 (4)C4—C3—Fe1—C1231.6 (3)
C1—C2—C3—Fe162.1 (3)C2—C3—Fe1—C12150.7 (3)
C7—C2—C3—Fe1122.8 (4)C8—C3—Fe1—C1287.6 (5)
C2—C3—C4—C52.4 (4)C4—C3—Fe1—N1139.2 (2)
C8—C3—C4—C5175.3 (3)C2—C3—Fe1—N120.1 (3)
Fe1—C3—C4—C561.8 (2)C8—C3—Fe1—N1101.6 (4)
C2—C3—C4—C9175.4 (4)C2—C3—Fe1—C4119.1 (3)
C8—C3—C4—C92.3 (6)C8—C3—Fe1—C4119.2 (5)
Fe1—C3—C4—C9125.2 (4)C4—C3—Fe1—C2119.1 (3)
C2—C3—C4—Fe159.4 (2)C8—C3—Fe1—C2121.7 (6)
C8—C3—C4—Fe1122.9 (4)C4—C3—Fe1—C538.2 (2)
C2—C1—C5—C40.8 (4)C2—C3—Fe1—C580.9 (2)
C6—C1—C5—C4178.7 (3)C8—C3—Fe1—C5157.3 (5)
Fe1—C1—C5—C459.1 (2)C4—C3—Fe1—C180.6 (2)
C2—C1—C5—C10177.1 (4)C2—C3—Fe1—C138.4 (2)
C6—C1—C5—C102.4 (6)C8—C3—Fe1—C1160.2 (5)
Fe1—C1—C5—C10124.6 (4)C1—C5—Fe1—C11115.2 (4)
C2—C1—C5—Fe158.3 (3)C4—C5—Fe1—C113.6 (5)
C6—C1—C5—Fe1122.2 (3)C10—C5—Fe1—C11125.1 (5)
C3—C4—C5—C11.0 (4)C1—C5—Fe1—C12146.1 (2)
C9—C4—C5—C1174.0 (4)C4—C5—Fe1—C1295.0 (2)
Fe1—C4—C5—C160.3 (3)C10—C5—Fe1—C1226.4 (4)
C3—C4—C5—C10175.2 (4)C1—C5—Fe1—N150.9 (2)
C9—C4—C5—C102.2 (7)C4—C5—Fe1—N1169.7 (2)
Fe1—C4—C5—C10123.5 (4)C10—C5—Fe1—N168.8 (4)
C3—C4—C5—Fe161.3 (2)C1—C5—Fe1—C4118.8 (3)
C9—C4—C5—Fe1125.7 (4)C10—C5—Fe1—C4121.5 (5)
C3—C4—Fe1—C1160.2 (3)C1—C5—Fe1—C236.89 (19)
C5—C4—Fe1—C11178.1 (2)C4—C5—Fe1—C281.9 (2)
C9—C4—Fe1—C1160.4 (4)C10—C5—Fe1—C2156.6 (4)
C3—C4—Fe1—C12155.9 (2)C1—C5—Fe1—C380.7 (2)
C5—C4—Fe1—C1286.2 (3)C4—C5—Fe1—C338.1 (2)
C9—C4—Fe1—C1235.3 (4)C10—C5—Fe1—C3159.6 (4)
C3—C4—Fe1—N197.0 (4)C4—C5—Fe1—C1118.8 (3)
C5—C4—Fe1—N120.8 (4)C10—C5—Fe1—C1119.7 (5)
C9—C4—Fe1—N1142.4 (4)C5—C1—Fe1—C11129.0 (3)
C3—C4—Fe1—C237.6 (2)C2—C1—Fe1—C118.6 (4)
C5—C4—Fe1—C280.3 (2)C6—C1—Fe1—C11110.5 (4)
C9—C4—Fe1—C2158.2 (4)C5—C1—Fe1—C1240.8 (3)
C5—C4—Fe1—C3117.9 (3)C2—C1—Fe1—C12161.2 (2)
C9—C4—Fe1—C3120.6 (5)C6—C1—Fe1—C1279.7 (5)
C3—C4—Fe1—C5117.9 (3)C5—C1—Fe1—N1134.8 (2)
C9—C4—Fe1—C5121.6 (5)C2—C1—Fe1—N1104.8 (2)
C3—C4—Fe1—C181.0 (2)C6—C1—Fe1—N114.3 (4)
C5—C4—Fe1—C136.9 (2)C5—C1—Fe1—C437.9 (2)
C9—C4—Fe1—C1158.4 (4)C2—C1—Fe1—C482.5 (2)
C1—C2—Fe1—C11174.8 (2)C6—C1—Fe1—C4158.4 (5)
C3—C2—Fe1—C1168.2 (3)C5—C1—Fe1—C2120.4 (3)
C7—C2—Fe1—C1153.7 (4)C6—C1—Fe1—C2119.1 (5)
C1—C2—Fe1—C1243.7 (5)C5—C1—Fe1—C381.7 (3)
C3—C2—Fe1—C1273.3 (5)C2—C1—Fe1—C338.7 (3)
C7—C2—Fe1—C12164.7 (4)C6—C1—Fe1—C3157.9 (5)
C1—C2—Fe1—N176.9 (2)C2—C1—Fe1—C5120.4 (3)
C3—C2—Fe1—N1166.0 (2)C6—C1—Fe1—C5120.5 (5)
C7—C2—Fe1—N144.1 (4)

Experimental details

Crystal data
Chemical formula[Fe(C10H15)(C2H3N)(CO)2]BF4
Mr374.95
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)173
a, b, c (Å)17.6211 (17), 6.5141 (7), 14.5794 (13)
V3)1673.5 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.95
Crystal size (mm)0.54 × 0.34 × 0.12
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionIntegration
(XPREP; Bruker, 2005)
Tmin, Tmax0.629, 0.895
No. of measured, independent and
observed [I > 2σ(I)] reflections
9060, 3496, 2941
Rint0.044
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.120, 1.08
No. of reflections3496
No. of parameters214
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.76, 0.39
Absolute structureFlack (1983), 13942 Friedel pairs
Absolute structure parameter0.02 (3)

Computer programs: APEX2 (Bruker, 2005), SAINT-Plus (Bruker, 2005), SHELXTL (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

 

Acknowledgements

We wish to thank Dr Manuel Fernandes (University of the Witwatersrand) for data collection, solution and refinement. Our acknowledgement also goes to the NRF and the University of KwaZulu-Natal for resources and financial support.

References

First citationBruker (2005). APEX2 and SAINT-Plus (includes XPREP). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCallan, B., Manning, A. R. & Stephens, F. S. (1987). J. Organomet. Chem. 331, 357–377.  CSD CrossRef CAS Web of Science Google Scholar
First citationCatheline, D. & Astruc, D. (1984). J. Organomet. Chem. 266, C11–C14.  CrossRef CAS Google Scholar
First citationFadel, S., Weidenheimer, K. & Ziegler, M. L. (1979). Z. Anorg. Allg. Chem. 453, 98–106.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationM'thiruaine, C. M., Friedrich, H. B., Changamu, E. O. & Bala, M. D. (2011). Inorg. Chim. Acta, 366, 105–115.  CAS Google Scholar
First citationM'thiruaine, C. M., Friedrich, H. B., Changamu, E. O. & Omondi, B. (2011). Acta Cryst. E67, m485.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds